
Community Detection on Last.fm Artist Data

CS224W Project Report

Ryan Voldstad SUNet ID: ryanv88

December 10, 2014

1 Introduction

Much like with other media, one of the most exciting results of music consumption transferring into the
digital online marketplace is the explosion of user data that is generated as a result. In the tech world,
the domain of personalized music recommendation has been developing and expanding rapidly over the past
decade. It is most strongly associated with Pandora, which began in 2000 but didn’t achieve much popularity
until several years later. Since then, dozens of other similar services have been launched with the goal of
bringing personalized music recommendations to a user. One such service in particular, Last.fm, provides
anonymized data publicly available through a free API; datasets procured through this API are the main
inspiration for and subject matter of my project.

In this project I will examine the network properties of various graphs that can be built from the available
Last.fm data. Specifically, I consider graphs with artists as nodes, with the overarching question of whether
significant community structures form among artists. The Last.fm data naturally takes on a graph form,
as user activity involving multiple artists gives rise to an implicit edge of mutual interaction between two
artists. I would like to consider the problem of community detection on graphs across a variety of edge
formulations. I will evaluate the similarity of the different clusterings produced across formulations, with
the hope that there is high similarity according to the ‘true’ artist communities.

Community detection on this graph is of interest largely for the purpose of ‘categorizing’ artists based on
their respective listening communities. This can be used to inform recommendation systems, and we may
suspect it could be more robust than collaborative filtering systems which aim to predict a user’s rating
of a new artist. This is intuitively an automated process of the same way that traditional radio works;
users fall into certain listening communities and subscribe to a station based on their association with these
communities. Community detection with respect to artists falls much along the same lines.

2 Related Work

2.1 Previous Work with Last.fm

[6] presents a similar over-arching strategy to that which I will pursue in my paper. A recommender system is
built on an explicit partitioning of Last.fm users using a variety of community detection methods, compared
against a basic collaborative filtering baseline. The results were very positive, evaluated from the lens of top
artist prediction on a per-user basis.

There are a number of ways in which my approach will deviate from [6]. First, as explained above I am
interested in community detection among artists rather than users. However, if the hypothesis of music
communities holds then there should be a strong correspondence between artist clusters with user clusters.
More importantly, then, I will deviate from the authors’ examination of explicit friendships that are formed

1



on Last.fm and instead form edges purely based on users’ interaction with the artists. Finally, the popular
spectral clustering family of techniques was not explored in solving the community detection, which I have
chosen to implement.

Much of the inspiration for the graph formulation derives from [5], a student paper from last year’s CS224W
class which explores decentralized search over artists using Last.fm data. I will use their colistening formu-
lation as a baseline for my graph. In this formulation, edges are added between two artists for all pairs of
users who have them in their top-k listens, with edge weight equal to the total number of listens over all such
user pairs. I would like to explore normalization of these weights by the total popularity of an artist, as this
seems a downfall of the existing formulation; I don’t want popularity to be the dominant factor in producing
artist clusters. Another major difference in my paper is that they do not explore community detection.

2.2 Spectral Clustering

Spectral clustering algorithms have been commonly adapted for use in community detection in graphs,
attractive for both their speed and performance. I draw largely from the surveys presented in [4] and [2] in
navigating the literature on spectral clustering and arriving at the formulation used. There are two major
contributions worth noting here. First, [1] presents the first use a multiway cut on the eigenvectors of the
Laplacian. Second, also in [1], but further tested in [3] and [4], is the use of normalized on the Laplacian
matrix prior to decomposition. In my exploration, I found that normalization was indeed necessary to avoid
the pitfalls of the traditional method. I ended up implementing the normalization term recommended by [4].

3 Data Collection

A major component of preliminary work on the project has been in data collection. While I began with a
substantial dataset from [7], I was inspired by the accessibility of the API and thought it would be fruitful
to generate further datasets resulting in additional graph formulations. Since much of my evaluation in this
project is intrinsic, my ability to form interesting results will depend largely on comparing several graphs
and trying to explain discrepancies.

[7] consists of a random set of about 360K users, with listening counts for each for each of the user’s top 20
artists. Due to resource limitations I truncated this to the data for the first 100K users. This resulted in a
list of 22175 artists. Additionally, I decided to gather 2 additional data points provided by the API for each
artist: top tags for the artist, and Last.fm’s “similar artists” list for each. The former represents another
user interaction-generated artifact; users may tag artists with either pre-existing tags or create their own
free text. The similarity data represents a potential baseline with which to compare communities found: if
meaningful communities are found within the artist graphs, then we would expect them to align well with
the similarity of artists as evaluated by more sophisticated measures.

To collect tagging and similarity data, I wrote scripts to scrape the Last.fm API for data on each artist in
the set of 22175. From the tagging data I extracted the name and count of the top 10 tags associated with
each artist, and for the similarity lists I took the top 10 most similar artists for each. This was dumped to
file in json format, and in further scripts I cleaned the data into the edge metrics used in the graph models.

I will now go into more detail on the specific models in my exploration.

3.1 Colistening Data

I explore a variant of the edge weights defined in [5]: for each pair of artists that appears in a user’s top
listened list, add the total listen count between the two to their adjoining edge. However, there are two
biases present here that I would like to correct for. First, that of the popularity of an artist. Artists with
higher total listen counts will have overly high-weighted edges that bear little significance to the proximity

2



of their neighbors. Next, that of a user’s listening habits. Some users have orders of magnitude more listens
than others, so their top artists have an overly strong influence on the resulting graph.

To correct for this, I first normalize all user’s listening counts such that they sum to 1.

Next, for each pair of artists I propose a metric akin to a sample covariance. For each user list in which both
artists i and j appear, add(
count(i)−

∑
u count(i)

N

)
·
(
count(j)−

∑
u count(j)

N

)
where N is the total number of users and

∑
u count(i) the total count of an artist across all users. Intuitively,

this should measure how user listening counts correlate between two artists. Finally, I normalize the resulting
weights so that the maximum edge weight is 1.

3.2 Cotagging Data

The raw cotagging data takes on a similar form to colistening data. Since tags are much sparser – there
are much more tags used than users in the sample – it makes less sense to consider covariance between two
artists’ tags. Instead, I simply sum over the product of tag counts for all common tags between two artists,
then normalize the resulting weights to have max 1.

3.3 Similarity Data

Here I keep the graph edges unweighted and draw an edge between two artists if either appears in the other’s
similarity list. This is the result of the fact that no real magnitude of interaction can be drawn from the
data. However, we certainly still expect the graph to convey community information through these edges if
the lists are to be trusted.

4 Graph Construction

After generating the above edge weight data I proceeded to load graphs into snap and generate some pre-
liminary statistics.

4.1 Colistening Data

Nodes: 22175
Edges: 3636082

(a) Plot of edge weight distribution for Colisten graph

(b) Plot of node degrees for Colisten graph

Interestingly, the edge weights follow a power distri-
bution quite nicely. This suggests that some artist
pairs have extremely high correlation among listen-
ers, while a very large number have very low corre-
lation, which is a promising result.

However, the plot of node degrees – which we expect
to follow a power distribution – is much less well-
behaved. The drop-off on the left may be explained
by the fact that the data only covers artists in a
user’s top listens. Artists which have few edges must
be unpopular, so any user is unlikely to listen to such
an artist very frequently.

3



Average clustering coefficient: .775
This may serve as a preliminary heuristic for whether a good clustering is achievable; if the CC is very low
then we can’t expect meaningful clusters. So this result is satisfying.

4.2 Cotagging Data

Using all of the top 10 tags for each artist yielded an intractable number of cotag edges; even cutting down
to 5 per artist yielded a nearly complete graph. This is due to the fact that there are very common tag: for
example, if some tag appears in all top k tags, then the graph is complete.

So, I revised the formulation to normalize against tag frequencies. First sort the user’s top tags by their
information content, rather than raw count. Then I tried two approaches: first, take the top k for this order;
second, take all above a given threshold α. Tuning these parameters to get the desired number of edges
yielded k = 6, α = .1.

(a) Edge weights for the top-k approach

(b) Degree distribution for the top-k approach

(c) Edge weights for the threshold approach

(d) Degree distribution for the threshold approach

As in the colisten graph, the edge weights follow a
power law quite nicely.

And happily, the degree distribution follows a power
law relatively closely, with the exception of the up-
per tail, which drops off a bit quickly.

For the threshold approach, edge weights were even
closer to power law, but degree distribution was
much worse. So I went with top-k.

Other graph statistics:

Nodes: 21506
Edges: 5453348
Average clustering coefficient: .563
The CC is not as high as in cotagging, but is still
much higher than the baseline m

n2

4.3 Similarity Data

Nodes: 21506
Edges: 78396
Average clustering coefficient: 0.344

The graph is deliberately constructed with fewer
edges; the top-5 lists are ‘gold’ in a sense, and have
no numerical value, so additional edges may be more
likely to generate noise than information. Note that
the clustering coefficient is very high relative to the
Gnm baseline here since the number of edges is so
much lower.

Since each artist had exactly 5 similar artists pulled,
we don’t necessarily expect the degree distribution
to follow a power law, and indeed the distribution
is closer to linear. Note that the similar artists re-
trieved are from the entire Last.fm database, not our subset of artists, so the nodes with fewer than 5 edges
are valid.

4



Figure 3: Degree distribution of similarity graph

4.4 Final Words

Connected components: Printing connected component sizes for each graph reveals that the vast majority
are in the largest, with the remaining in small isolated components. This is encouraging, as again it follows
our assumptions of naturally occurring graphs.

There about 500 missing artists in the raw tagging data for artists that had not received any tags. (The
original artist list came from listening data so the colisten graph isn’t missing any). As an additional cleanup
measure, these were removed from the colistening graph, bringing both to 21506 nodes.

5 Clustering Results

5.1 Implementation Details and First Results

I performed community detection via the multi-cut spectral clustering algorithm described in [1], using k-
means to cluster the coordinates of the n smallest non-zero eigenvectors, with n = 5. I was worried about
performance, given the slow performance of my edge generation steps. So to improve performance, I utilized
Matlab’s sparse matrix representation in computing the eigenvector decomposition (eigs function) on the
Laplacian.

I first tried the cotag graph, treating edges as unweighted when forming the Laplacian. For several k-values
tried, as large as 50, this resulted in a single large cluster and other much smaller ones. The large cluster
had, at its smallest when k = 50, 19676 nodes. Unsurprisingly, this included every node from the 19664
nodes of the largest WCC.

This suggested I need to filter out the small components; the variance of clustering lay entirely in the
partitioning/grouping of the isolated components, which is relatively uninteresting. Therefore I removed all
nodes that weren’t in the first component of any of the 3 graphs. The largest component sizes in the colisten,
cotag, and similarity graphs were 21493, 19664, and 17347 respectively, with an intersection of size 16175; I
further truncated the graphs to only these nodes.

Unfortunately, preliminary spectral clustering on the similarity graph proved unsuccessful: I was unable to
achieve clusterings with any reasonable balance in sizes, and the eigs and kmeans functions were both very
unstable. This may have been to the extreme sparsity of edges in the graph; rather than spend the effort
to recollect data to add additional edges, I have simply omitted the graph, as there are plenty of results to
show with the others.

I then proceeded to compute many different clusterings on the data, using the variables and evaluation
methods described in the next section. Plots of the n lowest eigenvalues for each eigen-decomposition
are shown below. Additionally, for the remaining results, the Laplacian is amended in the natural way
for the weighted graphs: Aij = {wij∀(i, j) ∈ E, 0 elsewhere};Dii =

∑
j∈n(i) wij . Note that for all graph

formulations, edges have the same weight in each direction, so that L remains symmetric as desired.

5



(a) λ values for λ > 0: Cotag in blue, Colisten in red (b) λ values for Similarity graph

5.2 Variables

5.2.1 Parameters

The main parameter at play here is k. I tried k in the neighborhood of [10, 100], based on an intuition for the
number of major music genres that might surface from the data. k-means grew unstable (failing to converge)
for k > 16, and the results below suggest k should not be greater, so the final set used was {10, 12, 16}.

Further, we may choose different n; the number of smallest non-zero eigenvalues of L used in k-means.
As shown in the plot, the eigenvalues are quite closely packed in the lower end, suggesting that higher n
may be used to improve stability while approximating minimal NCut. Due to resource limitations (on the
complexity of k-means), I kept n at 5.

5.2.2 Normalization

Initial attempts at clustering yielded extremely unbalanced cluster sizes (even after removing disconnected
components). As described in [4], this may be improved by introducing normalization. The major competing
techniques are Lrw = D−1L and Lrw = D−1/2LD−1/2. For brevity, I consider only Lrw, as this optimizes
for intracluster separation, which should help pull elements away from the central cluster.

5.2.3 Algorithm

As the most fundamental variable, I will compare the results of spectral clustering to standard HAC. That
is, I will complement edge weights to form a distance metric across all edges. Additionally I’ll need to assign
some value to all distances for non-existent edges, say α · dmax for some α > 1. I chose α = 2,arbitrarily.
From this this distance matrix, I can implement average-link HAC.

5.3 Evaluation Methodology

5.3.1 Intrinsic Evaluation

I compute the modularity score (for unweighted graphs) detailed in lecture: Q = 1
2m

∑
s∈S

[∑
i,j∈sAij −

∑
i,j∈s

kikj

2m

]
,

which we hope to maximize.

However, due to the weighted formulation of L, the linear algebra of the spectral clustering does not minimize
conductance (to hence maximize modularity). This can be seen be examining xLTx:

xTLx =
∑
i

Diix
2
i −

∑
(i,j)∈E

2wijxixj =
∑

(i,j)∈E

(wijx
2
i + wijx

2
j − 2wijxixj) =

∑
(i,j)∈E

wij(xi − xj)2

Then adjusting the Rayleigh Theorem formulation shows we approximately minimize then number of edges
crossing the cut, weighted by their edge weights (as we’d expect). Then for consistency’s sake, we should

6



examine the metric Qw = 1
2m

∑
s∈S

[∑
i,j∈s wij −

∑
i,j∈s

kikj

2m

]
. I generated a graph according to Gnm as a

baseline point of comparison for all results.

5.3.2 Extrinsic evaluation

The Adjusted Rand Index is the standard metric used to compare two clusterings. It measures the fraction
of pairs which end up in either the same cluster in both, or a different cluster in both, adjusted for chance
to lie in the range (−1, 1).

I use this for two goals: (1) evaluating stability of clusterings achieved from a single graph by tweaking
parameters. If different n, k, or edge weights drastically affect resulting clusterings then we must be relatively
skeptical of the results. (2) If (1) is reasonable, then we may further hope that the different graphs produce
similar clusters as well. This more directly tests the hypothesis that significant community structure underlies
artist data on Last.fm. Additionally, the Rand score may compare the various spectral clusterings to HAC,
as well as to all techniques on Gmn.

5.3.3 Anecdotal Results

Finally, I will also evaluate clusterings based on more subjective, anecdotal evidence. First, I ordered all
artists by ‘popularity’ – their total listening counts across all users in the data set. For each clustering, I
print out the top 5 artists in each cluster in the hopes that clusters have some genre coherence.

5.4 Main Results

5.4.1 Intrinsic

Graph k Q
Colisten 10 0.01556

12 0.01531
16 0.01204

Cotag 10 0.00681
12 0.00666
16 0.00663

GNM 10 0.0276
12 0.0245
16 0.0203

Table 1: Modularity scores

Graph k Qw

Colisten 10 0.1225
12 0.1253
16 0.0843

Cotag 10 0.1953
12 0.2025
16 0.1986

GNM 10 0.0276
12 0.0245
16 0.0203

Table 2: Adjusted modularity scores

Rather dishearteningly, the null model Gnm outperforms both other graphs in achieved modularity through
spectral clustering. However, remember that modularity is not being optimized for the weighted, but rather
the weighted modularity function.

Fortunately, under this metric the real graphs outperform Gn,m by as much as a factor of 10. Under the
weighted modularity scores, we see that 12 is the highest performing value of k, as opposed to 10 for the
unweighted score. Also changed is the relative ordering of Cotag and Colisten; in the weighted case, the
Cotag score is about twice as good as Colisten score, while unweighted Cotag clustering performed much
worse.

7



ColistenSC ColistenHAC CotagSC CotagHAC GNMSC GNMHAC

ColistenSC 1
ColistenHAC 0.03087 1
CotagSC 2.346 ∗ 10−4 6.144 ∗ 10−4 1
CotagHAC 7.312 ∗ 10−5 1.390 ∗ 10−3 0.0220 1
GNMSC −4.775 ∗ 10−5 −5.301 ∗ 10−4 −4.194 ∗ 10−5 9.132 ∗ 10−6 1
GNMHAC −1.727 ∗ 10−5 −2.351 ∗ 10−4 −6.285 ∗ 10−5 5.455 ∗ 10−5 0.0107 1

Table 3: Rand similarity matrix across clusterings

5.4.2 Extrinsic

ARI for each pair of clusterings with k = 12 are shown. On the whole, results are very disappointing (a
few details are discussed in conclusion). Informal tweaking of parameters and observation of resulting ARI
(omitted) revealed a fair amount of instability, which hints at unmeaningful clusters.

5.4.3 Anecdotal

1 2 3 4 5
pink floyd nine inch nails linkin park the beatles radiohead
yuki kajiura red hot chili peppers system of a down metallica queens of the stone age
kanye west placebo death cab for cutie depeche mode queen
bad religion bob dylan jack johnson garbage the smashing pumpkins
green day mogwai nightwish in flames lady gaga

6 7 8 9 10
rammstein sigur rós arctic monkeys coldplay muse
led zeppelin oasis korn rise against the killers
nirvana kings of leon ac/dc iron maiden boards of canada
daft punk the pillbugs the cure the prodigy johnny cash
tom waits kent madonna fall out boy sufjan stevens

Table 4: Top 5 artists in each cluster for SC on Colisten graph, k = 10

Unfortunately, the groupings produced by one of the top-scoring clusterings appear completely nonsensical
(at least to my musical sensibilities).

6 Conclusion

The modularity scores, while not great, were well above the Gnm baseline, which indicates the graph for-
mulations managed to produce reasonably ‘clustered’ data; it was possible to partition the data such that
much of the edge weight lay within clusters, with a relatively small number of clusters.

However, both the anecdotal and external evidence point in a more negative direction. While spectral
clustering ended up fairly similar to HAC on the same graphs, this is almost a given based on the similarity
of the underlying optimization functions. The different graphs appear to share very little structure with
one another, only marginally above that with Gnm. Finally, the sample results don’t lend much optimism
to real-world applications of the clusterings; e.g. to artist recommendation. Each cluster seems equally
disparate in the artists contained. However, as mentioned throughout the paper, there are many different
directions one could take further work in the hopes of revealing more coherent underlying communities.

8



References

[1] Jianbo Shi and Jitendra Malik Normalized Cuts and Image Segmentation. 2000

[2] A. Rajaraman, J. Ullman, and J. Leskovec. Mining Massive Datasets. Chapter 10.4 2013

[3] Andrew Ng, Michael I Jordan, and Yair Weiss. On Spectral Clustering: Analysis and an Algorithm. 2001

[4] Urlike von Luxburg A Tutorial on Spectral Clustering. 2007

[5] Alexander Embiricos, Salman Quazi, and Prasanth Veerina Hip-Hop to Deep House: Navigating the
Music Graph using Decentralized Search. 2013

[6] The Anh Dang, Emmanuel Viennet Collaborative Filtering in Social Networks: A Community-based
Approach 2013.

[7] http://www.dtic.upf.edu/ ocelma/MusicRecommendationDataset/index.html

9


	Introduction
	Related Work
	Previous Work with Last.fm
	Spectral Clustering

	Data Collection
	Colistening Data
	Cotagging Data
	Similarity Data

	Graph Construction
	Colistening Data
	Cotagging Data
	Similarity Data
	Final Words

	Clustering Results
	Implementation Details and First Results
	Variables
	Parameters
	Normalization
	Algorithm

	Evaluation Methodology
	Intrinsic Evaluation
	Extrinsic evaluation
	Anecdotal Results

	Main Results
	Intrinsic
	Extrinsic
	Anecdotal


	Conclusion

