
 1 

Subreddit Recommendations within Reddit Communities 

Vishnu Sundaresan, Irving Hsu, Daryl Chang 
Stanford University, Department of Computer Science 

 
ABSTRACT: We describe the creation of a recommendation system for Reddit, a social news and 
entertainment site where community members can submit content in the form of text posts, links, or images. 
Our dataset consists of 23,091,688 votes from 43,976 users over 3,436,063 links in 11,675 subreddits. Using 
this network, we constructed a weighted graph of subreddits, partitioned it into 217 distinct subcommunities, 
and created both an item-based and user-based recommendation algorithm. Given a user and a subreddit, our 
algorithm recommends to the user novel subreddits within the same subcommunity. User-based 
recommendation was found to outperform item-based recommendation. 

 
1.  INTRODUCTION 
 
Reddit is a social news website where users can 
submit links to content on the web. These links 
can then be upvoted or downvoted by other 
users, influencing the prominence of the posts. 
Reddit entries are organized into subreddits, 
which are custom-made subforums for specific 
areas of interest. 
 
When viewing a subreddit today, a user is 
encapsulated in a particular subforum with no 
links or recommendations to similar content. In 
a world where suggestions and links to more 
information are almost essential to growth and 
discovery, it is astounding that Reddit (a site 
with over 5 million hits a day and 174 million 
unique visitors a month) does not have a tool to 
connect its communities. 
 
We will be creating a recommendation feature 
for Reddit, using data to create a 3-step process 
that will be able to take a user and give 
suggestions as to other related communities 
based on general user behavior. The first step 
will involve creating a large weighted graph 
with edges between different subreddits, then 
clustering these nodes and categorizing them to 
separate communities, and finally classifying a 
user under one of these communities and giving 
them recommendations to other subreddits that 
they are likely to be interested in within that 
community. 

2. PRIOR WORK 
 
2.1  “Navigating the massive world of Reddit: 
Using Backbone Networks to Map User Interests 
in Social Media” (Olson and Neal) 
 
Olson and Neal [1] showed that techniques for 
network backbone extraction and community 
detection can be used to map and navigate 
interest networks in social media. This 
ultimately facilitates the organization of users 
into specific interest groups. In this work, an 
interest map was built for Reddit, using a 
dataset of over 875,000 active users that post to 
over 15,000 distinct subreddits. The interest 
map was built by viewing the Reddit network as 
a hierarchical map of all user interests in the 
social network.  Using the backbone extraction 
algorithm, the network was divided into 59 
interest meta-communities, or groups containing 
similar interests. The backbone extraction 
algorithm preserves edges whose weight is 
statistically significant compared to a null model 
where edges are assigned weights uniformly at 
random. 
 
An extension to the backbone algorithm is used 
in our work to first create a weighted graph of 
subreddits. This allows us to restrict the 
recommended subreddits to the community of 
the user’s current subreddit. Furthermore, a 
shortcoming to this work is that the graph is still 
not divided into distinct clusters of communities 
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that are related. This can be achieved by 
applying the Louvain algorithm to cluster the 
graph recursively, and is discussed in the 
algorithms section of this paper. The output of 
the above algorithm will result in several 
subgraphs containing subreddits in the same 
community, which will then be used to make 
recommendations for a user inside one of these 
communities. 
 
2.2  “Finding and Evaluating Community 
Structure in Networks” (Newman, Girvan) 
 
Newman and Girvan describe several 
algorithms for determining the number of 
communities, as well as the structure [2]. Each 
method, however, utilizes a basic approach of 
removing an edge that has the highest likelihood 
of being an inter-community edge, and then 
recalculating the next highest such edge. The 
three methods proposed are shortest-path 
betweenness, which determines the most used 
edges through the number of shortest paths 
passing through each edge; resistor networks, 
which ranks edges according to the minimum 
potential lost over each edge when treating the 
graph as a circuit; and random walks, which, 
similar to shortest-path, determines which edges 
are passed over the most on a random walk 
between two nodes. 
 
One shortcoming of these algorithms, however, 
is the assumption that all edges are unweighted. 
In our graph, it is clear that edges with less 
weight, in comparison to other outgoing edges 
for that node, are more likely to be edges 
connecting communities, as opposed to 
connecting nodes within the community. This is 
an aspect that can potentially increase the 
performance of our algorithm from O(mn), 
where m is the number of edges, and n is the 
number of nodes in the subreddit graph. 
However, the main purpose of this algorithm to 
create clusters of subreddit is to improve the 
performance of the recommendation algorithm 
described in Section 5. 

2.3  “Evaluation of Item-Based Top-N 
Recommendation Algorithms” (Karypis) 
 
User-based and item-based algorithms are two 
popular methods to make recommendations 
within a bipartite graph. User-based algorithms 
first identify the k most similar users to the 
active user, and then recommend the N items 
most frequently used by those users.  In 
contrast, item-based algorithms first compute 
item-to-item similarities, and then recommend 
the N items most similar to the active user’s 
existing items. Karypis demonstrated that item-
based algorithms outperform user-based ones in 
both performance and recommendation 
accuracy [3]. Additionally, unlike user 
algorithms, item-based algorithms can be used 
when the historical information for the user is 
limited. 
 
However, Karypis’ item-based algorithm suffers 
from two main weaknesses. First, it has O(m2n) 
runtime, where m is the number of items and n 
is the number of users, since m(m-1) similarities 
need to be calculated, each with up to n 
computations.  Since Karypis used a sparse 
dataset, the de facto runtime was reduced by 
using sparse data structures and only computing 
similarities between items that shared a user.  
Still, this optimization may not scale to 
extremely large datasets. Second, item-based 
algorithms may not provide truly personalized 
recommendations, as user-based algorithms do.  
For example, an active user who exhibits 
behavior similar to that of an extremely small 
subset of users would receive more personalized 
recommendations with a user-based algorithm. 
 
Item-based algorithms may be improved by 
incorporating aspects of user-based algorithms.  
Karypis suggests first identifying a large 
neighborhood of similar users and then 
computing item similarities based on this subset 
of users.  Reducing to a subset of similar users 
would combine the personalization of user-
based recommendation algorithms with the 
performance of item-based ones, and would 
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further improve runtime by making the item 
vectors more sparse. 
 
3. PROBLEM STATEMENT 
 
On a high level, we would like to provide 
relevant subreddit recommendations for a user 
on a given subreddit.  Going into specifics on 
what recommendations we are serving, imagine 
you are a user on a specific subreddit, i.e., 
Stanford. You want to get recommendations for 
other subreddits similar to Stanford, such as 
StanfordCardinal or StanfordHousing. To do so, 
we will take advantage of previous user data 
from yourself in that subreddit and create a 
subset of users with similar interests. 
 
4.  DATA SET 
 
We have a public dataset of reddit votes that 
consists of 23 million votes from 44,000 users 
over 3.4 million links in 11,675 reddits.  This 
implies an average of 525 votes per user, which 
would be sufficient to determine user-to-user 
similarity in the user-based part of our 
algorithm, which is described in more detail 
below. Each vote can be an upvote or downvote 
and is associated with a user, link, and 
subreddit. 
 
5.  ALGORITHM 
 
In order to restrict the recommended subreddits 
to the community of the user’s current 
subreddit, we first create a weighted graph of 
subreddits [1]. To create the weighted graph, we 
use the data set above without the column on 
voting activity, removing any duplicate (user, 
subreddit, link) entries as necessary. This results 
in there being only unique (user, subreddit) 
pairs. Weighted edges are then created between 
subreddits, with each edge (u, v) having a 
weight equal to the number of shared users 
between subreddits u and v. 
 
The number of edges in the weighted subreddit 
network is then reduced to the edges that 

represented a significant user overlap between 
two subreddits.  This is done by making the 
original undirected graph into a directed graph, 
with two edges for each original edge. Then, 
each edge has its weight set to the percentage of 
users that the source node subreddit shares with 
another subreddit.  If the weights of both 
directed edges in a pair of nodes fall below a 
certain threshold 𝛼 (5×10!!), we remove the 
edges from the graph. 
 
Note that at this point, the weights in the graph 
from [1] are no longer used. Once we have 
created this graph of all subreddits with edges 
linking the related ones, we apply the Louvain 
algorithm to cluster the graph into distinct 
communities, such as NBA, NHL, NFL, and 
MLB. The Louvain method optimizes the 
Modularity 𝑄 of partitions obtained, where 𝑄 is 
a scalar value between -1 and 1 that measures 
the density of links inside communities as 
compared to links between communities [5]. 
Specifically, modularity is defined as 
 

𝑄 =   
1
2𝑚 𝐴!,! −

𝑘!𝑘!
2𝑚

!,!

𝛿 𝑐!𝑐! , 

 
where 𝐴!,! represents the edge weight between 
nodes i and j, 𝑘! =   ∑!𝐴!,! is the sum of the 
edge weights with i as one of the vertices, 
𝑚 =    !

!
∑!,!𝐴!,! is the total number of edges in  

the graph,  𝑐! is the community that node i is 
assigned to, and 𝛿 is a delta function where 
  𝛿 𝑐!𝑐!   is 1 if u = v and 0 otherwise. 
 
The Louvain method attempts to optimize the 
modularity of a partition by iteratively repeating 
two phases. First, each node in the network is 
assigned to its own community. Then, for each 
node i, each neighbor j of i is considered and the 
change in modularity that would take place by 
removing i from its community and by placing it 
in the community of j is calculated. 
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The change in modularity resulting from 
moving an isolated node i into a community C is 
computed by: 
 

∆𝑄 =   
∑!" + 𝑘!,!"

2𝑚 −
∑!"! + 𝑘!
2𝑚

!

−
∑!"
2𝑚 −

∑!"!
2𝑚

!

−
𝑘!
2𝑚

!

,     

 
where ∑!" is the sum of all the weights of the 
links inside C, ∑!"! is the sum of all the weights 
of links incident to the nodes in C, 𝑘!,!" is the 
sum of all the weights of the links from i to the 
nodes in C, 𝑘! is the sum of all the weights of 
the links incident to node i, and m is the sum of 
the weights of all the links in the network. This 
process is applied repeatedly and sequentially to 
all nodes until no modularity increase can occur.  
 
In the second phase, the algorithm aggregates all 
of the nodes in the same community and builds 
a new network whose nodes are the 
communities found from the first phase. These 
two steps are repeated iteratively until a 
maximum network modularity is obtained. 
 
The process of obtaining the best partition is 
provided by the best_partition method in 
community.py. Our algorithm then continues to 
recursively cluster these communities until we 
reach a set of communities each of a reasonable 
size. This is meant to improve the performance 
of the k-nearest neighbors algorithm described 
in [3] by drastically reducing the number of 
nodes on which to compare, as well as prevent 
an unrelated subreddit that has common users 
from being incorrectly recommended. The 
process of clustering the graph into subgraphs 
was done in partition.py. 
 
After the initial partition, we put it into a queue, 
which then enters a while loop until nothing 
remains. At each stage in the loop, we pop the 
top graph from the queue, partition it, discard 
any extremely small partitions (under a 
threshold of 10 nodes), and add any partitions of 

size less than 100 (or that cannot be further 
partitioned). The remaining partitions are then 
converted into subgraphs, and put in the back of 
the queue to be later re-partitioned. 
 
ALGORITHM 1: Graph Partitioning Algorithm 

 Input: Graph G 

 
Output: Final list of all clusters F 

 
1: Queue Q ← ∅  

 
2: Q.Enqueue(G) 

 
3: while ¬Q.IsEmpty() do 

 
4:     current subgraph c ←  Q.Dequeue() 

 
5:     P ←  community.GetBestPartitionLouvain(c) 

 
6:     clusters ← ∅{ }  

 
7:     for each subreddit s ∈ P  do 

 
8:         clusterID ←  P[s] 

 
9:         if clusterID is not in clusters then 

 
10:            clusters[clusterID] ←  [s] 

 
11:       else 

 
12:           append s to clusters[clusterID] 

 
13:           continue 

 
14:       endif 

 
15:    endfor 

 
16:    if only 1 cluster in clusters then 

 
17:        append c to F 

 
18:        continue 

 
19:    endif 

 
20:    for each clusterID in clusters do 

 
21:        subgraph ←  all nodes in clusterID 

 
22:        if subgraph has less than 10 subreddits 
then 

 

23:            continue 

 
24:        else if subgraph has less than 100 
subreddits then 

 

25:            append subgraph to F (size 
requirement met) 

 

26:        else 

 
27:            Q.Enqueue(subgraph) 

 
28:        endif 

 
29:    endfor 

 
30: endwhile    

 
 
The maximum partition size of 100 was picked 
because it was on the order of N , (where N is 
the original graph size), which is meant to 
reduce the complexity of the k-nearest neighbors 
algorithm for our recommendation aspect. After 
running the clustering, we discarded 1395 nodes 
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due to extremely small partitions, and had a 
total of 217 separate subgraphs each ranging 
from 10 to 176 subreddits each. 
 
Overall, the average subgraph size was found to 
be 46.793, and the most common size was 12 
nodes, with 10 clusters. The distribution of 
cluster sizes is shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Histogram of network cluster sizes. 
 
The output of the partitioning algorithm resulted 
in several subgraphs containing subreddits in the 
same community, which was used to make 
recommendations for a user inside one of these 
communities. An example cluster of size 46 is 
shown in Figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Visualization of sample reddit subgraph 
obtained after running partitioning algorithm. 
 

Because the subreddit IDs are given as salted 
hashes in the dataset, the individual nodes are 
not labeled in the example subgraph. The nodes 
are positioned using a spring layout, and thus 
variations in the edge lengths between adjacent 
nodes can be disregarded. Additionally, the 
intensities of the node colors are independent of 
the node degrees, and correspond to a color 
mapping that is cycled through when plotting 
the graph to allow for better readability.  
 
We created a baseline recommendation 
algorithm in order to gauge the performance and 
accuracy gains from later improvements to the 
algorithm. The baseline is an item-based 
recommendation algorithm that calculates the 
similarity between the current subreddit S and 
each subreddit candidate C in the subreddit 
community of S.  The similarity can be 
calculated using any of the methods used by 
Karypis [3], including cosine similarity and 
conditional probability. After calculating 
similarities between S and each candidate C, the 
algorithm takes the top 3 subreddits as 
recommendations.  The runtime of item-based 
similarity is thus reduced from O(m2n) to 
O(c2n), where m is the number of total 
subreddits, n is the number of users, and c is the 
number of subreddits in a cluster.  In this case, 
the runtime was decreased by approximately six 
orders of magnitude, since m = 66,000 and c ≤ 
100. 
 
Next, we created a user-based recommendation 
algorithm for comparison with the baseline. The 
user-based algorithm only considers the set of 
users U that have been active in the current 
subreddit S.  It then vectorizes each user u in U 
as a feature vector representing that user’s 
voting history within subreddit S. Specifically, 
we keep track of how many times each post 
(represented as a link in the dataset) that user u 
has voted on. 
 
The data structure used was a nested dictionary 
D mapping from users to dictionaries of 
(subreddit, link) key-value pairs, where 
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un 

…
 

l1 
s1 

u 

s2 

…
 

lk 

sm 

…
 

u1 

D[u][s][l] gives how many times user u has 
voted on link l in subreddit s (Figure 3). 
 
 
 
 
 
 
 
 
 
 
Figure 3. Schematic of the dictionary mapping from 
users, to subreddits, to links (posts). In the example 
above, there are n users, m subreddits, and k links. 
 
Then, for all other users u’ in subreddit s, the 
algorithm computes the cosine similarity 
between the vectors D[u][s] and D[u’][s] to find 
the top k most similar users to the current user. 
For two vectors v1

!"
and v2
!"!

, the cosine similarity 
is given by: 
 

              sim = cos v1
!"
,v2
!"!

( )  = v1
!"
⋅ v2
!"!

v1
!"

2
v2
!"!

2

          (3) 

 
Let c be the cluster ID of the cluster that 
subreddit s is located in. A dictionary, 
commonSubs, is then used to keep track of the 
most common subreddits within c. Here, the 
most common subreddits are defined as 
subreddits that are shared by the most users 
(within the k similar users). To populate 
commonSubs, for each of the k most similar 
users ki, we go through each of its subreddits sj 
and increment commonSubs[ki][sj] if sj is part of 
c. The top n most common subreddits in 
commonSubs are then recommended. In this 
way, we reduce computation time of user-based 
recommendations by reducing both the number 
of users to be compared and the dimensionality 
of the user feature vectors. 
 
 
 

6. EVALUATION METRIC 
 
In order to evaluate the relevance of the 
recommendations, we tested our algorithms on 
power users, defined as users who have voted in 
at least 30 posts within each of at least 40 
subreddits. These threshold values are called the 
post threshold and subreddit threshold, 
respectively. The threshold values were 
determined after running preliminary tests that 
first varied the number of posts µ  and then the 
number of subreddits η , and recording the 
values of µ  and η  that maximized the 
precision. For a given user u, the precision P is 
defined as the proportion of recommendations 
that are actually subreddits in which the user is 
active. 
 

P = recommended  subs{ }∩ subs of  user  u{ }
subs of  user  u{ }

    (4) 

 
For a given power user, we randomly chose an 
active subreddit and used the item-based and 
user-based recommendation algorithms to make 
recommendations. Then, we computed the 
precision of the recommendations. 
 
We also created an interface to run experiments 
on the user-based algorithm. These experiments 
involved varying parameters such as the number 
of similar users k that we get recommendations 
from, along with the percentage of similar users 
that must be active in a subreddit candidate C in 
order to recommend that subreddit. 
 
7. RESULTS AND IMPLICATIONS 
 
7.1 ITEM-BASED RECOMMENDATION 
 
The baseline item-based recommendation 
achieved 53.6% precision when making 2 
recommendations. 
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Figure 4. Precision of item-based algorithm vs. 
number of recommendations made. 
 
It is interesting to point out that this graph 
follows the structure of an exponential decay 
graph. Here, we picked recommendations made 
to be 2 to report when testing our baseline as it 
resulted in the highest precision. Only 
recommending 1 subreddit would obviously 
have resulted in a higher precision based on the 
trend of the graph, but we set a lower limit of 2 
in order to put a cutoff on the quality of our 
product. 
 
7.2 USER-BASED RECOMMENDATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Precision of user-based algorithm vs. 
number of similar users (k) used to compute 
recommendations. 

High: 70.8% for 2 recommendations 
Low: 40.7% for 500 recommendations 
 
The graph in Figure 5 shows the number of 
similar users used to determine which 
recommendations to make, and how significant 
with respect to these users the most common 
subreddits are. In order to pick the optimal point 
to decide on the number of subreddits to 
recommend, we cannot simply choose the 
highest point (at recommendations = 1, not 
shown) because this number is simply a cap on 
the maximum number of recommendations that 
can be shown and not the absolute number to be 
shown. If a recommendation is poor (not in the 
current cluster, or too low of significance), we 
do not want to show it. Additionally, there can 
be 2 recommendations that have a high score, 
and the lower one would not be shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Precision of user-based algorithm vs. 
percentage of users who must be active in a subreddit 
candidate. 
 
High: 89.7% precision with 20% threshold 
Low: 55.6% precision with 2% threshold 
 
In Figure 6, the precision increases almost 
monotonically as a function of threshold, while 
also tapering off around 90% precision. This 
shows that as we increase the relative cutoff for 
the strength of our recommendation, the 
accuracy also increases, which is what we 
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would expect. Note that while it may seem 
simply to choose the highest threshold to use in 
tests, this also results in a fewer number of 
recommendations, leading to noise and high 
variation in our results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Precision of user-based algorithm vs. 
threshold for number of posts. The percentage of users 
required to be active in a subreddit candidate is p = 
0.05, and the number of similar users is k = 500. 
 

Post Threshold # Power Users Precision 

5 2299 0.4839 
 

10 1339 0.5225 
 

15 940 0.5259 
 

20 716 0.5763 
 

25 582 0.5470 
 

30 482 0.6373 
 

35 389 0.5235 
 

40 334 0.6224 
  

Table 1. Precision of user-based algorithm vs. 
threshold for number of posts. 
 
Figure 7 shows the precision increase almost 
monotonically as the threshold on the number of 
posts required for each power user increases as 
we would expect. If we look at table 1 though, 

we see that the number of power users resulting 
from such an increase also decreases. We do not 
want to have the resulting number of power 
users to be too low and thus nullify our cross 
validation. After a threshold of 20, we see that 
the precision begins to vary quite consistently, 
indicating that the number of power users may 
be low. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Precision of user-based algorithm vs. 
threshold for number of subreddits for power users. 
Here, p = 0.05, and k = 500. 
 

Subreddit 
Threshold 

# Power Users Precision 

5 5904 0.5493 

10 3236 0.5299 

20 1147 0.5327 

30 482 0.5373 

40 201 0.6127 

 
Table 2. Precision of user-based algorithm vs. 
threshold for number of subreddits. 
 
Figure 8, unlike 7, shows the precision slightly 
drop as the subreddit threshold increases before 
the small number of power users at a threshold 
of 40 causes a large variation. It is interesting 
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that the graph behaves this way, considering that 
if a power user is involved in many more 
subreddits, the chance of a correct prediction 
drastically increases. This leads us to conclude 
that our recommendation system does indeed 
give quality recommendations, as opposed to a 
random subreddit that happens to be visited by a 
power user. 
 
8. DISCUSSION 
 
As our results show, we achieved a 53.6% 
accuracy using an item-based algorithm similar 
to Karypis [3], except with a dimensionality 
reduction on the number of subreddits we 
needed to compute the similarities between, 
resulting in an increase in runtime efficiency. 
The community-clustering algorithm allowed 
for this improvement, as well as increasing the 
precision of our predictions when compared to 
their results. 
 
Our user-based recommendation algorithm 
using feature vectors of all posts the user was 
involved with in the current subreddit resulted 
in a 70.8% precision in recommendations. We 
were very pleased at this result, verifying our 
initial hypothesis that a more personalized 
recommendation system that took into account 
specific voting behavior would outperform a 
more general item-based system. 
 
Karypis [3] noted that a user-based algorithm 
would suffer from large runtimes and a worse 
overall result, but with the use of dimensionality 
reduction from the community clustering as well 
as insight into how a power user should be 
defined, we were able to outperform the item-
based system as well as increase the runtime 
performance. Conceptually, using similar users 
to provide a personalized aspect to a 
recommendation seems much better than a 
generic one. By identifying habits of users that 
also share interests with you, we are able to then 
recommending what they are interested in. We 
are able to give a different set of 
recommendations to each individual user, as 

opposed to the same set of subreddits for each 
user in a particular subreddit. 
 
One change that we made in the middle of our 
project was to revisit our assumption on what 
characteristics the power user should hold. 
Initially, we thought that a simple threshold on 
the number of subreddits such a user was active 
in was sufficient, with a large number being 
better. After implementing our algorithm, we 
quickly realized that while testing, the random 
data point chosen could result in in an extremely 
sparse feature vector. This would result in 
similarity scores being very small in magnitude, 
thus yielding almost random and unconfident 
recommendations. We decided to add another 
threshold for the number of posts a particular 
power user must have voted in as well, 
producing much better results. 
 
One large aspect of our project that may seem to 
bias our results is the concept of a power user to 
test our algorithm. While this may seem to 
artificially inflate our results, it is the most 
reliable means of testing our algorithms and 
reflects the difference between testing and the 
goal of our project. Our final “product” would 
be aimed at a target audience of users only 
involved in 1 or 2 subreddits. With this set of 
users, the precision and quality of our product 
would be determined by user-generated 
feedback or click-through rate, as opposed to 
cross checking the values with known activity. 
By setting a threshold on the number of similar 
users to the test user that are involved in a 
recommendation, we are showing that it is 
extremely likely that the user will find our 
recommendation useful. Additionally, we are 
currently limiting the feature vector to just the 
subreddit the current user is on, while for a final 
product we could incorporate all posts from all 
subreddits in the current subreddit’s community 
that we partitioned. This would essentially mean 
using all of the user’s data instead of limiting 
the scope to the current subreddit, which could 
increase the quality of recommendations even 
further. 
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9. CONCLUSION 
 
The difference between item-based and user-
based recommendations is very clear. As noted 
in Karypis [3], the item-based algorithm is the 
same for each subreddit and is able to be 
preprocessed leading to a very fast runtime 
when testing. Where our project yielded better 
results though, is in the performance and 
runtime of the user-based algorithm where it 
yielded higher a higher precision and viable 
runtime duration when compared to the item-
based result.  
 
By partitioning our overall graph into 
communities of a reasonable size, we were able 
to improve upon the Karypis [3] paper. The 
result was a faster runtime for both algorithms 
as well as a much more personalized user-based 
system that yielded recommendations that were 
more related to the current subreddit. While it is 
still not possible to preprocess the feature 
vectors for instant comparisons of the user-
based algorithm due to memory restrictions, our 
community partitioning allows the runtime of 
generating similarity scores to be reduced 
enough to make the computation viable in a 
short amount of time. Overall, we were 
extremely satisfied with the results of our 
project and hope to implement further 
functionality that will allow it to be used as a 
real product with real users. 
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