
 1

Subreddit Recommendations within Reddit Communities

Vishnu Sundaresan, Irving Hsu, Daryl Chang
Stanford University, Department of Computer Science

ABSTRACT: We describe the creation of a recommendation system for Reddit, a social news and
entertainment site where community members can submit content in the form of text posts, links, or images.
Our dataset consists of 23,091,688 votes from 43,976 users over 3,436,063 links in 11,675 subreddits. Using
this network, we constructed a weighted graph of subreddits, partitioned it into 217 distinct subcommunities,
and created both an item-based and user-based recommendation algorithm. Given a user and a subreddit, our
algorithm recommends to the user novel subreddits within the same subcommunity. User-based
recommendation was found to outperform item-based recommendation.

1. INTRODUCTION

Reddit is a social news website where users can
submit links to content on the web. These links
can then be upvoted or downvoted by other
users, influencing the prominence of the posts.
Reddit entries are organized into subreddits,
which are custom-made subforums for specific
areas of interest.

When viewing a subreddit today, a user is
encapsulated in a particular subforum with no
links or recommendations to similar content. In
a world where suggestions and links to more
information are almost essential to growth and
discovery, it is astounding that Reddit (a site
with over 5 million hits a day and 174 million
unique visitors a month) does not have a tool to
connect its communities.

We will be creating a recommendation feature
for Reddit, using data to create a 3-step process
that will be able to take a user and give
suggestions as to other related communities
based on general user behavior. The first step
will involve creating a large weighted graph
with edges between different subreddits, then
clustering these nodes and categorizing them to
separate communities, and finally classifying a
user under one of these communities and giving
them recommendations to other subreddits that
they are likely to be interested in within that
community.

2. PRIOR WORK

2.1 “Navigating the massive world of Reddit:
Using Backbone Networks to Map User Interests
in Social Media” (Olson and Neal)

Olson and Neal [1] showed that techniques for
network backbone extraction and community
detection can be used to map and navigate
interest networks in social media. This
ultimately facilitates the organization of users
into specific interest groups. In this work, an
interest map was built for Reddit, using a
dataset of over 875,000 active users that post to
over 15,000 distinct subreddits. The interest
map was built by viewing the Reddit network as
a hierarchical map of all user interests in the
social network. Using the backbone extraction
algorithm, the network was divided into 59
interest meta-communities, or groups containing
similar interests. The backbone extraction
algorithm preserves edges whose weight is
statistically significant compared to a null model
where edges are assigned weights uniformly at
random.

An extension to the backbone algorithm is used
in our work to first create a weighted graph of
subreddits. This allows us to restrict the
recommended subreddits to the community of
the user’s current subreddit. Furthermore, a
shortcoming to this work is that the graph is still
not divided into distinct clusters of communities

 2

that are related. This can be achieved by
applying the Louvain algorithm to cluster the
graph recursively, and is discussed in the
algorithms section of this paper. The output of
the above algorithm will result in several
subgraphs containing subreddits in the same
community, which will then be used to make
recommendations for a user inside one of these
communities.

2.2 “Finding and Evaluating Community
Structure in Networks” (Newman, Girvan)

Newman and Girvan describe several
algorithms for determining the number of
communities, as well as the structure [2]. Each
method, however, utilizes a basic approach of
removing an edge that has the highest likelihood
of being an inter-community edge, and then
recalculating the next highest such edge. The
three methods proposed are shortest-path
betweenness, which determines the most used
edges through the number of shortest paths
passing through each edge; resistor networks,
which ranks edges according to the minimum
potential lost over each edge when treating the
graph as a circuit; and random walks, which,
similar to shortest-path, determines which edges
are passed over the most on a random walk
between two nodes.

One shortcoming of these algorithms, however,
is the assumption that all edges are unweighted.
In our graph, it is clear that edges with less
weight, in comparison to other outgoing edges
for that node, are more likely to be edges
connecting communities, as opposed to
connecting nodes within the community. This is
an aspect that can potentially increase the
performance of our algorithm from O(mn),
where m is the number of edges, and n is the
number of nodes in the subreddit graph.
However, the main purpose of this algorithm to
create clusters of subreddit is to improve the
performance of the recommendation algorithm
described in Section 5.

2.3 “Evaluation of Item-Based Top-N
Recommendation Algorithms” (Karypis)

User-based and item-based algorithms are two
popular methods to make recommendations
within a bipartite graph. User-based algorithms
first identify the k most similar users to the
active user, and then recommend the N items
most frequently used by those users. In
contrast, item-based algorithms first compute
item-to-item similarities, and then recommend
the N items most similar to the active user’s
existing items. Karypis demonstrated that item-
based algorithms outperform user-based ones in
both performance and recommendation
accuracy [3]. Additionally, unlike user
algorithms, item-based algorithms can be used
when the historical information for the user is
limited.

However, Karypis’ item-based algorithm suffers
from two main weaknesses. First, it has O(m2n)
runtime, where m is the number of items and n
is the number of users, since m(m-1) similarities
need to be calculated, each with up to n
computations. Since Karypis used a sparse
dataset, the de facto runtime was reduced by
using sparse data structures and only computing
similarities between items that shared a user.
Still, this optimization may not scale to
extremely large datasets. Second, item-based
algorithms may not provide truly personalized
recommendations, as user-based algorithms do.
For example, an active user who exhibits
behavior similar to that of an extremely small
subset of users would receive more personalized
recommendations with a user-based algorithm.

Item-based algorithms may be improved by
incorporating aspects of user-based algorithms.
Karypis suggests first identifying a large
neighborhood of similar users and then
computing item similarities based on this subset
of users. Reducing to a subset of similar users
would combine the personalization of user-
based recommendation algorithms with the
performance of item-based ones, and would

 3

(1)

further improve runtime by making the item
vectors more sparse.

3. PROBLEM STATEMENT

On a high level, we would like to provide
relevant subreddit recommendations for a user
on a given subreddit. Going into specifics on
what recommendations we are serving, imagine
you are a user on a specific subreddit, i.e.,
Stanford. You want to get recommendations for
other subreddits similar to Stanford, such as
StanfordCardinal or StanfordHousing. To do so,
we will take advantage of previous user data
from yourself in that subreddit and create a
subset of users with similar interests.

4. DATA SET

We have a public dataset of reddit votes that
consists of 23 million votes from 44,000 users
over 3.4 million links in 11,675 reddits. This
implies an average of 525 votes per user, which
would be sufficient to determine user-to-user
similarity in the user-based part of our
algorithm, which is described in more detail
below. Each vote can be an upvote or downvote
and is associated with a user, link, and
subreddit.

5. ALGORITHM

In order to restrict the recommended subreddits
to the community of the user’s current
subreddit, we first create a weighted graph of
subreddits [1]. To create the weighted graph, we
use the data set above without the column on
voting activity, removing any duplicate (user,
subreddit, link) entries as necessary. This results
in there being only unique (user, subreddit)
pairs. Weighted edges are then created between
subreddits, with each edge (u, v) having a
weight equal to the number of shared users
between subreddits u and v.

The number of edges in the weighted subreddit
network is then reduced to the edges that

represented a significant user overlap between
two subreddits. This is done by making the
original undirected graph into a directed graph,
with two edges for each original edge. Then,
each edge has its weight set to the percentage of
users that the source node subreddit shares with
another subreddit. If the weights of both
directed edges in a pair of nodes fall below a
certain threshold 𝛼 (5×10!!), we remove the
edges from the graph.

Note that at this point, the weights in the graph
from [1] are no longer used. Once we have
created this graph of all subreddits with edges
linking the related ones, we apply the Louvain
algorithm to cluster the graph into distinct
communities, such as NBA, NHL, NFL, and
MLB. The Louvain method optimizes the
Modularity 𝑄 of partitions obtained, where 𝑄 is
a scalar value between -1 and 1 that measures
the density of links inside communities as
compared to links between communities [5].
Specifically, modularity is defined as

𝑄 =
1
2𝑚 𝐴!,! −

𝑘!𝑘!
2𝑚

!,!

𝛿 𝑐!𝑐! ,

where 𝐴!,! represents the edge weight between
nodes i and j, 𝑘! = ∑!𝐴!,! is the sum of the
edge weights with i as one of the vertices,
𝑚 = !

!
∑!,!𝐴!,! is the total number of edges in

the graph, 𝑐! is the community that node i is
assigned to, and 𝛿 is a delta function where
 𝛿 𝑐!𝑐! is 1 if u = v and 0 otherwise.

The Louvain method attempts to optimize the
modularity of a partition by iteratively repeating
two phases. First, each node in the network is
assigned to its own community. Then, for each
node i, each neighbor j of i is considered and the
change in modularity that would take place by
removing i from its community and by placing it
in the community of j is calculated.

 4

(2)

The change in modularity resulting from
moving an isolated node i into a community C is
computed by:

∆𝑄 =
∑!" + 𝑘!,!"

2𝑚 −
∑!"! + 𝑘!
2𝑚

!

−
∑!"
2𝑚 −

∑!"!
2𝑚

!

−
𝑘!
2𝑚

!

,

where ∑!" is the sum of all the weights of the
links inside C, ∑!"! is the sum of all the weights
of links incident to the nodes in C, 𝑘!,!" is the
sum of all the weights of the links from i to the
nodes in C, 𝑘! is the sum of all the weights of
the links incident to node i, and m is the sum of
the weights of all the links in the network. This
process is applied repeatedly and sequentially to
all nodes until no modularity increase can occur.

In the second phase, the algorithm aggregates all
of the nodes in the same community and builds
a new network whose nodes are the
communities found from the first phase. These
two steps are repeated iteratively until a
maximum network modularity is obtained.

The process of obtaining the best partition is
provided by the best_partition method in
community.py. Our algorithm then continues to
recursively cluster these communities until we
reach a set of communities each of a reasonable
size. This is meant to improve the performance
of the k-nearest neighbors algorithm described
in [3] by drastically reducing the number of
nodes on which to compare, as well as prevent
an unrelated subreddit that has common users
from being incorrectly recommended. The
process of clustering the graph into subgraphs
was done in partition.py.

After the initial partition, we put it into a queue,
which then enters a while loop until nothing
remains. At each stage in the loop, we pop the
top graph from the queue, partition it, discard
any extremely small partitions (under a
threshold of 10 nodes), and add any partitions of

size less than 100 (or that cannot be further
partitioned). The remaining partitions are then
converted into subgraphs, and put in the back of
the queue to be later re-partitioned.

ALGORITHM 1: Graph Partitioning Algorithm

 Input: Graph G

Output: Final list of all clusters F

1: Queue Q ← ∅

2: Q.Enqueue(G)

3: while ¬Q.IsEmpty() do

4: current subgraph c ← Q.Dequeue()

5: P ← community.GetBestPartitionLouvain(c)

6: clusters ← ∅{ }

7: for each subreddit s ∈ P do

8: clusterID ← P[s]

9: if clusterID is not in clusters then

10: clusters[clusterID] ← [s]

11: else

12: append s to clusters[clusterID]

13: continue

14: endif

15: endfor

16: if only 1 cluster in clusters then

17: append c to F

18: continue

19: endif

20: for each clusterID in clusters do

21: subgraph ← all nodes in clusterID

22: if subgraph has less than 10 subreddits
then

23: continue

24: else if subgraph has less than 100
subreddits then

25: append subgraph to F (size
requirement met)

26: else

27: Q.Enqueue(subgraph)

28: endif

29: endfor

30: endwhile

The maximum partition size of 100 was picked
because it was on the order of N , (where N is
the original graph size), which is meant to
reduce the complexity of the k-nearest neighbors
algorithm for our recommendation aspect. After
running the clustering, we discarded 1395 nodes

 5

due to extremely small partitions, and had a
total of 217 separate subgraphs each ranging
from 10 to 176 subreddits each.

Overall, the average subgraph size was found to
be 46.793, and the most common size was 12
nodes, with 10 clusters. The distribution of
cluster sizes is shown in Figure 1.

Figure 1. Histogram of network cluster sizes.

The output of the partitioning algorithm resulted
in several subgraphs containing subreddits in the
same community, which was used to make
recommendations for a user inside one of these
communities. An example cluster of size 46 is
shown in Figure 2.

Figure 2. Visualization of sample reddit subgraph
obtained after running partitioning algorithm.

Because the subreddit IDs are given as salted
hashes in the dataset, the individual nodes are
not labeled in the example subgraph. The nodes
are positioned using a spring layout, and thus
variations in the edge lengths between adjacent
nodes can be disregarded. Additionally, the
intensities of the node colors are independent of
the node degrees, and correspond to a color
mapping that is cycled through when plotting
the graph to allow for better readability.

We created a baseline recommendation
algorithm in order to gauge the performance and
accuracy gains from later improvements to the
algorithm. The baseline is an item-based
recommendation algorithm that calculates the
similarity between the current subreddit S and
each subreddit candidate C in the subreddit
community of S. The similarity can be
calculated using any of the methods used by
Karypis [3], including cosine similarity and
conditional probability. After calculating
similarities between S and each candidate C, the
algorithm takes the top 3 subreddits as
recommendations. The runtime of item-based
similarity is thus reduced from O(m2n) to
O(c2n), where m is the number of total
subreddits, n is the number of users, and c is the
number of subreddits in a cluster. In this case,
the runtime was decreased by approximately six
orders of magnitude, since m = 66,000 and c ≤
100.

Next, we created a user-based recommendation
algorithm for comparison with the baseline. The
user-based algorithm only considers the set of
users U that have been active in the current
subreddit S. It then vectorizes each user u in U
as a feature vector representing that user’s
voting history within subreddit S. Specifically,
we keep track of how many times each post
(represented as a link in the dataset) that user u
has voted on.

The data structure used was a nested dictionary
D mapping from users to dictionaries of
(subreddit, link) key-value pairs, where

 6

un

…

l1
s1

u

s2

…

lk

sm

…

u1

D[u][s][l] gives how many times user u has
voted on link l in subreddit s (Figure 3).

Figure 3. Schematic of the dictionary mapping from
users, to subreddits, to links (posts). In the example
above, there are n users, m subreddits, and k links.

Then, for all other users u’ in subreddit s, the
algorithm computes the cosine similarity
between the vectors D[u][s] and D[u’][s] to find
the top k most similar users to the current user.
For two vectors v1

!"
and v2
!"!

, the cosine similarity
is given by:

 sim = cos v1
!"
,v2
!"!

() = v1
!"
⋅ v2
!"!

v1
!"

2
v2
!"!

2

 (3)

Let c be the cluster ID of the cluster that
subreddit s is located in. A dictionary,
commonSubs, is then used to keep track of the
most common subreddits within c. Here, the
most common subreddits are defined as
subreddits that are shared by the most users
(within the k similar users). To populate
commonSubs, for each of the k most similar
users ki, we go through each of its subreddits sj
and increment commonSubs[ki][sj] if sj is part of
c. The top n most common subreddits in
commonSubs are then recommended. In this
way, we reduce computation time of user-based
recommendations by reducing both the number
of users to be compared and the dimensionality
of the user feature vectors.

6. EVALUATION METRIC

In order to evaluate the relevance of the
recommendations, we tested our algorithms on
power users, defined as users who have voted in
at least 30 posts within each of at least 40
subreddits. These threshold values are called the
post threshold and subreddit threshold,
respectively. The threshold values were
determined after running preliminary tests that
first varied the number of posts µ and then the
number of subreddits η , and recording the
values of µ and η that maximized the
precision. For a given user u, the precision P is
defined as the proportion of recommendations
that are actually subreddits in which the user is
active.

P = recommended subs{ }∩ subs of user u{ }
subs of user u{ }

 (4)

For a given power user, we randomly chose an
active subreddit and used the item-based and
user-based recommendation algorithms to make
recommendations. Then, we computed the
precision of the recommendations.

We also created an interface to run experiments
on the user-based algorithm. These experiments
involved varying parameters such as the number
of similar users k that we get recommendations
from, along with the percentage of similar users
that must be active in a subreddit candidate C in
order to recommend that subreddit.

7. RESULTS AND IMPLICATIONS

7.1 ITEM-BASED RECOMMENDATION

The baseline item-based recommendation
achieved 53.6% precision when making 2
recommendations.

 7

Figure 4. Precision of item-based algorithm vs.
number of recommendations made.

It is interesting to point out that this graph
follows the structure of an exponential decay
graph. Here, we picked recommendations made
to be 2 to report when testing our baseline as it
resulted in the highest precision. Only
recommending 1 subreddit would obviously
have resulted in a higher precision based on the
trend of the graph, but we set a lower limit of 2
in order to put a cutoff on the quality of our
product.

7.2 USER-BASED RECOMMENDATION

Figure 5. Precision of user-based algorithm vs.
number of similar users (k) used to compute
recommendations.

High: 70.8% for 2 recommendations
Low: 40.7% for 500 recommendations

The graph in Figure 5 shows the number of
similar users used to determine which
recommendations to make, and how significant
with respect to these users the most common
subreddits are. In order to pick the optimal point
to decide on the number of subreddits to
recommend, we cannot simply choose the
highest point (at recommendations = 1, not
shown) because this number is simply a cap on
the maximum number of recommendations that
can be shown and not the absolute number to be
shown. If a recommendation is poor (not in the
current cluster, or too low of significance), we
do not want to show it. Additionally, there can
be 2 recommendations that have a high score,
and the lower one would not be shown.

Figure 6. Precision of user-based algorithm vs.
percentage of users who must be active in a subreddit
candidate.

High: 89.7% precision with 20% threshold
Low: 55.6% precision with 2% threshold

In Figure 6, the precision increases almost
monotonically as a function of threshold, while
also tapering off around 90% precision. This
shows that as we increase the relative cutoff for
the strength of our recommendation, the
accuracy also increases, which is what we

 8

would expect. Note that while it may seem
simply to choose the highest threshold to use in
tests, this also results in a fewer number of
recommendations, leading to noise and high
variation in our results.

Figure 7. Precision of user-based algorithm vs.
threshold for number of posts. The percentage of users
required to be active in a subreddit candidate is p =
0.05, and the number of similar users is k = 500.

Post Threshold # Power Users Precision

5 2299 0.4839

10 1339 0.5225

15 940 0.5259

20 716 0.5763

25 582 0.5470

30 482 0.6373

35 389 0.5235

40 334 0.6224

Table 1. Precision of user-based algorithm vs.
threshold for number of posts.

Figure 7 shows the precision increase almost
monotonically as the threshold on the number of
posts required for each power user increases as
we would expect. If we look at table 1 though,

we see that the number of power users resulting
from such an increase also decreases. We do not
want to have the resulting number of power
users to be too low and thus nullify our cross
validation. After a threshold of 20, we see that
the precision begins to vary quite consistently,
indicating that the number of power users may
be low.

Figure 8. Precision of user-based algorithm vs.
threshold for number of subreddits for power users.
Here, p = 0.05, and k = 500.

Subreddit
Threshold

Power Users Precision

5 5904 0.5493

10 3236 0.5299

20 1147 0.5327

30 482 0.5373

40 201 0.6127

Table 2. Precision of user-based algorithm vs.
threshold for number of subreddits.

Figure 8, unlike 7, shows the precision slightly
drop as the subreddit threshold increases before
the small number of power users at a threshold
of 40 causes a large variation. It is interesting

 9

that the graph behaves this way, considering that
if a power user is involved in many more
subreddits, the chance of a correct prediction
drastically increases. This leads us to conclude
that our recommendation system does indeed
give quality recommendations, as opposed to a
random subreddit that happens to be visited by a
power user.

8. DISCUSSION

As our results show, we achieved a 53.6%
accuracy using an item-based algorithm similar
to Karypis [3], except with a dimensionality
reduction on the number of subreddits we
needed to compute the similarities between,
resulting in an increase in runtime efficiency.
The community-clustering algorithm allowed
for this improvement, as well as increasing the
precision of our predictions when compared to
their results.

Our user-based recommendation algorithm
using feature vectors of all posts the user was
involved with in the current subreddit resulted
in a 70.8% precision in recommendations. We
were very pleased at this result, verifying our
initial hypothesis that a more personalized
recommendation system that took into account
specific voting behavior would outperform a
more general item-based system.

Karypis [3] noted that a user-based algorithm
would suffer from large runtimes and a worse
overall result, but with the use of dimensionality
reduction from the community clustering as well
as insight into how a power user should be
defined, we were able to outperform the item-
based system as well as increase the runtime
performance. Conceptually, using similar users
to provide a personalized aspect to a
recommendation seems much better than a
generic one. By identifying habits of users that
also share interests with you, we are able to then
recommending what they are interested in. We
are able to give a different set of
recommendations to each individual user, as

opposed to the same set of subreddits for each
user in a particular subreddit.

One change that we made in the middle of our
project was to revisit our assumption on what
characteristics the power user should hold.
Initially, we thought that a simple threshold on
the number of subreddits such a user was active
in was sufficient, with a large number being
better. After implementing our algorithm, we
quickly realized that while testing, the random
data point chosen could result in in an extremely
sparse feature vector. This would result in
similarity scores being very small in magnitude,
thus yielding almost random and unconfident
recommendations. We decided to add another
threshold for the number of posts a particular
power user must have voted in as well,
producing much better results.

One large aspect of our project that may seem to
bias our results is the concept of a power user to
test our algorithm. While this may seem to
artificially inflate our results, it is the most
reliable means of testing our algorithms and
reflects the difference between testing and the
goal of our project. Our final “product” would
be aimed at a target audience of users only
involved in 1 or 2 subreddits. With this set of
users, the precision and quality of our product
would be determined by user-generated
feedback or click-through rate, as opposed to
cross checking the values with known activity.
By setting a threshold on the number of similar
users to the test user that are involved in a
recommendation, we are showing that it is
extremely likely that the user will find our
recommendation useful. Additionally, we are
currently limiting the feature vector to just the
subreddit the current user is on, while for a final
product we could incorporate all posts from all
subreddits in the current subreddit’s community
that we partitioned. This would essentially mean
using all of the user’s data instead of limiting
the scope to the current subreddit, which could
increase the quality of recommendations even
further.

 10

9. CONCLUSION

The difference between item-based and user-
based recommendations is very clear. As noted
in Karypis [3], the item-based algorithm is the
same for each subreddit and is able to be
preprocessed leading to a very fast runtime
when testing. Where our project yielded better
results though, is in the performance and
runtime of the user-based algorithm where it
yielded higher a higher precision and viable
runtime duration when compared to the item-
based result.

By partitioning our overall graph into
communities of a reasonable size, we were able
to improve upon the Karypis [3] paper. The
result was a faster runtime for both algorithms
as well as a much more personalized user-based
system that yielded recommendations that were
more related to the current subreddit. While it is
still not possible to preprocess the feature
vectors for instant comparisons of the user-
based algorithm due to memory restrictions, our
community partitioning allows the runtime of
generating similarity scores to be reduced
enough to make the computation viable in a
short amount of time. Overall, we were
extremely satisfied with the results of our
project and hope to implement further
functionality that will allow it to be used as a
real product with real users.

10. REFERENCES

1. R.S. Olson and Z.P. Neal. Navigating the
massive world of reddit: Using backbone
networks to map user interests in social media.
CoRR, abs/1312.3387, 2013.

2. M. E. J. Newman and M. Girvan. Finding and
evaluating community structure in networks.
Physical Review, E 69(026113), 2004.

3. G. Karypis. Evaluation of Item-Based Top-N
Recommendation Algorithms. Proceedings of
the tenth international conference on

Information and knowledge management. 247-
254, 2001.

4. V.D. Blondel et al. Fast unfolding of
communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment
2008 (10), P10008.

5. P.D. Meo et al. Generalized Louvain method
for community detection in large networks.
CoRR, abs/1108.1502.

6. M. A. Serrano, M. Boguna, and A.
Vespignani. Extracting the multiscale backbone
of complex weighted networks. Proceedings of
the National Academy of Sciences of the United
States of America. 106(16): 6483-6488, 2009.

†All authors contributed equally to this work.

