Link Analysis: PageRank and HITS

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

http://cs224w.stanford.edu

How to Organize the Web?

- How to organize the Web?
- First try: Human curated
 Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates:
 Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - But: Web is huge, full of untrusted documents, random things, web spam, etc.
 - So we need a good way to rank webpages!

4 520 442 -2-- 04 547 -54-- ---- 500 000 -----

Web Search: 2 Challenges

- 2 challenges of web search:
- (1) Web contains many sources of information Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

All web pages are not equally "important"

www.joe-schmoe.com vs. www.stanford.edu

- We already know:
 - There is large diversity in the web-graph node connectivity.
- So, let's rank the pages using the web graph link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches to computing importances of nodes in a graph:
 - Hubs and Authorities (HITS)
 - Page Rank
 - Topic-Specific (Personalized) Page Rank

Sidenote: Various notions of node centrality: Node $oldsymbol{u}$

- Degree dentrality = degree of u
- **Betweenness centrality** = #shortest paths passing through u
- Closeness centrality = avg. length of shortest paths from u to all other nodes of the network
- Eigenvector centrality = like PageRank

Link Analysis

- Goal (back to the newspaper example):
 - Don't just find newspapers. Find "experts" pages that link in a coordinated way to good newspapers
- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Hubs and Authorities
 Each page has 2 scores:
 - Quality as an expert (hub):
 - Total sum of votes of pages pointed to
 - Quality as an content (authority):
 - Total sum of votes of experts
 - Principle of repeated improvement

Interesting pages fall into two classes:

- 1. Authorities are pages containing useful information
 - Newspaper home pages
 - Course home pages
 - Home pages of auto manufacturers
- 2. Hubs are pages that link to authorities
 - List of newspapers
 - Course bulletin
 - List of U.S. auto manufacturers

Hub

Authority Site

Counting in-links: Authority

(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and the authority score)

Expert Quality: Hub

(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and authority score)

Reweighting

(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and authority score)

Mutually Recursive Definition

- A good hub links to many good authorities
- A good authority is linked from many good hubs
- Model using two scores for each node:
 - Hub score and Authority score
 - Represented as vectors $m{h}$ and $m{a}$

Each page i has 2 scores:

- Authority score: a_i
- Hub score: h_i

HITS algorithm:

- Initialize: $a_j^{(0)} = 1/\sqrt{n}$, $h_j^{(0)} = 1/\sqrt{n}$
- Then keep iterating until convergence:

•
$$\forall i$$
: Authority: $a_i^{(t+1)} = \sum_{j \to i} h_i^{(t)}$

- $\forall i$: Hub: $h_i^{(t+1)} = \sum_{i \to j} a_i^{(t)}$
- ∀*i*: Normalize:

$$\sum_{i} \left(a_i^{(t+1)} \right)^2 = 1, \sum_{j} \left(h_j^{(t+1)} \right)^2 = 1$$

Convergence criteria:

$$\sum_{i} \left(h_i^{(t)} - h_i^{(t+1)} \right)^2 < \varepsilon$$

$$\sum_{i} \left(f_i^{(t)} - f_i^{(t+1)} \right)^2$$

$$\sum_{i} \left(a_i^{(t)} - a_i^{(t+1)} \right)^2 < \varepsilon$$

Hits in the vector notation:

- Vector $\mathbf{a} = (a_1 \dots, a_n), \quad \mathbf{h} = (h_1 \dots, h_n)$
- Adjacency matrix $A(n \times n)$: $A_{ij} = 1$ if $i \rightarrow j$
- Can rewrite $h_i = \sum_{i o j} a_j$ as $h_i = \sum_j A_{ij} \cdot a_j$
- So: $h = A \cdot a$ And similarly: $a = A^T \cdot h$
- Repeat until convergence:
 - $h^{(t+1)} = A \cdot a^{(t)}$
 - $a^{(t+1)} = A^T \cdot h^{(t)}$
 - Normalize $a^{(t+1)}$ and $h^{(t+1)}$

- What is $a = A^T \cdot h$?
- Then: $a = A^T \cdot (A \cdot a)$

new a

a is updated (in 2 steps):

$$a = A^T(A \ a) = (A^T A) \ a$$

h is updated (in 2 steps)

$$h = A (A^T h) = (A A^T) h$$

Thus, in 2k steps:

$$a = (A^T \cdot A)^k \cdot a$$
$$h = (A \cdot A^T)^k \cdot h$$

Repeated matrix powering

- Definition: Eigenvectors & Eigenvalues
- Let $R \cdot x = \lambda \cdot x$ for some scalar λ , vector x, matrix R
 - Then x is an eigenvector, and λ is its eigenvalue
- In our case the steady state is:

$$A^T \cdot A \cdot a = c' \cdot a$$

$$A \cdot A^T \cdot h = c'' \cdot h$$

So, authority α is eigenvector of A^TA (associated with the largest eigenvalue) Similarly: hub h is eigenvector of AA^T

PageRank

Links as Votes

- Still the same idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.stanford.edu has 23,400 in-links
 - www.joe-schmoe.com has 1 in-link
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

PageRank: The "Flow" Model

- A "vote" from an important page is worth more:
 - Each link's vote is proportional to the importance of its source page
 - If page i with importance r_i has d_i out-links, each link gets r_i / d_i votes
 - Page j's own importance r_j is the sum of the votes on its inlinks

$$r_j = r_i/3 + r_k/4$$

PageRank: The "Flow" Model

- A page is important if it is pointed to by other important pages
- Define a "rank" r_j for node j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

You might wonder: Let's just use Gaussian elimination to solve this system of linear equations. Bad idea!

The web in 1839

"Flow" equations:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Let page j has d_i out-links
 - If $j \rightarrow i$, then $M_{ij} = \frac{1}{d_i}$
 - M is a column stochastic matrix
 - Columns sum to 1

- Rank vector r: an entry per page
 - $lackbox{\textbf{r}}_{i}$ is the importance score of page i
 - $\sum_i r_i = 1$
- The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t+1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:

- p(t) ... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
- lacksquare So, p(t) is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time t+1?
 - Follows a link uniformly at random $p(t+1) = M \cdot p(t)$

Suppose the random walk reaches a state

$$p(t+1) = M \cdot p(t) = p(t)$$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks

- Assign each node an initial page rank
- Repeat until convergence $(\Sigma_i | r_i^{(t+1)} r_i^{(t)} | < \varepsilon)$
 - Calculate the page rank of each node

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

 d_i out-degree of node i

Power Iteration:

• Set
$$r_j = 1/N$$

• 1:
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• 2:
$$r = r'$$

• If
$$|r-r'|>\varepsilon$$
: goto **1**

Example:

Iteration 0, 1, 2, ...

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Power Iteration:

• Set
$$r_j = 1/N$$

• 1:
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• 2:
$$r = r'$$

• If
$$|r-r'|>\varepsilon$$
: goto **1**

	y	a	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Example:

$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{array}{ccccc} 1/3 & 1/3 & 5/12 & 9/24 & 6/15 \\ 1/3 & 3/6 & 1/3 & 11/24 & \dots & 6/15 \\ 1/3 & 1/6 & 3/12 & 1/6 & 3/15 \\ \end{array}$$

Iteration 0, 1, 2, ...

PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i} \quad \text{or} \quad r = Mr$$

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

Does this converge?

The "Spider trap" problem:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

Does it converge to what we want?

The "Dead end" problem:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

RageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Such pages cause importance to "leak out"

- (2) Spider traps

 (all out-links are within the group)
 - Eventually spider traps absorb all importance

Problem: Spider Traps

Power Iteration:

• Set
$$r_j = \frac{1}{N}$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

And iterate

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2 + r_m$$

Example:

Iteration 0, 1, 2, ...

Solution: Random Teleports

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1-** β , jump to a random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

Power Iteration:

• Set
$$r_j = \frac{1}{N}$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

And iterate

	y	a	m
У	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2$$

Example:

$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{array}{ccccc} 1/3 & 2/6 & 3/12 & 5/24 & 0 \\ 1/3 & 1/6 & 2/12 & 3/24 & \dots & 0 \\ 1/3 & 1/6 & 1/12 & 2/24 & 0 \\ \end{array}$$

Iteration 0, 1, 2, ...

Solution: Always Teleport

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Solution: Random Jumps

- Google's solution: At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to i} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

d_i ... out-degree of node i

The above formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* (bad!) or explicitly follow random teleport links with probability 1.0 from dead-ends. See P. Berkhin, *A Survey on PageRank Computing*, Internet Mathematics, 2005.

PageRank & Eigenvectors

PageRank as a principal eigenvector

$$m{r} = m{M} \cdot m{r}$$
 or equivalently $m{r}_j = \sum_i rac{r_i}{d_i}$

But we really want:

$$r_j = \beta \sum_i \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

Let's define:

$$M'_{ij} = \beta M_{ij} + (1 - \beta) \frac{1}{n}$$

Now we get what we want:

$$r = M' \cdot r$$

- What is 1β ?
 - In practice 0.15 (5 links and jump)

d_i ... out-degree of node i

Note: M is a sparse matrix but M' is dense (all entries $\neq 0$). In practice we never "materialize" M but rather we use the "sum" formulation

PageRank: The Complete Algorithms

- Input: Graph G and parameter β
 - Directed graph G with spider traps and dead ends
 - Parameter β
- Output: PageRank vector r

• Set:
$$r_j^{(0)} = \frac{1}{N}$$
, $t = 1$

do:

$$\forall j: r_j^{\prime(t)} = \sum_{i \to j} \beta \frac{r_i^{(t-1)}}{d_i}$$
$$r_j^{\prime(t)} = \mathbf{0} \text{ if in-deg. of } \mathbf{j} \text{ is } \mathbf{0}$$

Now re-insert the leaked PageRank:

$$\forall j: r_j^{(t)} = r_j^{(t)} + \frac{1-S}{N}$$
 where: $S = \sum_j r_j^{(t)}$

t = t + 1

while $\sum_{j} \left| r_{j}^{(t)} - r_{j}^{(t-1)} \right| > \varepsilon$

Example

PageRank and HITS

- PageRank and HITS are two solutions to the same problem:
 - What is the value of an in-link from u to v?
 - In the PageRank model, the value of the link depends on the links into u
 - In the HITS model, it depends on the value of the other links out of u
- The destinies of PageRank and HITS post-1998 were very different

Personalized PageRank, Random Walk with Restarts

Proximity on Graphs

a.k.a.: Relevance, Closeness, 'Similarity'...

Good proximity measure?

Shortest path is not good:

- No influence for degree-1 nodes (E, F, G)!
- Multi-faceted relationships

Good proximity measure?

Network Flow is not good:

Does not punish long paths

What is good notion of proximity?

- Multiple Connections
- Quality of connection
 - Direct & In-direct
 - connections
 - Length, Degree,

Weight...

Random Walk with Restarts

Personalized PageRank

- Goal: Evaluate pages not just by popularity but by how close they are to the topic
- Teleporting can go to:
 - Any page with equal probability
 - (we used this so far)
 - A topic-specific set of "relevant" pages
 - Topic-specific (personalized) PageRank (S ...teleport set)

$$M'_{ij} = \beta M_{ij} + (1 - \beta)/|S|$$
 if $i \in S$
= βM_{ij} otherwise

Random Walk with Restart: S is a single element

PageRank: Applications

- Graphs and web search:
 - Ranks nodes by "importance"
- Personalized PageRank:
 - Ranks proximity of nodes to the teleport nodes S
- Proximity on graphs:
 - Q: What is most related conference to ICDM?
 - Random Walks with Restarts
 - Teleport back to the starting node:
 S = { single node }

Random Walk with Restarts

	Node 4
Node 1	0.13
Node 2	0.10
Node 3	0.13
Node 4	0.22
Node 5	0.13
Node 6	0.05
Node 7	0.05
Node 8	0.08
Node 9	0.04
Node 10	0.03
Node 11	0.04
Node 12	0.02

Nearby nodes, higher scores More red, more relevant

Ranking vector \vec{r}_4

Personalized PageRank

Graph of CS conferences

Q: Which conferences are closes to KDD & ICDM?

A: Personalized
PageRank with
teleport set S={KDD,
ICDM}