Probabilistic Contagion and Models of Influence

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

http://cs224w.stanford.edu

RECAP: Cascades & Compatibility

- Setting from the last class:
 - AB-A: gets a
 - AB-B: gets b
 - AB-AB: gets max(a, b)
 - Also: Some cost c for the effort of maintaining both strategies (summed over all interactions)

Cascades & Compatibility: Model

- Every node in an infinite network starts with B
- Then a finite set S initially adopts A
- Run the model for *t=1,2,3,...*
 - Each node selects behavior that will optimize payoff (given what its neighbors did in at time t-1)

How will nodes switch from B to A or AB?

Example: Path Graph (1)

- Path graph: Start with all Bs, a > b (A is better)
- One node switches to A what happens?
 - With just A, B: A spreads if a > b
 - With A, B, AB: Does A spread?
- Example: a=3, b=2, c=1

Cascade stops

Example: Path Graph (2)

Example: a=5, b=3, c=1

Infinite path, start with all Bs

- Payoffs for w: A:a, B:1, AB:a+1-c
- What does node w in A-w-B do?

Infinite path, start with all Bs

- Payoffs for w: A:a, B:1, AB:a+1-c
- What does node w in A-w-B do?

Same reward structure as before but now payoffs

for w change: A:a, B:1+1, AB:a+1-c

Notice: Now also AB spreads

What does node w in AB-w-B do?

Same reward structure as before but now payoffs

for w change: A:a, B:1+1, AB:a+1-c

Notice: Now also AB spreads

What does node w in AB-w-B do?

Joining the two pictures:

Lesson

 You manufacture default B and new/better A comes along:

- Infiltration: If B is too compatible then people will take on both and then drop the worse one (B)
- Direct conquest: If A makes itself not compatible – people on the border must choose. They pick the better one (A)
- Buffer zone: If you choose an optimal level then you keep a static "buffer" between A and B

Models of Cascading Behavior

So far:

Decision Based Models

- Utility based
- **Deterministic**

- Require us to know too much about the data
- Today: Probabilistic Models
 - Let's you do things by observing data
 - We loose "why people do things"

Announcement: Feedback

Mid-term Feedback

- We are conducting a mid-quarter feedback
- Your input is valuable in helping us understand:
 - How the course is progressing
 - How can we improve your learning experience!
- Please fill out: http://bit.ly/1fErxAo
 - It won't take more than 5mins

Epidemic Model Based on Trees

Simple probabilistic model of cascades where we will learn about the reproductive number

Probabilistic Spreading Models

- Epidemic Model based on Random Trees
 - (a variant of branching processes)
 - A patient meets d other people
 - With probability q > 0 infects each of them
- Q: For which values of d and q does the epidemic run forever?
 - Run forever:

$$\lim_{h\to\infty} P \left[\text{infected node} \atop \text{at depth h} \right] > 0$$

Die out:

$$-- | | -- | = 0$$

Root node, "patient 0" Start of epidemic

Probabilistic Spreading Models

- p_h = prob. there is an infected node at depth h
- We need: $\lim_{h\to\infty} p_h = ?$ (based on q and d)
- Need recurrence for p_h

$$p_h = 1 - (1 - q \cdot p_{h-1})^d$$
No infected node at depth h from the root

• $\lim_{h\to\infty} p_h$ = result of iterating

$$f(x) = 1 - (1 - q \cdot x)^d$$

• Starting at x = 1 (since $p_1 = 1$)

Fixed Point: $f(x) = 1 - (1 - qx)^{d}$

What do we know about f(x)?

$$f(0) = 0$$

$$f(1) = 1 - (1 - q)^{d} < 1$$

$$f'(x) = q \cdot d(1 - qx)^{d-1}$$

 $f'(0) = q \cdot d$ so f'(x) is monotone decreasing on [0,1]!

Fixed Point: When is this zero?

Reproductive number

 $R_0 = q \cdot d$: There is an epidemic if $R_0 \ge 1$

For the epidemic to die out we need f(x) to be bellow y=x!

So:
$$f'(0) = q \cdot d < 1$$

$$\lim_{h\to\infty}p_h=0 \ \ when \ \ \boldsymbol{q}\cdot\boldsymbol{d}<\boldsymbol{1}$$

 $q \cdot d$ = expected # of people at we infect

Probabilistic Contagion

- In this model nodes only go from healthy → infected
- We can generalize to allow nodes to alternate between healthy and infected state by:

Models of Disease Spreading

We will learn about the epidemic threshold

Spreading Models of Viruses

Virus Propagation: 2 Parameters:

- (Virus) birth rate β:
 - probability than an infected neighbor attacks
- (Virus) death rate δ:
 - probability that an infected node heals

More Generally: S+E+I+R Models

- General scheme for epidemic models:
 - Each node can go through phases:
 - Transition probs. are governed by the model parameters

SIR Model

SIR model: Node goes through phases

Susceptible $\xrightarrow{\beta}$ Infected $\xrightarrow{\delta}$ Recovered

- Models chickenpox or plague:
 - Once you heal, you can never get infected again
- Assuming perfect mixing (the network is a

complete graph) the model dynamics is:

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \delta I$$

$$\frac{dR}{dt} = \delta I$$

SIS Model

- Susceptible-Infective-Susceptible (SIS) model
- Cured nodes immediately become susceptible
- Virus "strength": $s = \beta / \delta$
- Node state transition diagram:

SIS Model

Models flu:

- Susceptible node becomes infected
- The node then heals and become susceptible again
- Assuming perfect mixing (complete graph):

$$\frac{dS}{dt} = -\beta SI + \delta I$$

$$\frac{dI}{dt} = \beta SI - \delta I$$

Question: Epidemic threshold t

- SIS Model:
 Epidemic threshold of an arbitrary graph G is τ, such that:
 - If virus strength $s = \beta / \delta < \tau$ the epidemic can not happen (it eventually dies out)
- Given a graph what is its epidemic threshold?

Epidemic Threshold in SIS Model

We have no epidemic if:

 $ightharpoonup \lambda_{1,A}$ alone captures the property of the graph!

Experiments (AS graph)

Experiments

Does it matter how many people are initially infected?

(a) Below the threshold, s=0.912

(b) At the threshold, s=1.003

(c) Above the threshold, s=1.1

Independent Cascade Model

Independent Cascade Model

- Initially some nodes S are active
- Each edge (u,v) has probability (weight) p_{uv}

- When node u becomes active/infected:
 - It activates each out-neighbor \mathbf{v} with prob. \mathbf{p}_{uv}
- Activations spread through the network!

Independent Cascade Modal

Independent cascade model is simple but requires many parameters!

Estimating them from data is very hard [Goyal et al. 2010]

- Solution: Make all edges have the same weight (which brings us back to the SIR model)
 - Simple, but too simple
- Can we do something better?

Exposures and Adoptions

- From exposures to adoptions
 - Exposure: Node's neighbor exposes the node to the contagion
 - Adoption: The node acts on the contagion

Exposure Curves

- Exposure curve:
 - Probability of adopting new behavior depends on the number of friends who have already adopted

... adopters

k = number of friends adopting

Diminishing returns: Viruses, Information

Critical mass: Decision making

Exposure Curves

- From exposures to adoptions
 - Exposure: Node's neighbor exposes the node to information
 - Adoption: The node acts on the information
- Adoption curve:

Example Application

- Marketing agency would like you to adopt/buy product X
- They estimate the adoption curve
- Should they expose you to X three times?
- Or, is it better to expose you X, then Y and then X again?

Diffusion in Viral Marketing

Senders and followers of recommendations receive discounts on products

- Data: Incentivized Viral Marketing program
 - 16 million recommendations
 - 4 million people, 500k products
 - [Leskovec-Adamic-Huberman, 2007]

Exposure Curve: Validation

More Subtle Features

• What is the effectiveness of subsequent recommendations?

BOOKS DVDs

Exposure Curve: LiveJournal

Group memberships spread over the

network:

 Red circles represent existing group members

- Yellow squares may join
- Question:
 - How does prob. of joining a group depend on the number of friends already in the group?

Exposure Curve: LiveJournal

LiveJournal group membership

Exposure Curve: Information

- Twitter [Romero et al. '11]
 - Aug '09 to Jan '10, 3B tweets, 60M users

- Avg. exposure curve for the top 500 hashtags
- What are the most important aspects of the shape of exposure curves?
- Curve reaches peak fast, decreases after!

Modeling the Shape of the Curve

- Persistence of P is the ratio of the area under the curve P and the area of the rectangle of length max(P), width max(D(P))
 - D(P) is the domain of P
- Persistence measures the decay of exposure curves
- Stickiness of P is max(P).
- Stickiness is the probability of usage at the most effective exposure

Exposure Curve: Persistence

Manually identify 8
 broad categories with
 at least 20 HTs in each

Category	Examples
Celebrity	mj, brazilwantsjb, regis, iwantpeterfacinelli
Music	thisiswar, mj, musicmonday, pandora
Games	mafiawars, spymaster, mw2, zyngapirates
Political	tcot, glennbeck, obama, hcr
Idiom	cantlivewithout, dontyouhate, musicmonday
Sports	golf, yankees, nhl, cricket
Movies/TV	lost, glennbeck, bones, newmoon
Technology	digg, iphone, jquery, photoshop

- Idioms and Music have lower persistence than that of a random subset of hashtags of the same size
- Politics and Sports
 have higher persistence
 than that of a random
 subset of hashtags of
 the same size

Exposure Curve: Stickiness

- Technology and Movies have lower stickiness than that of a random subset of hashtags
- Music has higher stickiness than that of a random subset of hashtags (of the same size)

Modeling Interactions Between Contagions

Information Diffusion

So far we considered pieces of information as **independently** propagating. **Do pieces of information interact?**

video?

Modeling Interactions

- Goal: Model interaction between many pieces of information
 - Some pieces of information may help each other in adoption
 - Other may compete for attention

 $P(\text{adopt } c_3 \mid \text{exposed } to c_2, c_1, c_0)$

- You are reading posts on Twitter:
 - You examine posts one by one
 - Currently you are examining X
 - How does your probability of reposting X depend on what you have seen in the past?

Contagions adopted by neighbors:

We assume K most recent exposures effect a user's adoption:

- P(adopt $X=c_0$ | exposed $Y_1=c_1$, $Y_2=c_2$, ..., $Y_K=c_k$)

Contagion the user is viewing now.

Contagions the user previously viewed.

Contagions adopted by neighbors:

We assume K most recent exposures effect a user's adoption:

- P(adopt $X=c_0$ | exposed $Y_1=c_1$, $Y_2=c_2$, ..., $Y_K=c_k$)

Contagion the user is viewing now.

Contagions the user previously viewed.

Contagions adopted by neighbors:

The Model: Problem

- Imagine we want to estimate: P(X | Y₁, ... Y₅)
- What's the problem?
 - What's the size of probability table P(X | Y₁, ... Y₅)?
 - = (Num. Contagions)⁵ $\approx 1.9 \times 10^{21}$
- Simplification: Assume Y_i is independent of Y_i

$$P(X|Y_1,...,Y_K) = \frac{1}{P(X)^{K-1}} \prod_{k=1}^K P(X|Y_k)$$

- How many parameters? $K \cdot w^2$ Too many!
 - K ... history size
 - w ... number of contagions

- Goal: Model P(post X | Y₁,..., Y_K)
- First, assume:

$$P(X = u_j | Y_k = u_i) \approx \underbrace{P(X = u_j)}_{\text{Prior infection}} + \underbrace{\Delta_{cont.}^{(k)}(u_i, u_j)}_{\text{(still has w² entries!)}}$$

Next, assume "topics":

$$egin{bmatrix} oldsymbol{\Delta}_{cont.}^{(k)} \ \end{bmatrix} = egin{bmatrix} \mathbf{M} \end{bmatrix} imes egin{bmatrix} oldsymbol{\Delta}_{clust}^{(k)} \end{bmatrix} imes egin{bmatrix} oldsymbol{M}^T \ \end{bmatrix}$$

- Goal: Model P(post X | Y₁,..., Y_K)
- First, assume:

$$P(X = u_j | Y_k = u_i) \approx P(X = u_j) + \Delta_{cont.}^{(k)}(u_i, u_j)$$
Prior infection prob. Interaction term (still has w² entries!)

Next, assume "topics":

$$\Delta_{cont.}^{(k)}(u_i, u_j) = \sum_{t} \sum_{s} \mathbf{M}_{j,t} \cdot \Delta_{clust}^{(k)}(c_t, c_s) \cdot \mathbf{M}_{i,s}$$

- lacksquare Each contagion $oldsymbol{u_i}$ has a vector $oldsymbol{M_i}$
 - lacksquare Entry $oldsymbol{M}_{is}$ models how much $oldsymbol{u}_i$ belongs to topic $oldsymbol{s}$
- $\Delta_{clust}^{(k)}(s,t)$ models the change in infection prob. given that u_i is on topic s and exposure s-steps ago was on topic t

$$P(X = u_j | Y_k = u_i) = P(X = u_j) + \sum_{t} \sum_{s} \mathbf{M}_{i,t} \cdot \Delta_{t,s}^{(k)} \cdot \mathbf{M}_{j,s}$$

Inferring the Model

Model parameters:

- lacksquare Δ^k ... topic interaction matrix
- $M_{i,t}$... topic membership vector
- P(X) ... Prior infection prob.
- Maximize data likelihood:

$$\arg \max_{P(X),M,\Delta} \prod_{X \in R} P(X|X,Y_1 \dots Y_K) \prod_{X \notin R} 1 - P(X|X,Y_1 \dots Y_K)$$

- R ... contagions X that resulted in infections
- Solve using stochastic coordinate ascent:
 - Alternate between optimizing Δ and M

Dataset: Twitter

- Data from Twitter
 - Complete data from Jan 2011: 3 billion tweets
 - All URLs tweeted by at least 50 users: 191k
- Task:

Predict whether a user will post URL X

- Train on 90% of the data, test on 10%
- Baselines:

$$P(X = u_i | Y_k = u_j) =$$

- Infection Probability (IP): $= P(X = u_i)$
- IP + Node bias (NB): $= P(X = u_i) + \gamma_n$
- **Exposure curve (EC):** $= P(X \mid \# times \ exposed \ to \ X)$

Predicting Retweets

Model Name	Log-Like.	$\max F_1$	Area under PR		
IP	-335,550.39	0.0150	0.0157		
UB	-338,821.54	0.0112	0.0123		
EC	-338,367.86	0.0181	0.0250		
Our Model - With Prior					
IMM K=1	-313,843.93	0.0412	0.0515		
IMM K=2	-299,884.86	0.0465	0.1238		
IMM K=3	-299,352.32	0.0380	0.0926		
IMM K=4	-315,319.54	0.0321	0.0804		
IMM K=5	-352,687.54	0.0386	0.0924		

Bottom line: Model works great!

Experiments - Results

	Log-Like.	Area under PR	max F ₁
Prior Adoption Probability	-335,550.39	0.0157	0.0157
Prior+User Bias	-338,821.54	0.0123	0.0112
Exposure Curve	-338,367.86	0.0250	0.0181
Our Model	-299,884.86	0.1238	0.0465
	11%	400%	168%
	Improvement	Improvement	Improvement

Including a user bias parameter offered no improvement in performance.

How to Tweets Interact?

- How $P(post u_2 | exp. u_1)$ changes if ...
 - u₂ and u₁ are similar/different in the content?
 - u₁ is highly viral?

Relative change in infection prob.

Final Remarks

Modeling contagion interactions

- 71% of the adoption probability comes from the topic interactions!
- Modeling user bias does not matter

Detecting external events

- Overall, 69% exposures on Twitter come from the network and 29% from external sources
 - About the same for URLs as well as hashtags!

Tracing Sentiment of Cascades

Methodology:

- Each node of the cascade is a blog post that belongs to a blog
- For each blog compute the baseline sentiment (over all its posts)
 - Subjectivity: deviation in sentiment from the baseline (in positive or negative direction)

• Question:

Does sentiment flow in cascade?

Tracing Sentiment of Cascades

Cascades "heats" up early, then cool off

Subjectivity of the child and the parent are correlated. **Sentiment flows!**

Distance from cascade intitiator

