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 Setting from the last class: 
 AB-A : gets a 
 AB-B : gets b 
 AB-AB : gets max(a, b) 
 Also: Some cost c for the effort of maintaining  

both strategies (summed over all interactions) 
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 Every node in an infinite network starts with B 
 Then a finite set S initially adopts A 
 Run the model for t=1,2,3,… 
 Each node selects behavior that will optimize 

payoff (given what its neighbors did in at time t-1) 
 
 

 
 
 
 
 
 

 How will nodes switch from B to A or AB? 

10/16/2013 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 3 

B A A AB a a max(a,b) AB 
b 

Payoff 

-c -c 



 Path graph: Start with all Bs, a > b (A is better)  
 One node switches to A – what happens? 
 With just A, B: A spreads if a > b 
 With A, B, AB: Does A spread?  

 Example: a=3, b=2, c=1 
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 Example: a=5, b=3, c=1 
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 Infinite path, start with all Bs 
 Payoffs for w: A:a, B:1, AB:a+1-c 
 What does node w in A-w-B do? 
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 Infinite path, start with all Bs 
 Payoffs for w: A:a, B:1, AB:a+1-c 
 What does node w in A-w-B do? 
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 Same reward structure as before but now payoffs  
for w change: A:a, B:1+1, AB:a+1-c 

 Notice: Now also AB spreads 
 What does node w in AB-w-B do? 
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 Same reward structure as before but now payoffs  
for w change: A:a, B:1+1, AB:a+1-c 

 Notice: Now also AB spreads 
 What does node w in AB-w-B do? 
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 Joining the two pictures: 
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 You manufacture default B and 
new/better A comes along: 
 Infiltration: If B is too  

compatible then people  
will take on both and then  
drop the worse one (B) 
 Direct conquest: If A makes  

itself not compatible – people 
on the border must choose.  
They pick the better one (A) 
 Buffer zone: If you choose an  

optimal level then you keep  
a static “buffer” between A and B 
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 So far:  
Decision Based Models 
 Utility based 
 Deterministic 
 “Node” centric: A node observes decisions of its 

neighbors and makes its own decision 
 Require us to know too much about the data 

 Today: Probabilistic Models 
 Let’s you do things by observing data 
 We loose “why people do things” 
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 We are conducting a mid-quarter feedback 
 Your input is valuable in helping us understand: 
 How the course is progressing 
 How can we improve your learning experience! 

 

 Please fill out: http://bit.ly/1fErxAo 
 It won’t take more than 5mins 
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Mid-term Feedback 

http://bit.ly/1fErxAo


Simple probabilistic model of 
cascades where we will learn about 
the reproductive number 



 Epidemic Model based on Random Trees 
 (a variant of branching processes) 
 A patient meets d other people 
 With probability q > 0 infects each  

of them 
 Q: For which values of d and q 

does the epidemic run forever? 
 Run forever:  

 
 Die out:                              -- || --            = 0 
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 𝒑𝒑𝒉𝒉 = prob. there is an infected node at depth 𝒉𝒉 
 We need: lim

ℎ→∞
𝑝𝑝ℎ = ?   (based on 𝑞𝑞 and 𝑑𝑑) 

 Need recurrence for 𝒑𝒑𝒉𝒉 
𝑝𝑝ℎ = 1 − 1 − 𝑞𝑞 ⋅ 𝑝𝑝ℎ−1 𝑑𝑑 

 
 𝒍𝒍𝒍𝒍𝒍𝒍
𝒉𝒉→∞

𝒑𝒑𝒉𝒉 = result of iterating  

f x = 1 − 1 − 𝑞𝑞 ⋅ 𝑥𝑥 𝑑𝑑 
 Starting at 𝑥𝑥 = 1 (since 𝑝𝑝1 = 1) 
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No infected node 
at depth h from the root 

d subtrees 



10/16/2013 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 17 

x 

f(x) 

1 

y=x=1 

Going to first  
fixed point 

𝑓𝑓 0 = 0 
𝑓𝑓 1 = 1 − 1 − 𝑞𝑞 𝑑𝑑 < 1 
𝑓𝑓′ 𝑥𝑥 = 𝑞𝑞 ⋅ 𝑑𝑑 1 − 𝑞𝑞𝑞𝑞 𝑑𝑑−1  

y = f x  

𝑓𝑓′ 0 = 𝑞𝑞 ⋅ 𝑑𝑑 𝐬𝐬𝐬𝐬 𝒇𝒇′(𝒙𝒙) is monotone decreasing on [0,1]! 

When is this going to 0? 

What do we know about f(x)? 
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x 

f(x) 

1 

y=x 

y = f x  

For the epidemic to die out  
we need f(x) to be bellow y=x! 

So: 𝒇𝒇′ 𝟎𝟎 = 𝒒𝒒 ⋅ 𝒅𝒅 < 𝟏𝟏 
lim
ℎ→∞

𝑝𝑝ℎ = 0  𝑤𝑤ℎ𝑒𝑒𝑒𝑒  𝒒𝒒 ⋅ 𝒅𝒅 < 𝟏𝟏 

𝒒𝒒 ⋅ 𝒅𝒅 = expected # of people at we infect 

Reproductive 
number 
𝑹𝑹𝟎𝟎 = 𝒒𝒒 ⋅ 𝒅𝒅: 
There is an 
epidemic if 
𝑹𝑹𝟎𝟎 ≥ 𝟏𝟏 



 In this model nodes only go from  
healthy → infected 

 We can  generalize to allow nodes to alternate 
between healthy and infected state by: 
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We will learn about the  
epidemic threshold 



Virus Propagation: 2 Parameters: 
 (Virus) birth rate β:  
 probability than an infected neighbor attacks 

 (Virus) death rate δ:  
 probability that an infected node heals 
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Infected 

Healthy 

N N1 

N3 

N2 
Prob. β 

Prob. δ 



 General scheme for epidemic models: 
 Each node can go through phases: 
 Transition probs. are governed by the model parameters 
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S…susceptible 
E…exposed 
I…infected 
R…recovered 
Z…immune 

22 



 SIR model: Node goes through phases 
 
 Models chickenpox or plague:  
 Once you heal, you can never get infected again 

 Assuming perfect mixing (the network is a 
complete graph) the  
model dynamics is: 
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 Susceptible-Infective-Susceptible (SIS) model  
 Cured nodes immediately become susceptible 
 Virus “strength”: s = β / δ 
 Node state transition diagram: 
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Susceptible Infective 

Infected by neighbor 
with prob. β 

Cured internally 
with prob. δ 



 Models flu: 
 Susceptible node 

becomes infected 
 The node then heals 

and become 
susceptible again 

 Assuming perfect 
mixing (complete 
graph): 
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S(t) 

 



 SIS Model:  
Epidemic threshold of an arbitrary  
graph G is τ, such that: 
 If virus strength s = β / δ < τ  

the epidemic can not happen  
(it eventually dies out) 
 

 Given a graph what is its epidemic threshold? 
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 We have no epidemic if: 
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β/δ < τ = 1/ λ1,A 

► λ1,A alone captures the property of the graph! 

(Virus) Birth rate 

(Virus) Death 
rate 

Epidemic threshold 

largest eigenvalue 
of adj. matrix A 

[Wang et al. 2003] 
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 Does it matter how many  people are 
initially infected? 
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 Initially some nodes S are active 
 Each edge (u,v) has probability (weight) puv 

 
 
 
 
 
 

 
 

 
 When node u becomes active/infected:  
 It activates each out-neighbor v with prob. puv 

 Activations spread through the network! 
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 Independent cascade model  
is simple but requires 
many parameters! 
 Estimating them from 

data is very hard 
[Goyal et al. 2010] 

 Solution: Make all edges have the same 
weight (which brings us back to the SIR model) 
 Simple, but too simple 

 Can we do something better? 
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 From exposures to adoptions 
 Exposure: Node’s neighbor exposes the  

node to the contagion 
 Adoption: The node acts on the contagion 

33 

[KDD ‘12] 
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 Exposure curve: 
 Probability of adopting new  

behavior depends on the number  
of friends who have already adopted 

 What’s the dependence? 
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 From exposures to adoptions 
 Exposure: Node’s neighbor exposes the node to 

information 
 Adoption: The node acts on the information 

 Adoption curve: 

35 
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# exposures 

Probability of 
infection ever 
increases 

Nodes build  
resistance 

[KDD ‘12] 

10/16/2013 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 



 Marketing agency would like you  
to adopt/buy product X 

 They estimate the adoption 
curve 

 

 Should they expose you  
to X three times? 

 Or, is it better to expose you X,  
then Y and then X again? 
 

36 
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 Senders and followers of recommendations 
receive discounts on products 

 

 
 
 
 

 Data: Incentivized Viral Marketing program 
 16 million recommendations 
 4 million people, 500k products 
 [Leskovec-Adamic-Huberman, 2007] 
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Books 



 What is the effectiveness of subsequent 
recommendations? 
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 Group memberships spread over the 
network: 
 Red circles represent  

existing group members 
 Yellow squares may join 

 Question:  
 How does prob. of joining  

a group depend on the  
number of friends already  
in the group? 
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[Backstrom et al. KDD ‘06] 
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 LiveJournal group membership  
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[Backstrom et al., KDD ’06] 



 Twitter [Romero et al. ‘11] 
 Aug ‘09 to Jan ’10, 3B tweets, 60M users 

 
 
 
 
 
 Avg. exposure curve for the top 500 hashtags 
 What are the most important aspects of the 

shape of exposure curves? 
 Curve reaches peak fast, decreases after! 
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 Persistence of P is the  
ratio of the area under  
the curve P and the area 
of the rectangle of length  
max(P), width max(D(P)) 
 D(P) is the domain of P 

 Persistence measures the  
decay of exposure curves 

 

 Stickiness of P is max(P). 
 Stickiness is the probability of  

usage at the most effective exposure 
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 Manually identify 8  
broad categories with  
at least 20 HTs in each 
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• Idioms and Music 
have lower persistence 
than that of a random 
subset of hashtags of 
the same size 
•  Politics and Sports 
have higher persistence 
than that of a random 
subset of hashtags of 
the same size 

True Rnd. subset 



 Technology and Movies have lower stickiness than that 
of a random subset of hashtags 

 
 Music has higher stickiness than that of a random subset 

of hashtags (of the same size) 
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` 

Did 1st cat video decrease 
adoption probability of 2nd 
cat video? 

Did cat videos 
increase adoption 
probability of dog 
video? 

So far we considered pieces of information as independently 
propagating. Do pieces of information interact? 



 Goal: Model interaction between  
many pieces of information 
 Some pieces of information may help 

each other in adoption 
 Other may compete for attention 
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P(adopt c0) 

 
 
 
 
 
 
 
 
 
 
 

Neighbors 

The User 

P(adopt c1 | exposed to c0) P(adopt c2 | exposed to c1 , c0) P(adopt c3 | exposed to c2 , c1, c0) 

c0 c1 c2 c3 



 You are reading posts on Twitter: 
 You examine posts one by one 
 Currently you are examining X 
 How does your probability of reposting X 

depend on what you have seen in the past? 

c5 c4 c3 c2 

Time 

Contagions adopted by neighbors: 
X Y1 Y2 

Adopt? 



 We assume K most recent exposures effect a 
user’s adoption: 

 P(adopt X=c0 | exposed Y1=c1, Y2=c2, ... , YK=ck)  

Contagion the user is 
viewing now. 

Contagions the user 
previously viewed. 

c5 c4 c3 c2 c1 

Time 

Contagions adopted by neighbors: 
Y1 X 

Adopt? 

Y2 



 We assume K most recent exposures effect a 
user’s adoption: 

 P(adopt X=c0 | exposed Y1=c1, Y2=c2, ... , YK=ck)  

Contagion the user is 
viewing now. 

Contagions the user 
previously viewed. 

c5 c4 c3 c2 c1 c0 

Time 

Contagions adopted by neighbors: 
Y1 X 

Adopt? 

Y2 



 Imagine we want to estimate: P(X | Y1, … Y5) 
 What’s the problem? 
 What’s the size of probability table P(X | Y1, … Y5)? 
 = (Num. Contagions)5 

 

 Simplification: Assume Yi is independent of Yj 

𝑷𝑷 𝑿𝑿 𝒀𝒀𝟏𝟏, … ,𝒀𝒀𝑲𝑲 =
𝟏𝟏

𝑷𝑷 𝑿𝑿 𝑲𝑲−𝟏𝟏�𝑷𝑷(𝑿𝑿|𝒀𝒀𝒌𝒌)
𝑲𝑲

𝒌𝒌=𝟏𝟏

 

 
 How many parameters?  𝑲𝑲 · 𝒘𝒘𝟐𝟐   Too many!  
 𝐾𝐾 … history size 
 𝑤𝑤 … number of contagions  
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≈ 1.9x1021 



 Goal: Model P(post X | Y1,…, YK)  
 First, assume: 

 
 

 Next, assume “topics”: 
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Prior infection 
prob. 

Interaction term 
(still has w2 entries!) 



 Goal: Model P(post X | Y1,…, YK)  
 First, assume: 

 
 

 Next, assume “topics”: 
 
 
 Each contagion 𝒖𝒖𝒊𝒊 has a vector 𝑴𝑴𝒊𝒊 
 Entry 𝑴𝑴𝒊𝒊𝒔𝒔 models how much 𝒖𝒖𝒊𝒊 belongs to topic 𝒔𝒔  

 𝜟𝜟𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
𝒌𝒌 𝒔𝒔, 𝒕𝒕  models the change in infection prob. given that 

𝒖𝒖𝒊𝒊 is on topic 𝒔𝒔 and exposure k-steps ago was on topic 𝒕𝒕 
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Prior infection 
prob. 

Interaction term 
(still has w2 entries!) 
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 ci 

cluster a 

cluster b 

cluster c 

cluster d 

a b c d 

∆(k) 

Mj,a 

Mi,d 

 cj 

Memberships to clusters 

Interactions between 
clusters 



 Model parameters: 
 Δ𝑘𝑘 … topic interaction matrix 
 𝑀𝑀𝑖𝑖,𝑡𝑡 ... topic membership vector 
 𝑃𝑃(𝑋𝑋) ... Prior infection prob. 

 Maximize data likelihood: 

arg max
𝑃𝑃 𝑥𝑥 ,𝑀𝑀,Δ

�𝑃𝑃 𝑋𝑋 𝑋𝑋,𝑌𝑌1 …𝑌𝑌𝐾𝐾
𝑋𝑋∈𝑅𝑅

�1 − 𝑃𝑃 𝑋𝑋 𝑋𝑋,𝑌𝑌1 …𝑌𝑌𝐾𝐾
𝑋𝑋∉𝑅𝑅

 

 𝑅𝑅 … contagions X that resulted in infections 
 Solve using stochastic coordinate ascent: 
 Alternate between optimizing Δ and 𝑀𝑀 
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 Data from Twitter 
 Complete data from Jan 2011: 3 billion tweets 
 All URLs tweeted by at least 50 users: 191k 

 Task:  
Predict whether a user will post URL X 
 Train on 90% of the data, test on 10% 

 Baselines: 
 Infection Probability (IP):  
 IP + Node bias (NB): 
 Exposure curve (EC):       = P(X | # times exposed to X) 
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 Bottom line: Model works great! 
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Log-Like. Area under PR max F1 

Prior Adoption 
Probability -335,550.39 0.0157 0.0157 

Prior+User Bias -338,821.54 0.0123 0.0112 
Exposure Curve -338,367.86 0.0250 0.0181 

Our Model -299,884.86 0.1238 0.0465 

400%  
Improvement 

168%  
Improvement 

11%  
Improvement 

Including a user bias parameter offered no improvement in 
performance. 



 How P(post u2| exp. u1) changes if … 
 u2 and u1 are similar/different in the content? 
 u1 is highly viral? 

61 

Observations: 
• If u1 is not viral, 
this boost u2 
• If u1 is highly viral, 
this kills u2 
BUT: 
Only if u1 and u2 are 
of low content 
similarity (LCS) else, 
u1 helps u2 

Relative change in infection prob. 
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 Modeling contagion interactions 
 71% of the adoption probability comes  

from the topic interactions! 
 Modeling user bias does not matter 

 

 Detecting external events 
 Overall, 69% exposures on Twitter come from the 

network and 29% from external sources 
 About the same for URLs as well as hashtags! 
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 Methodology: 
 Each node of  the cascade is a blog 

post that belongs to a blog 
 For each blog compute the baseline 

sentiment (over all its posts) 
 Subjectivity: deviation in sentiment from  

the baseline (in positive or negative direction) 
 Question: 
 Does sentiment flow in cascade? 
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[ICWSM ‘11] 
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 Cascades “heats” up early, then cool off 
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[ICWSM ‘11] 

Subjectivity of the child and the 
parent are correlated.  

Sentiment flows! 
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