Small-World Phenomena and Decentralized Search

CS224W: Social and Information Network Analysis
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
Could a network with high clustering be at the same time a small world?

- How can we at the same time have high clustering and small diameter?

- Clustering implies edge “locality”
- Randomness enables “shortcuts”
Solution: The Small-World Model

Small-world Model [Watts-Strogatz ‘98]
2 components to the model:
- **(1)** Start with a low-dimensional regular lattice
 - Has high clustering coefficient
- Now introduce randomness (“shortucts”)

- **(2)** **Rewire:**
 - Add/remove edges to create shortcuts to join remote parts of the lattice
 - For each edge with prob. p move the other end to a random node
The Small-World Model

Rewiring allows us to “interpolate” between a regular lattice and a random graph.

\[h = \frac{N}{2k} \quad C = \frac{3}{4} \]

\[h = \frac{\log N}{\log \alpha} \quad C = \frac{k}{N} \]

[Watts-Strogatz, '98]
The Small-World Model

Clustering coefficient, $C = \frac{1}{n} \sum C_i$

- mean vertex-vertex distance
- clustering coefficient

Parameter region of high clustering and low path length

Intuition: It takes a lot of randomness to ruin the clustering, but a very small amount to create shortcuts.
Alternative formulation of the model:

- Start with a square grid
- Each node has 1 random long-range edge
 - Each node has 1 spoke. Then randomly connect them.

\[
C_i = \frac{2 \cdot e_i}{k_i(k_i - 1)} = \frac{2 \cdot 12}{9 \cdot 8} \geq 0.33
\]

There are already 12 triangles in the grid and the long-range edge can only close more.

What’s the diameter?

It is \(O(\log(n)) \)

Why?
Proof:

- Consider a graph where we contract 2x2 subgraphs into supernodes.
- Now we have 4 edges sticking out of each supernode.
 - 4-regular random graph!
- From Thm. we have short paths between super nodes.
- We can turn this into a path in a real graph by adding at most 2 steps per hop.

\[\Rightarrow \text{Diameter of the model is } O(2 \log n) = O(\log n) \]
Could a network with high clustering be at the same time a small world?
- Yes! You don’t need more than a few random links

The Watts-Strogatz Model:
- Provides insight on the interplay between clustering and the small-world
- Captures the structure of many realistic networks
- Accounts for the high clustering of real networks
- Does not lead to the correct degree distribution
- Does not enable navigation (next)
(1) What is the structure of a social network?
(2) What strategies do people use to route and find the target?

How would you go about finding the path?
Decentralized Search

The setting:
- s only knows locations of its friends and location of the target t
- s does not know links of anyone else but itself
- Geographic Navigation:
 - s “navigates” to the node closest to t
- Search time T: Number of steps to reach t
Overview of the Results

Searchable

Search time T: $O((\log n)^\beta)$

Kleinberg’s model

$O((\log n)^2)$

Not searchable

Search time T: $O(n^\alpha)$

Watts-Strogatz

$O(n^{\frac{n}{3}})$

Erdős–Rényi

$O(n)$

Note: We know these graphs have diameter $O(\log n)$. So in Kleinberg’s model search time is polynomial in $\log n$, while in Watts-Strogatz it is exponential (in $\log n$).
Navigation in Watts-Strogatz

- **Model:** 2-dim grid where each node has one random edge
 - This is a small-world

- **Fact:** A decentralized search algorithm in Watts-Strogatz model needs $n^{2/3}$ steps to reach t in expectation
 - **Note:** Even though paths of $O(\log n)$ steps exist

- **Note:** All our calculations are asymptotic, i.e., we are interested in what happens as $n \to \infty$
Let’s do the proof for 1-dimensional case

Want to show Watts-Strogatz is NOT searchable

- Bound the search time from below

About the proof:

- Setting: \(n \) nodes on a ring plus one random directed edge per node.
- Search time is now \(T \geq O(n^{1/2}) \)
 - For \(d \)-dim. case: \(T \geq O(n^{d/(d+1)}) \)
- Proof strategy: Principle of deferred decision
 - Doesn’t matter when a random decision is made if you haven’t seen it yet
 - Assume random long range links are only created once you get to them
Proof: Search time is $\geq O(n^{1/2})$

- **Claim:**
 - Expected search time is $\geq \frac{1}{4}\sqrt{n}$

- **Let:** $E_i = \text{event that long link out of node } i \text{ points to some node in interval } I \text{ of width 2}\cdot x \text{ nodes (for some } x) \text{ around } t$

- **Then:** $P(E_i) = 2x/n$
 (haven’t seen node i yet, but can assume random edge generation)
Proof: Search time is \(\geq O(n^{1/2}) \)

- \(E \) = event that any of the first \(k \) nodes search algorithm visits has a link to \(I \)

- Then:
 \[
P(E) = P\left(\bigcup_{i=1}^{k} E_i \right) \leq \sum_{i=1}^{k} P(E_i) = k \frac{2x}{n}
\]

- Let’s choose \(k = x = \frac{1}{2} \sqrt{n} \)

Then:

\[
P(E) \leq 2 \left(\frac{1}{2} \sqrt{n} \right)^2 = \frac{1}{2}
\]

Note: Our alg. is deterministic and will choose to travel via a long- or short-range links using some deterministic rule.

The principle of deferred decision tells us that it does not really matter how we reached node \(i \).

Its prob. of linking to interval \(I \) is: \(2kx/n \).
Proof: Search time is $\geq O(n^{1/2})$

- **Suppose** initial s is outside I and event E does not happen (first k visited nodes don’t point to I)

- **Then** the search algorithm must take $T \geq \min(k, x)$ steps to get to t
 - (1) Right after we visit k nodes a good long-range link may occur
 - (2) x and k “overlap”, due to E not happening we have to walk at least x steps
Proof: Search time is $\geq O(n^{1/2})$

- **Claim:** Getting from s to t takes $\geq \frac{1}{4} \sqrt{n}$ steps
- **We want:** Search time $\geq P(\text{not } E) \cdot \min\{x, k\}$
- **Proof:** We just need to put together the facts
 - We already showed that for $x = k = \frac{1}{2} \sqrt{n}$
 - E does not happen with prob. $\frac{1}{2}$
 - If E does not happen, we must traverse $\geq \frac{1}{2} \sqrt{n}$ steps to get in I
 - The expected time to get to t is then
 $$\geq P(\text{E doesn't occur}) \cdot \min\{x, k\} = \frac{1}{2} \sqrt{n} = \frac{1}{4} \sqrt{n}$$
Proof: Search time is $\geq O(n^{1/2})$

- **Algorithm that reaches the lower bound on T:**
 - Walk in the direction of t
 - Ignore long-links unless they land in I
 - So, with prob. $\frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$, we have a link to I
 - It takes \sqrt{n} steps on average to find such link
 - Once we find it. Jump!
 - After that need at most another $\frac{1}{2} \sqrt{n}$ steps to walk towards t
 - So overall we need $\frac{3}{2} \sqrt{n}$ steps to reach t.
 - So the Watts-Strogatz model is **NOT** searchable.
Navigable Small-World Graph?

- Watts-Strogatz graphs are not searchable
- How do we make a searchable small-world graph?
- Intuition:
 - Our long range links are not random
 - They follow geography!

Saul Steinberg, “View of the World from 9th Avenue”
Variation of the Model

- **Model** [Kleinberg, Nature ‘01]
 - Nodes still on a grid
 - Node has one long range link
 - Prob. of long link to node \(v \):
 \[
P(u \rightarrow v) \sim d(u,v)^{-\alpha}
 \]
 - \(d(u,v) \) ... grid distance between \(u \) and \(v \)
 - \(\alpha \) ... parameter \(\geq 0 \)

\[P(u \rightarrow v) = \frac{d(u,v)^{-\alpha}}{\sum_{w \neq u} d(u,w)^{-\alpha}}\]
Kleinberg’s Model in 1-Dimension

We analyze 1-dim case:

- **Claim:** For $\alpha = 1$ we can get from s to t in $O(\log(n)^2)$ steps in expectation

- **Assume:** $d(v, t) = d$

- **Set interval:** $I = d$

- **We want to compute**

$$P \left(\begin{array}{l} \text{Long range link from } v \\ \text{points to a node in } I \end{array} \right) = O \left(\frac{1}{\ln n} \right)$$
Kleinberg’s Model in 1-D

- We need to calculate:

\[P(v \rightarrow w) = \frac{d(v, w)^{-1}}{\sum_{u \neq v} d(v, u)^{-1}} \]

- What is the normalizing const?

\[
\sum_{u \neq v} d(u, v)^{-1} = \sum_{\text{all possible distances } d} 2d^{-1} = 2 \sum_{d=1}^{n/2} \frac{1}{d} \leq 2 \ln n
\]

Note:

\[
\sum_{d=1}^{n/2} \frac{1}{d} \leq 1 + \int_{1}^{n/2} \frac{dx}{x} = 1 + \ln \left(\frac{n}{2} \right) = \ln n
\]
We need: $P(\nu\text{ points to } I) =

\begin{align*}
P(\nu\text{ points to } I) &= \sum_{w \in I} P(\nu \rightarrow w) \geq \sum_{w \in I} \frac{d(v, w)^{-1}}{2 \ln n} \\
&= \frac{1}{2 \ln n} \sum_{w \in I} \frac{1}{d(v, w)} \geq \frac{1}{2 \ln n} \cdot \frac{2}{3d} = \frac{1}{3 \ln n} \\
&= O\left(\frac{1}{\ln n}\right)
\end{align*}

What’s the smallest of these terms? All terms $\geq 2/(3d)$

Note: $d(v, x) = 3d/2$
Kleinberg’s Model in 1-D

- We have:
 - \(I \) ... interval of \(d/2 \) around \(t \) (where \(d = d(s, t) \))
 - \(P(\text{long link of } v \text{ points to } I) = 1/\ln(n) \)
 - In expected \# of steps \(\leq \ln(n) \) you get into \(I \), and thus you halve the distance to \(t \)
 - Distance can be halved at most \(\log_2(n) \) times, so expected time to reach \(t \):
 \[O(\ln(n) \cdot \log_2(n)) = O(\log(n)^2) \]
Kleinberg’s Model: Search Time

- We know:
 - $\alpha = 0$ (i.e., Watts-Strogatz): We need $O(\sqrt{n})$ steps
 - $\alpha = 1$: We need $O(\log(n)^2)$ steps
Intuition: Why Search Takes Long

Small α: too many long links

Big α: too many short links
Why Does It Work?

- How does the argument change for 2-d grid:
 - \(P(u \rightarrow v) > 1/Z \cdot \text{size}(I) \cdot \text{Prob on each node} \)
 \[
 \ln n \quad d^2 \quad d^{-2} \quad \Rightarrow \alpha = 2
 \]

- Why \(P(u \rightarrow v) \sim d(u,v)^{-\text{dim}} \) works?
 - Approx uniform over all “scales of resolution”
 - # points at distance \(d \) grows as \(d^{\text{dim}} \), prob. \(d^{-\text{dim}} \) of each edge
 \(\rightarrow \) const. prob. of a link, independent of \(d \)

Number of nodes is \(\propto d^2 \)
Prob. of linking each is \(\propto d^{-2} \)
- $h(u,v) = \text{tree-distance}$
 (height of the least common ancestor)
- $P(u \rightarrow v) \sim b^{-\alpha} h(u,v)$
- $P(u \rightarrow v)$ is approx. uniform at all scales of resolution!
- **How many nodes are at dist. h?**
 $(b-1) b^{h-1} \sim b^h$
 - So we need b^{-h} to cancel, as we wanted for distance independence
- **Start at s, want to go to t**
 - Only see out links of node you are at
 - But you have the knowledge of where t is in the tree
Different Model: Hierarchies

- **Nodes are in the leaves of a tree:**
 - Departments, topics, ...
- **Create** k **edges out of a node**
 - Create i-th ($i=1 \ldots k$) edge out of v by choosing $v \rightarrow w$ with prob. $\sim b^{-h(v,w)}$
- **Claim 1:**
 - For any **direct** subtree T', one of v’s links points to T'
- **Claim 2:**
 - Claim 1 guarantees efficient search
- **You will prove C1 & C2 in HW1!**
Different Model: Hierarchies

- **Extension:**
 - Multiple hierarchies – geography, profession, ...
 - Generate separate random graph in each hierarchy
 - Superimpose the graphs
- **Search algorithm:**
 - Choose a link that gets closest in any hierarchy
- **Q:** How to analyze the model?
- **Simulations:**
 - Search works for a range of alphas
 - Biggest range of searchable alphas for 2 or 3 hierarchies
 - Too many hierarchies hurts

Search Time

\(\alpha \)

[Watts-Dodds-Newman ‘02]
Search in P2P Networks
Algorithmic consequence of small-world:

How to find files in Peer-to-Peer networks?
Client – Server
P2P: Only Clients
Napster existed from June ‘99 and July ‘01

- Hybrid between P2P and a centralized network
- Once lawyers got the central server to shut down, the network fell apart
True P2P networks

- Networks that can’t be turned “off”
 - BitTorrent, ML-donkey, Kazaa, Gnutella
- Q: Find a file in a net with no central server?
- First attempt: Freenet
 - Random graph of peers who know each other
 - Query: Find a file with key x, $x \in [0,2^{64}]$
 - Algorithm:
 - If node has it, done
 - Forward query to node with a file having key y as close to x as possible: $\min_y |x - y|$
 - If can’t forward, then backtrack
 - Cut off after some # of steps
 - Copy the key x along the path (path compression)
- Did not really work well. Do you know why?
Protocol Chord

- Protocol Chord consistently maps key (filename) to a node:
 - **Keys** are files we are searching for
 - Computer that keeps the **key** can then point to the true location of the file
- **Keys and nodes have** m-bit IDs assigned to them:
 - Node ID is a hash-code of the IP address
 - Key ID is a hash-code of the file
Cycle with node ids 0 to 2^{m-1}

File (key) k is assigned to a node $a(k)$ with ID $\geq k$
Assume we have N nodes and K keys (files)

How many keys has each node?

When a node joins/leaves the system it only needs to talk to its immediate neighbors

- When node $N+1$ joins or leaves, then only $O(K/N)$ keys need to be rearranged

Each node knows the IP address of its immediate neighbor
If every node knows its immediate neighbor then use sequential search

Search time is $O(N)$
Faster Search:

- A node maintains a table of $m = \log(N)$ entries
- i-th entry of a node n contains the address of $(n+2^i)$-th neighbor

Problem: When a node joins we violate long range pointers of all other nodes
- Many papers about how to make this work

Search algorithm:

- Take the longest link that does not overshoot
 - With each step we **halve** the distance to the target!
i-th entry of N has the address of $(N+2^i)$-th node

$N8+1 = N14$
$N8+2 = N14$
$N8+4 = N14$
$N8+8 = N21$
$N8+16 = N32$
$N8+32 = N42$
Find Key with ID 54

N42 = N48
N42+2 = N48
N42+4 = N48
N42+8 = N51
N42+16 = N1
N42+32 = N8

N8+1 = N14
N8+2 = N14
N8+4 = N14
N8+8 = N21
N8+16 = N32
N8+32 = N42
How Long Does It Take to Find a Key?

- Search for a key in the network of N nodes visits $O(\log N)$ nodes
- Assume that node n queries for key k
- Let the key k reside at node t

How many steps do we need to reach t?
O(log N) Steps. Proof:

- We start the search at node \(n \)
- Let \(i \) be a number such that \(t \) is contained in interval \([n+2^{i-1}, n+2^i]\)
- Then the table at node \(n \) contains a pointer to node \(n+2^{i-1} \) – the smallest node \(f \) from the interval
- **Claim:** \(f \) is closer to \(t \) than \(n \)
- So, in one step we halved the distance to \(t \)
- We can do this at most \(\log_2 N \) times
- Thus, we find \(t \) in \(O(\log_2 N) \) steps
How the Class Fits Together

Observations
- Small diameter, Edge clustering
- Patterns of signed edge creation
- Viral Marketing, Blogosphere, Memetracking
- Scale-Free
- Densification power law, Shrinking diameters
- Strength of weak ties, Core-periphery

Models
- Erdös-Renyi model, Small-world model
- Structural balance, Theory of status
- Independent cascade model, Game theoretic model
- Preferential attachment, Copying model
- Microscopic model of evolving networks
- Kronecker Graphs

Algorithms
- Decentralized search
- Models for predicting edge signs
- Influence maximization, Outbreak detection, LIM
- PageRank, Hubs and authorities
- Link prediction, Supervised random walks
- Community detection: Girvan-Newman, Modularity
Empirical Studies of Navigation in Small-World Networks
Small-World in HP Labs

- **Adamic-Adar 2005:**
 - HP Labs email logs (436 people)
 - Link if u,v exchanged >5 emails each way
 - Map of the organization hierarchy
 - How many edges cross groups?
 - Finding: $P(u \rightarrow v) \sim 1 / (\text{social distance})^{3/4}$

- **Differences from the hierarchical model:**
 - Data has weighted edges
 - Data has people on non-leaf nodes
 - Data not b-ary or uniform depth
Generalized hierar. model:

- Arbitrary tree defines “groups” = rooted subtrees
- \(P(u \rightarrow v) \sim 1 / (\text{size of the smallest group containing } u, v) \)

Search strategies using degree, hierarchy, geo distance between the cubicles

Prob. of link vs. distance in the hierarchy
Liben-Nowell et al. ’05:

- LiveJournal data
 - Blogers + zip codes
- Link prob.: \(P(u,v) = \delta^{-\alpha} \)
- \(\alpha = ? \)

- Problem:
 - Non-uniform population density
- Solution: Rank based friendship

Link length in a network of bloggers (0.5 million bloggers, 4 million links)
Improved Model

\[P(u \rightarrow v) = rank_u(v)^{-\alpha} \]

- What is best \(\alpha \)?
 - For equally spaced pairs: \(\alpha = \text{dim. of the space} \)
 - In this special case \(\alpha = 1 \) is best for search

\[rank_u(v) = |\{w : d(u, w) < d(u, v)\}| \]
Rank Based Friendships

- Close to theoretical optimum of $\alpha = -1$

The difference between the East and West coast disappears!
Decentralized search in a LiveJournal network

- 12% searches finish, average 4.12 hops
Q: Why do searchable networks arise?

- Why is rank exponent close to -1?
 - Why in any network? Why online?
 - How robust/reproducible?
- Mechanisms that get \(\alpha = 1 \) purely through local “rearrangements” of links
- **Conjecture** [Sandbeng-Clark 2007]:
 - Nodes on a ring with random edges
 - Process of morphing links:
 - **Update step**: Randomly choose \(s, t \), run decentr. search alg.
 - **Path compression**: each node on path updates long range link to go directly to \(t \) with some small prob.
 - **Conjecture from simulation**: \(P(u \rightarrow v) \sim \text{dist}^{-1} \)