Basic Network Properties and the Random Graph Model
Announcement: Recitations

- **Intro sessions to SNAP C++ and SNAP.PY:**
 - **SNAP.PY:** Friday 9/27, 4:15-5:30pm in Gates B03
 - **SNAP C++:** Thursday 10/3, 4:15-5:30pm in Gates B03
 - **Sessions will be recorded and available via SCPD**

- **About the software libraries:**
 - TAs support SNAP C++ (Justin, Bell), SNAP.PY (Christie, Yoni)
 - You can use other libraries: NetworkX, JUNG, Boost, R
 - They will do the job but we don’t offer support for them
 - Start early on HW0 since these packages are new to you, complex and non-trivial to use!

- **Review of:**
 - **Probability:** Friday, 10/4, 4:15-5:30pm in Gates B03
 - **Linear algebra:** Tuesday, 10/8, 2:15-3:30pm, Gates B03
How the Class Fits Together

Observations
- Small diameter, Edge clustering
- Patterns of signed edge creation
- Viral Marketing, Blogosphere, Memetracking
- Scale-Free
- Densification power law, Shrinking diameters
- Strength of weak ties, Core-periphery

Models
- Erdös-Renyi model, Small-world model
- Structural balance, Theory of status
- Independent cascade model, Game theoretic model
- Preferential attachment, Copying model
- Microscopic model of evolving networks
- Kronecker Graphs

Algorithms
- Decentralized search
- Models for predicting edge signs
- Influence maximization, Outbreak detection, LIM
- PageRank, Hubs and authorities
- Link prediction, Supervised random walks
- Community detection: Girvan-Newman, Modularity
For example, last time we talked about Observations and Models for the Web graph:

- 1) We took a real system: the Web
- 2) We represented it as a directed graph
- 3) We used the language of graph theory
 - Strongly Connected Components
- 4) We designed a computational experiment:
 - Find In- and Out-components of a given node v
- 5) We learned something about the structure of the Web: BOWTIE!
Undirected vs. Directed Networks

Undirected graphs
- **Links:** undirected (symmetrical, reciprocal relations)
- **Undirected links:**
 - Collaborations
 - Friendship on Facebook

Directed graphs
- **Links:** directed (asymmetrical relations)
- **Directed links:**
 - Phone calls
 - Following on Twitter
Adjacency Matrix

\[A_{ij} = 1 \] if there is a link from node \(i \) to node \(j \)

\[A_{ij} = 0 \] otherwise

\[
A = \begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{pmatrix}
\]

Note that for a directed graph (right) the matrix is not symmetric.
Node degree, k_i: the number of edges adjacent to node i

$$k_A = 4$$

Avg. degree: $\bar{k} = \langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2E}{N}$

In directed networks we define an in-degree and out-degree.

The (total) degree of a node is the sum of in- and out-degrees.

$$k_{C}^{\text{in}} = 2 \quad k_{C}^{\text{out}} = 1 \quad k_C = 3$$

Source: node with $k^{\text{in}} = 0$

Sink: node with $k^{\text{out}} = 0$

$$\bar{k} = \frac{E}{N} \quad \overline{k^{\text{in}}} = \overline{k^{\text{out}}}$$
The maximum number of edges in an undirected graph on N nodes is

$$E_{\text{max}} = \binom{N}{2} = \frac{N(N-1)}{2}$$

A graph with the number of edges $E = E_{\text{max}}$ is a complete graph, and its average degree is $N-1$.
Most real-world networks are sparse:

\[E \ll E_{\text{max}} \quad \text{(or} \quad k \ll N-1) \]

- WWW (Stanford-Berkeley): \(N=319,717 \), \(\langle k \rangle=9.65 \)
- Social networks (LinkedIn): \(N=6,946,668 \), \(\langle k \rangle=8.87 \)
- Communication (MSN IM): \(N=242,720,596 \), \(\langle k \rangle=11.1 \)
- Coauthorships (DBLP): \(N=317,080 \), \(\langle k \rangle=6.62 \)
- Internet (AS-Skitter): \(N=1,719,037 \), \(\langle k \rangle=14.91 \)
- Roads (California): \(N=1,957,027 \), \(\langle k \rangle=2.82 \)
- Proteins (S. Cerevisiae): \(N=1,870 \), \(\langle k \rangle=2.39 \)

(Source: Leskovec et al., *Internet Mathematics*, 2009)

Consequence: Adjacency matrix is filled with zeros!

(Density of the matrix \(E/N^2 \): WWW = \(1.51 \times 10^{-5} \), MSN IM = \(2.27 \times 10^{-8} \))
More Types of Graphs:

- **Unweighted** (undirected)
 - $A_{ij} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$
 - $A_{ii} = 0$, $A_{ij} = A_{ji}$
 - $E = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij}$
 - $\bar{k} = \frac{2E}{N}$

 Examples: Friendship, Hyperlink

- **Weighted** (undirected)
 - $A_{ij} = \begin{pmatrix} 0 & 0.5 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix}$
 - $A_{ii} = 0$, $A_{ij} = A_{ji}$
 - $E = \frac{1}{2} \sum_{i,j=1}^{N} \text{nonzero}(A_{ij})$
 - $\bar{k} = \frac{2E}{N}$

 Examples: Collaboration, Internet, Roads
More Types of Graphs:

- **Self-edges (self-loops)**
 (undirected)

 ![Self-edges Graph]

 \[
 A_{ij} = \begin{pmatrix}
 1 & 1 & 1 & 0 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 0 & 0 \\
 0 & 1 & 0 & 1
 \end{pmatrix}
 \]

 \[
 A_{ii} \neq 0 \\
 E = \frac{1}{2} \sum_{i,j=1, i\neq j} A_{ij} + \sum_{i=1}^{N} A_{ii}
 \]

 Examples: Proteins, Hyperlink

- **Multigraph**
 (undirected)

 ![Multigraph Graph]

 \[
 A_{ij} = \begin{pmatrix}
 0 & 2 & 1 & 0 \\
 2 & 0 & 1 & 3 \\
 1 & 1 & 0 & 0 \\
 0 & 3 & 0 & 0
 \end{pmatrix}
 \]

 \[
 A_{ii} = 0 \\
 E = \frac{1}{2} \sum_{i,j=1}^{N} \text{nonzero}(A_{ij})
 \]

 \[
 \bar{k} = \frac{2E}{N}
 \]

 Examples: Communication, Collaboration
Network Representations

WWW >> directed multigraph with self-edges

Facebook friendships >> undirected, unweighted

Citation networks >> unweighted, directed, acyclic

Collaboration networks >> undirected multigraph or weighted graph

Mobile phone calls >> directed, (weighted?) multigraph

Protein Interactions >> undirected, unweighted with self-interactions
Bipartite Graph

- **Bipartite graph** is a graph whose nodes can be divided into two disjoint sets \(U \) and \(V \) such that every link connects a node in \(U \) to one in \(V \); that is, \(U \) and \(V \) are independent sets.

- **Examples:**
 - Authors-to-papers (they authored)
 - Actors-to-Movies (they appeared in)
 - Users-to-Movies (they rated)

- **“Folded” networks:**
 - Author collaboration networks
 - Movie co-rating networks

Folded version of the graph above
Network Properties: How to Characterize/Measure a Network?
Degree Distribution

- **Degree distribution** $P(k)$: Probability that a randomly chosen node has degree k
 \[N_k = \# \text{ nodes with degree } k \]

- Normalized histogram:
 \[P(k) = \frac{N_k}{N} \quad \Rightarrow \quad \text{plot} \]

\[k \]
\[N_k \]

9/25/2013
Paths in a Graph

- A **path** is a sequence of nodes in which each node is linked to the next one

\[P_n = \{i_0, i_1, i_2, \ldots, i_n\} \quad P_n = \{ (i_0, i_1), (i_1, i_2), (i_2, i_3), \ldots, (i_{n-1}, i_n) \} \]

- Path can intersect itself and pass through the same edge multiple times
 - E.g.: ACBDCDEG
 - In a directed graph a path can only follow the direction of the “arrow”
Number of paths between nodes u and v:

- **Length $h=1$:** If there is a link between u and v, $A_{uv}=1$ else $A_{uv}=0$

- **Length $h=2$:** If there is a path of length two between u and v then $A_{uk}A_{kv}=1$ else $A_{uk}A_{kv}=0$

\[
H_{uv}^{(2)} = \sum_{k=1}^{N} A_{uk} A_{kv} = [A^2]_{uv}
\]

- **Length h:** If there is a path of length h between u and v then $A_{uk} \ldots A_{kv}=1$ else $A_{uk} \ldots A_{kv}=0$

So, the no. of paths of length h between u and v is

\[
H_{uv}^{(h)} = [A^h]_{uv}
\]

(holds for both directed and undirected graphs)
Distance in a Graph

- **Distance (shortest path, geodesic)** between a pair of nodes is defined as the number of edges along the shortest path connecting the nodes.
 - *If the two nodes are disconnected, the distance is usually defined as infinite.*

- **In directed graphs** paths need to follow the direction of the arrows.
 - **Consequence:** Distance is not symmetric: \(h_{A,C} \neq h_{C,A} \)

\[
\begin{align*}
h_{B,D} &= 2 \\
h_{B,C} &= 1, \ h_{C,B} = 2
\end{align*}
\]
Network Diameter

- **Diameter**: the maximum (shortest path) distance between any pair of nodes in a graph

- **Average path length** for a connected graph (component) or a strongly connected (component of a) directed graph

\[
\bar{h} = \frac{1}{2E_{\text{max}}} \sum_{i,j \neq i} h_{ij}
\]

where \(h_{ij} \) is the distance from node \(i \) to node \(j \)

- Many times we compute the average only over the connected pairs of nodes (we ignore “infinite” length paths)
Breath-First Search:
- Start with node u, mark it to be at distance $h_u(u)=0$, add u to the queue
- While the queue not empty:
 - Take node v off the queue, put its unmarked neighbors w into the queue and mark $h_u(w)=h_u(v)+1$
Clustering Coefficient

- **Clustering coefficient:**
 - What portion of i’s neighbors are connected?
 - Node i with degree k_i
 - $C_i \in [0,1]$
 - $C_i = \frac{2e_i}{k_i(k_i - 1)}$

- Average Clustering Coefficient: $C = \frac{1}{N} \sum_{i} C_i$
Clustering Coefficient

- **Clustering coefficient:**
 - What portion of i’s neighbors are connected?
 - Node i with degree k_i

\[
C_i = \frac{2e_i}{k_i(k_i-1)}
\]

where e_i is the number of edges between the neighbors of node i

```
\begin{align*}
  &k_B=2, \quad e_B=1, \quad C_B=2/2 = 1 \\
  &k_D=4, \quad e_D=2, \quad C_D=4/12 = 1/3
\end{align*}
```
Key Network Properties

Degree distribution: \(P(k) \)

Path length: \(h \)

Clustering coefficient: \(C \)
Let’s measure $P(k)$, h and C on a real-world network!
The MSN Messenger

- **MSN Messenger activity in June 2006:**
 - 150Gb/day (compressed)
 - 4.5Tb / month
 - 245 million users logged in
 - 180 million users engaged in conversations
 - More than 30 billion conversations
 - More than 255 billion exchanged messages
Communication: Geography
Network: 180M people, 1.3B edges
Communication graph
- Edge \((u,v)\) if users \(u\) and \(v\) exchanged at least 1 msg
- \(N=180\) million people
- \(E=1.3\) billion edges
MSN Network: Connectivity

![Graph showing connectivity distribution]

- **Count** vs. **Weakly connected component size**
- **largest component** (99.9% of the nodes)
MSN: Degree Distribution

Count, $P(k)^*n$

Degree, k

- $3.5e+007$
- $3e+007$
- $2.5e+007$
- $2e+007$
- $1.5e+007$
- $1e+007$
- $5e+006$
- 0

- 0
- 2000
- 4000
- 6000
- 8000
- 10000
We plot the same data as on the previous slide, just the axes are now logarithmic.
MSN: Clustering

Avg. clustering of the MSN: \(C = 0.1140 \)

\[C_k: \text{average } C_i \text{ of nodes } i \text{ of degree } k: \quad C_k = \frac{1}{N_k} \sum_{i:k_i=k} C_i \]
MSN: Diameter

Avg. path length **6.6**
90% of the people can be reached in < 8 hops

<table>
<thead>
<tr>
<th>Steps</th>
<th>#Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>3,96</td>
</tr>
<tr>
<td>4</td>
<td>8,648</td>
</tr>
<tr>
<td>5</td>
<td>3,299,252</td>
</tr>
<tr>
<td>6</td>
<td>28,395,849</td>
</tr>
<tr>
<td>7</td>
<td>79,059,497</td>
</tr>
<tr>
<td>8</td>
<td>52,995,778</td>
</tr>
<tr>
<td>9</td>
<td>10,321,008</td>
</tr>
<tr>
<td>10</td>
<td>1,955,007</td>
</tr>
<tr>
<td>11</td>
<td>518,410</td>
</tr>
<tr>
<td>12</td>
<td>149,945</td>
</tr>
<tr>
<td>13</td>
<td>44,616</td>
</tr>
<tr>
<td>14</td>
<td>13,740</td>
</tr>
<tr>
<td>15</td>
<td>4,476</td>
</tr>
<tr>
<td>16</td>
<td>1,542</td>
</tr>
<tr>
<td>17</td>
<td>536</td>
</tr>
<tr>
<td>18</td>
<td>167</td>
</tr>
<tr>
<td>19</td>
<td>71</td>
</tr>
<tr>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
</tr>
</tbody>
</table>

Number of links between pairs of nodes

Degree distribution: heavily skewed
avg. degree = 14.4

Path length: 6.6

Clustering coefficient: 0.11

Are these metrics “expected”? Are they “surprising”? To answer this we need a null-model!
Is MSN Network like a “chain”?

- \(P(k) = \delta(k-4) \quad k_i = 4 \) for all nodes
- \(C = \frac{1}{2} \)
- Path length: \(h_{\text{max}} = \left\lceil \frac{N-1}{2} \right\rceil = O(N) \)
 - The average shortest path-length: \(\bar{h} = O(N) \)

- So, we have: Constant degree, Constant avg. clustering coeff. Linear avg. path-length

Note about calculations:
We are interested in quantities as graphs get large (\(N \to \infty \))
We will use big-O:
\(f(x) = O(g(x)) \) as \(x \to \infty \)
if \(f(x) < g(x)c \) for all \(x > x_0 \) and some constant \(c \).
Is MSN Network like a “grid”?

- $P(k) = \delta(k-6)$
 - $k = 6$ for each inside node
- $C = \frac{6}{15}$ for inside nodes
- **Path length:**

 $$h_{\text{max}} = O(\sqrt{N})$$

- **In general, for lattices:**

 - Average path-length is $\bar{h} \approx N^{1/D}$ (D... lattice dimensionality)
 - Constant degree, constant clustering coefficient
Erdös-Renyi
Random Graph Model
Simplest Model of Graphs

- **Erdös-Renyi Random Graphs** [Erdös-Renyi, ‘60]
- **Two variants:**
 - $G_{n,p}$: undirected graph on n nodes and each edge (u,v) appears i.i.d. with probability p
 - $G_{n,m}$: undirected graph with n nodes, and m uniformly at random picked edges

What kinds of networks does such model produce?
Random Graph Model

- \(n \) and \(p \) do not uniquely determine the graph!
 - The graph is a result of a random process
- We can have many different realizations given the same \(n \) and \(p \)

\[
\begin{align*}
\text{\(n = 10 \)} & \quad \text{\(p = 1/6 \)}
\end{align*}
\]
Random Graph Model: Edges

- How likely is a graph on E edges?
- $P(E)$: the probability that a given G_{np} generates a graph on exactly E edges:

$$P(E) = \binom{E_{\text{max}}}{E} p^E (1 - p)^{E_{\text{max}} - E}$$

where $E_{\text{max}} = n(n-1)/2$ is the maximum possible number of edges in an undirected graph of n nodes

$P(E)$ is exactly the **Binomial distribution** >>>>
Number of successes in a sequence of n independent yes/no experiments
Node Degrees in a Random Graph

- **What is expected degree of a node?**
 - Let \(X_v \) be a rnd. var. measuring the degree of node \(v \)
 - **We want to know:**
 \[
 E[X_v] = \sum_{j=0}^{n-1} j \cdot P(X_v = j)
 \]
 - For the calculation we will need: Linearity of expectation
 - For any random variables \(Y_1, Y_2, ..., Y_k \)
 - If \(Y = Y_1 + Y_2 + ... + Y_k \), then \(E[Y] = \sum_i E[Y_i] \)

- **An easier way:**
 - Decompose \(X_v \) to \(X_v = X_{v,1} + X_{v,2} + ... + X_{v,n-1} \)
 - where \(X_{v,u} \) is a \(\{0,1\} \)-random variable which tells if edge \((v,u)\) exists or not
 \[
 E[X_v] = \sum_{u=1}^{n-1} E[X_{vu}] = (n - 1)p
 \]

How to think about this?
- Prob. of node \(u \) linking to node \(v \) is \(p \)
- \(u \) can link (flips a coin) to all other \((n-1)\) nodes
- Thus, the expected degree of node \(u \) is: \(p(n-1) \)
Properties of G_{np}

Degree distribution: $P(k)$

Path length: h

Clustering coefficient: C

What are values of these properties for G_{np}?
Fact: *Degree distribution of G_{np} is Binomial.*

Let $P(k)$ denote a fraction of nodes with degree k:

$$P(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$

- **Select k nodes out of $n-1$**
- **Probability of having k edges**
- **Probability of missing the rest of the $n-1-k$ edges**

Mean, variance of a binomial distribution

$$\overline{k} = p(n-1)$$

$$\sigma^2 = p(1-p)(n-1)$$

As the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of \overline{k}.

$$\frac{\sigma}{\overline{k}} = \left[\frac{1-p}{p} \right]^{1/2} \approx \frac{1}{(n-1)^{1/2}}$$
Clustering Coefficient of G_{np}

- **Remember:** $C_i = \frac{2e_i}{k_i(k_i - 1)}$

- **Edges in** G_{np} **appear i.i.d with prob.** p

- **So:** $e_i = p \frac{k_i(k_i - 1)}{2}$

- **Then:** $C = \frac{p \cdot k_i(k_i - 1)}{k_i(k_i - 1)} = p = \frac{\bar{k}}{N}$

 Clustering coefficient of a random graph is small.
 For a fixed avg. degree, C decreases with the graph size N.

Where e_i is the number of edges between i’s neighbors.

Each pair is connected with prob. p.

Number of distinct pairs of neighbors of node i of degree k_i.

9/25/2013
Network Properties of G_{np}

Degree distribution: \[P(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k} \]

Clustering coefficient: \[C = p = \bar{k}/n \]

Path length: \[\text{next!} \]
To prove the diameter of a G_{np} we define few concepts

Random k-Regular graph:

- Assume each node has k spokes (half-edges)
 - $k=1$:
 - $k=2$:
 - $k=3$:

- Randomly pair them up!

Graph is a set of pairs
Graph is a set of cycles
Arbitrarily complicated graphs
Def: Expansion

- Graph $G(V, E)$ has **expansion** α: if $\forall S \subseteq V$:

 $\# \text{ of edges leaving } S \geq \alpha \cdot \min(|S|, |V \setminus S|)$

- Or equivalently:

 $$\alpha = \min_{S \subseteq V} \frac{\# \text{ edges leaving } S}{\min(|S|, |V \setminus S|)}$$
Expansion: Intuition

\[\alpha = \min_{S \subseteq V} \frac{\#\text{edges leaving } S}{\min(|S|, |V \setminus S|)} \]

(A big) graph with “good” expansion
Expansion: Measures Robustness

- Expansion is **measure of robustness:**
 - To disconnect \(l \) nodes, we need to cut \(\geq \alpha \cdot l \) edges
- **Low expansion:**
- **High expansion:**
- **Social networks:**
 - “Communities”

\[
\alpha = \min_{S \subseteq V} \frac{\# \text{edges leaving } S}{\min(|S|, |V \setminus S|)}
\]
Expansion: k-Regular Graphs

- **k-regular graph** (every node has degree k):
 - Expansion is at most k (when S is a single node)

- Is there a graph on n nodes ($n \to \infty$), of fixed max deg. k, so that expansion α remains const?

Examples:

- **n×n grid:** $k=4$: $\alpha = 2n/(n^2/4) \to 0$
 ($S=n/2 \times n/2$ square in the center)

- **Complete binary tree:**
 $\alpha \to 0$ for $|S|=(n/2)-1$

- **Fact:** For a random 3-regular graph on n nodes, there is some const α ($\alpha > 0$, independent of n) such that w.h.p. the expansion of the graph is $\geq \alpha$
Fact: In a graph on n nodes with expansion α for all pairs of nodes s and t there is a path of $O((\log n) / \alpha)$ edges connecting them.

Proof:

- Proof strategy:
 - We want to show that from any node s there is a path of length $O((\log n)/\alpha)$ to any other node t
 - Let S_j be a set of all nodes found within j steps of BFS from s.

How does S_j increase as a function of j?
Proof (continued):

- Let S_j be a set of all nodes found within j steps of BFS from s.
- We want to relate S_j and S_{j+1}

\[
|S_{j+1}| \geq |S_j| + \frac{\alpha |S_j|}{k} =
\]

At most k edges "collide" at a node

\[
|S_{j+1}| \geq |S_j| \left(1 + \frac{\alpha}{k}\right) = \left(1 + \frac{\alpha}{k}\right)^{j+1}
\]

Each of degree k
Proof (continued):

- In how many steps of BFS we reach \(>n/2 \) nodes?
- Need \(j \) so that: \(S_j = \left(1 + \frac{\alpha}{k}\right)^j \geq \frac{n}{2} \)
- Let’s set: \(j = \frac{k \log_2 n}{\alpha} \)
- Then:
 \[\left(1 + \frac{\alpha}{k}\right)^{\frac{k \log_2 n}{\alpha}} \geq 2^{\log_2 n} = n > \frac{n}{2} \]
- In \(2k/\alpha \cdot \log n \) steps \(|S_j| \) grows to \(\Theta(n) \).
 So, the diameter of \(G \) is \(O(\log(n)/\alpha) \)
Network Properties of G_{np}

Degree distribution:

\[P(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k} \]

Path length:

\[O(\log n) \]

Clustering coefficient:

\[C = p = \bar{k} / n \]
Degree distribution:
Path length: 6.6
Clustering coefficient: 0.11

$O(\log n)$
$h \approx 8.2$
\bar{k} / n
$C \approx 8 \cdot 10^{-8}$
Real Networks vs. G_{np}

- **Are real networks like random graphs?**
 - Giant connected component: ☺
 - Average path length: ☺
 - Clustering Coefficient: ☹
 - Degree Distribution: ☹

- **Problems with the random network model:**
 - Degree distribution differs from that of real networks
 - Giant component in most real network does NOT emerge through a phase transition
 - No local structure – clustering coefficient is too low

- **Most important: Are real networks random?**
 - The answer is simply: NO!
Real Networks vs. G_{np}

- If G_{np} is wrong, why did we spend time on it?
 - It is the reference model for the rest of the class.
 - It will help us calculate many quantities, that can then be compared to the real data.
 - It will help us understand to what degree is a particular property the result of some random process.

So, while G_{np} is WRONG, it will turn out to be extremely USEFUL!
EXTRA: “Evolution” of the G_{np}

What happens to G_{np} when we vary p?
Back to Node Degrees of G_{np}

- Remember, expected degree $E[X_v] = (n-1)p$
- We want $E[X_v]$ be independent of n
 So let: $p = c/(n-1)$
- Observation: If we build random graph G_{np} with $p = c/(n-1)$ we have many isolated nodes
- Why?

$$P[v \text{ has degree } 0] = (1 - p)^{n-1} = \left(1 - \frac{c}{n-1}\right)^{n-1} \xrightarrow{n \to \infty} e^{-c}$$

$$\lim_{n \to \infty} \left(1 - \frac{c}{n-1}\right)^{n-1} = \left(1 - \frac{1}{x}\right)^{-c} = \left[\lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^{-x}\right]^{-c} = e^{-c}$$

Use substitution $\frac{1}{x} = \frac{c}{n-1}$

By definition:
$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$$
No Isolated Nodes

- How big do we have to make p before we are likely to have no isolated nodes?
- We know: $P[v \text{ has degree 0}] = e^{-c}$
- Event we are asking about is:
 - $I = \text{some node is isolated}$
 - $I = \bigcup_{v \in N} I_v$ where I_v is the event that v is isolated

- We have:
 $$P(I) = P\left(\bigcup_{v \in N} I_v\right) \leq \sum_{v \in N} P(I_v) = ne^{-c}$$
We just learned: \(P(I) = n \ e^{-c} \)

Let’s try:

- \(c = \ln n \) then: \(n \ e^{-c} = n \ e^{-\ln n} = n \cdot 1/n = 1 \)
- \(c = 2 \ln n \) then: \(n \ e^{-2 \ln n} = n \cdot 1/n^2 = 1/n \)

So if:

- \(p = \ln n \) then: \(P(I) = 1 \)
- \(p = 2 \ln n \) then: \(P(I) = 1/n \to 0 \) as \(n \to \infty \)
"Evolution" of a Random Graph

- **Graph structure of** G_{np} **as** p **changes:**

 - **Emergence of a Giant Component:**
 - avg. degree $k=2E/n$ or $p=k/(n-1)$
 - $k=1-\epsilon$: all components are of size $\Omega(\log n)$
 - $k=1+\epsilon$: 1 component of size $\Omega(n)$, others have size $\Omega(\log n)$
G_{np} Simulation Experiment

- G_{np}, $n=100k$, $p(n-1) = 0.5 \ldots 3$

Fraction of nodes in the largest component