What do the following things have in common?
World economy
Human cell
Railroads
Internet
Friends & Family
Society
The Network!
Behind each such system there is an intricate wiring diagram, a network, that defines the interactions between the components.

We will never understand these systems unless we understand the networks behind them!
Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
Graph of the Internet (Autonomous Systems)

Power-law degrees [Faloutsos-Faloutsos-Faloutsos, 1999]
Robustness [Doyle-Willinger, 2005]
Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
Seven Bridges of Königsberg

[Euler, 1735]

Return to the starting point by traveling each link of the graph once and only once.
Networks: Information

Citation networks and Maps of science
[Börner et al., 2012]
Networks: Knowledge

Understand how humans navigate Wikipedia

Get an idea of how people connect concepts

[West-Leskovec, 2012]
Networks: Organizations

9/11 terrorist network
[Krebs, 2002]
Networks: Economy

Bio-tech companies

[Powell-White-Koput, 2002]
Human brain has between 10-100 billion neurons

[Sporns, 2011]
Networks: Biology

Protein-Protein Interaction Networks:
 Nodes: Proteins
 Edges: ‘physical’ interactions

Metabolic networks:
 Nodes: Metabolites and enzymes
 Edges: Chemical reactions
But Jure, why should I care about networks?
Why Networks? Why Now?

- **Universal language for describing complex data**
 - Networks from science, nature, and technology are more similar than one would expect

- **Shared vocabulary between fields**
 - Computer Science, Social science, Physics, Economics, Statistics, Biology

- **Data availability (computational challenges)**
 - Web/mobile, bio, health, and medical

- **Impact!**
 - Social networking, Social media, Drug design
Networks: Why Now?

Age and size of networks

-10^9 years -10^8 years -10^7 years -10^6 years -10^5 years -10^4 years -10^3 years -10^2 years -10^1 years 10^0 years

10^9 nodes
10^8 nodes
10^7 nodes
10^6 nodes
10^5 nodes
10^4 nodes
10^3 nodes
10^2 nodes
10^1 nodes
10^0 nodes

SOCIAL NETWORK

WWW
SOCIAL NETWORK SITES

POWER GRID
INTERNET
Networks: Size Matters

- **Network data: Orders of magnitude**
 - 436-node network of email exchange at a corporate research lab [Adamic-Adar, SocNets ‘03]
 - 43,553-node network of email exchange at an university [Kossinets-Watts, Science ‘06]
 - 4.4-million-node network of declared friendships on a blogging community [Liben-Nowell et al., PNAS ‘05]
 - 240-million-node network of communication on Microsoft Messenger [Leskovec-Horvitz, WWW ‘08]
 - 800-million-node Facebook network [Backstrom et al. ‘11]
The Web is our “laboratory” for understanding the pulse of humanity.
Networks: Impact

- **Google**
 Market cap: $300 billion
 (1y ago it was 250b)

- **Cisco**
 Market cap: $130 billion
 (1y ago it was 100b)

- **Facebook**
 Market cap: $114 billion
 (1y ago it was 50b)
Networks: Online

- **Communication networks:**
 - Intrusion detection, fraud
 - Churn prediction

- **Social networks:**
 - Link prediction, friend recommendation
 - Social circle detection, community detection
 - Social recommendations
 - Identifying influential nodes, Viral marketing

- **Information networks:**
 - Navigational aids
Networks: Impact

- Intelligence and fighting (cyber) terrorism
Networks: Impact

- Predicting epidemics

Real

Predicted
If you were to understand the spread of diseases, can you do it without social networks?

If you were to understand the structure of the Web, it is hopeless without working with the Web’s topology.

If you want to understand dissemination of news or evolution of science, it is hopeless without considering the information networks.
About the course
Reasoning about Networks

- What do we hope to achieve from studying networks?
 - Patterns and statistical properties of network data
 - Design principles and models
 - Understand why networks are organized the way they are
 - Predict behavior of networked systems
How do we reason about networks?

- **Empirical**: Study network data to find organizational principles
 - How do we measure and quantify networks?

- **Mathematical models**: Graph theory, statistical models
 - Models allow us to understand behaviors and distinguish surprising from expected phenomena

- **Algorithms** for analyzing graphs
 - Hard computational challenges
What do we study in networks?

- **Structure and evolution:**
 - What is the structure of a network?
 - Why and how did it become to have such structure?

- **Processes and dynamics:**
 - Networks provide “skeleton” for spreading of information, behavior, diseases
 - How do information and diseases spread?
Observations

- Small diameter, Edge clustering
- Scale-free
- Strength of weak ties, Core-periphery
- Densification power law, Shrinking diameters
- Patterns of signed edge creation
- Viral Marketing, Blogosphere, Memetracking

Models

- Small-world model, Erdös-Renyi model
- Preferential attachment, Copying model
- Kronecker Graphs
- Microscopic model of evolving networks
- Structural balance, Theory of status
- Independent cascade model, Game theoretic model

Algorithms

- Decentralized search
- PageRank, Hubs and authorities
- Community detection: Girvan-Newman, Modularity
- Link prediction, Supervised random walks
- Models for predicting edge signs
- Influence maximization, Outbreak detection, LIM
Logistics: Course Assistants

Justin Cheng (head TA) Christie Brandt Peter Lofgren Ashley Jin

Yoni Donner Ashwin Apte Zhemin Li Bell Wang

See course website for office hour schedule!
Logistics: Website

- http://cs224w.stanford.edu
 - Slides posted just before the class
- **Readings:**
 - Mostly chapters from Easley & Kleinberg
 - Papers
- **Optional readings:**
 - Papers and pointers to additional literature
 - This will be very useful for project proposals
Piazza Q&A website:
- http://piazza.com/stanford/fall2013/cs224w
- Please participate and help each other. Don’t wait on TAs to wake up and reply!

For e-mailing course staff, always use:
- cs224w-aut1314-staff@lists.stanford.edu

We will post course announcements to Piazza (make sure you check it regularly)
Homeworks, Write-ups

- Assignments are long and take time. Start early!
 - A combination of: Data analysis, Algorithm design, and Math

- How to submit?
 - Paper (Print code!): In class and in cabinet in Gates
 - SCPD: Submit via SCPD
 - Everyone: Code and write-ups (proposal, milestone, final report) have to also be uploaded electronically at http://snap.stanford.edu/submit/

- 2 late periods for the quarter:
 - 1 late period expires at the start of next class
 - Max 1 late period per assignment
Substantial course project:

- Experimental evaluation of algorithms and models on an interesting network dataset
- A theoretical project that considers a model, an algorithm and derives a rigorous result about it
- Develop scalable algorithms for massive graphs

Performed in groups of 3 students

Project is the main work for the class

- We will help with ideas, data and mentoring
- Start thinking about this now

Poster session with many external visitors
<table>
<thead>
<tr>
<th>Week</th>
<th>Assignment</th>
<th>Due on THU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Homework 0</td>
<td>October 3</td>
</tr>
<tr>
<td>3</td>
<td>Homework 1</td>
<td>October 10</td>
</tr>
<tr>
<td>4</td>
<td>Project proposal</td>
<td>October 17</td>
</tr>
<tr>
<td>5</td>
<td>Homework 2</td>
<td>October 24</td>
</tr>
<tr>
<td></td>
<td>Work on the project</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Homework 3</td>
<td>November 7</td>
</tr>
<tr>
<td>8</td>
<td>Project milestone</td>
<td>November 14</td>
</tr>
<tr>
<td></td>
<td>(no late days!)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Homework 4</td>
<td>November 21</td>
</tr>
<tr>
<td></td>
<td>Project report</td>
<td>December 10, midnight</td>
</tr>
<tr>
<td></td>
<td>(no late days!)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poster session</td>
<td>December 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-3pm</td>
</tr>
</tbody>
</table>
Final grade will be composed of:

- **Homeworks**: 48%
 - Homeworks 1, 2, 3, 4: 12% each
- **Substantial class project**: 50%
 - Proposal: 20%
 - Project milestone: 20%
 - Final report: 50%
 - Poster presentation: 10%
- **HW0, class+Piazza participation**: 2%
Prerequisites

- No single topic in the course is too hard by itself
- But we will cover and touch upon many topics and this is what makes the course hard
 - **Good background in:**
 - Algorithms and graph theory
 - Probability and Statistics
 - Linear algebra
 - **Programming:**
 - You should be able to write non-trivial programs
 - **4 recitation sessions:**
 - 2 to review programming tools (SNAP, SNAP.PY)
 - 2 to review basic mathematical concepts
Network Analysis Tools

- **We highly recommend SNAP:**
 - **SNAP C++:** more challenging but more scalable
 - **SNAP.PY:** Python ease of use, most of C++ scalability
 - We worked hard and just released SNAP.PY
 - **You (cs224w 2013 class) will help with the project!**
 - HW0 asks you to go over SNAP.PY tutorial and test functions, find bugs and help with documentation
 - This will benefit everyone in the class and beyond!
 - **We will give generous extra credit to students who will help us improve these tools!**

- Other tools include NetworkX, JUNG, iGraph
Starter Topic: Structure of the Web Graph
Network is a collection of objects where some pairs of objects are connected by links

What is the structure of the network?
Components of a Network

- **Objects**: nodes, vertices
- **Interactions**: links, edges
- **System**: network, graph

\[G(N,E) \]
Network often refers to real systems
- Web, Social network, Metabolic network

Language: Network, node, link

Graph is mathematical representation of a network
- Web graph, Social graph (a Facebook term)

Language: Graph, vertex, edge

We will try to make this distinction whenever it is appropriate, but in most cases we will use the two terms interchangeably.
Networks: Common Language

Actor 1
| Movie 1 |
Actor 2
| Movie 2 | Movie 3 |
Actor 4

Actor 3

Protein 1
| Protein 2 |
| Protein 5 |
| Protein 9 |

Peter
friend
Mary
co-worker

Tom
brothers
friend

|N| = 4
|E| = 4
Choice of the proper network representation determines our ability to use networks successfully:

- In some cases there is a unique, unambiguous representation
- In other cases, the representation is by no means unique
- The way you assign links will determine the nature of the question you can study
If you connect individuals that work with each other, you will explore a professional network.

If you connect those that have a sexual relationship, you will be exploring sexual networks.

If you connect scientific papers that cite each other, you will be studying the citation network.

If you connect all papers with the same word in the title, you will be exploring what? It is a network, nevertheless.
Undirected vs. Directed Networks

Undirected

- **Links**: undirected (symmetrical, reciprocal)

- **Examples**:
 - Collaborations
 - Friendship on Facebook

Directed

- **Links**: directed (arcs)

- **Examples**:
 - Phone calls
 - Following on Twitter
Connectivity of Graphs

- **Connected (undirected) graph:**
 - Any two vertices can be joined by a path
 - A disconnected graph is made up by two or more connected components

- **Bridge edge:** If we erase it, the graph becomes disconnected.
- **Articulation point:** If we erase it, the graph becomes disconnected.
Connectivity of Directed Graphs

- **Strongly connected directed graph**
 - has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)

- **Weakly connected directed graph**
 - is connected if we disregard the edge directions

Graph on the left is connected but not strongly connected (e.g., there is no way to get from F to G by following the edge directions).
Q: What does the Web “look like”?

Here is what we will do next:
- We will take a real system (i.e., the Web)
- We will collect lots of Web data
- We will represent the Web as a graph
- We will use language of graph theory to reason about the structure of the graph
- Do a computational experiment on the Web graph
- Learn something about the structure of the Web!
Q: What does the Web “look like” at a global level?

- Web as a graph:
 - Nodes = web pages
 - Edges = hyperlinks

- Side issue: What is a node?
 - Dynamic pages created on the fly
 - “dark matter” – inaccessible database generated pages
I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer Science Department at Stanford

Stanford University
In early days of the Web links were **navigational**

Today many links are **transactional**
The Web as a Directed Graph

- I'm a student at Univ. of X
- My song lyrics
- Classes
 - Networks
 - Networks class blog
 - Blog post about Company Z
 - Blog post about college rankings
 - I teach at Univ. of X
- Univ. of X
- I'm applying to college
 - USNews College Rankings
 - USNews Featured Colleges
Other Information Networks

Citations

References in an Encyclopedia
How is the Web linked?
What is the “map” of the Web?

Web as a **directed graph** [Broder et al. 2000]:
- Given node \(v \), what can \(v \) reach?
- What other nodes can reach \(v \)?

\[
\begin{align*}
\text{In}(v) &= \{ w \mid w \text{ can reach } v \} \\
\text{Out}(v) &= \{ w \mid v \text{ can reach } w \}
\end{align*}
\]

For example:
\[
\text{In}(A) = \{ A, B, C, E, G \} \\
\text{Out}(A) = \{ A, B, C, D, F \}
\]
Two types of directed graphs:

- **Strongly connected:**
 - Any node can reach any node via a directed path

 \[\text{In}(A) = \text{Out}(A) = \{A, B, C, D, E\} \]

- **DAG – Directed Acyclic Graph:**
 - Has no cycles: if \(u \) can reach \(v \), then \(v \) cannot reach \(u \)

Any directed graph can be expressed in terms of these two types!
Strongly Connected Component

- **Strongly connected component (SCC)** is a set of nodes S so that:
 - Every pair of nodes in S can reach each other
 - There is no larger set containing S with this property

![Diagram of strongly connected components](image)

Strongly connected components of the graph:

$\{A,B,C,G\}, \{D\}, \{E\}, \{F\}$
Fact: Every directed graph is a DAG on its SCCs

1. SCCs partitions the nodes of G
 - Each node is in exactly one SCC
2. If we build a graph G' whose nodes are SCCs, and with an edge between nodes of G' if there is an edge between corresponding SCCs in G, then G' is a DAG
Claim: SCCs partitions nodes of G.

- This means: Each node is member of exactly 1 SCC

Proof by contradiction:

- Suppose there exists a node v which is a member of 2 SCCs S and S'

 But then $S \cup S'$ is one large SCC!
 - Contradiction!
Claim: \(G' \) (graph of SCCs) is a DAG.

- This means: \(G' \) has no cycles

Proof by contradiction:

- Assume \(G' \) is not a DAG
- Then \(G' \) has a directed cycle
- Now all nodes on the cycle are mutually reachable, and all are part of the same SCC
- But then \(G' \) is not a graph of connections between SCCs (SCCs are defined as maximal sets)
- Contradiction!

Now \(\{A, B, C, G, E, F\} \) is a SCC!
Goal: Take a large snapshot of the Web and try to understand how its SCCs “fit together” as a DAG

Computational issue:

- Want to find a SCC containing node v?
- Observation:
 - $\text{Out}(v)$... nodes that can be reached from v
 - SCC containing v is: $\text{Out}(v) \cap \text{In}(v)$

$$= \text{Out}(v, G) \cap \text{Out}(v, \overline{G}),$$

where \overline{G} is G with all edge directions flipped.
Example:

- \(\text{Out}(A) = \{A, B, D, E, F, G, H\} \)
- \(\text{In}(A) = \{A, B, C, D, E\} \)
- So, \(\text{SCC}(A) = \text{Out}(A) \cap \text{In}(A) = \{A, B, D, E\} \)
Graph Structure of the Web

- **There is a single giant SCC**
- **There won’t be 2 giant SCCs**
- **Heuristic argument:**
 - It just takes 1 page from one SCC to link to the other SCC
 - If the 2 SCCs have millions of pages the likelihood of this not happening is very very small

![Diagram showing connections between Giant SCC1 and Giant SCC2](image-url)
Broder et al., 2000:
- Altavista crawl from October 1999
 - 203 million URLs
 - 1.5 billion links
- Computer: Server with 12GB of memory

Undirected version of the Web graph:
- 91% nodes in the largest weakly conn. component
- Are hubs making the web graph connected?
 - Even if they deleted links to pages with in-degree >10
 WCC was still ≈50% of the graph
Directed version of the Web graph:

- **Largest SCC:** 28% of the nodes (56 million)
- Taking a random node v
 - $\text{Out}(v) \approx 50\%$ (100 million)
 - $\text{In}(v) \approx 50\%$ (100 million)

What does this tell us about the conceptual picture of the Web graph?
Bow-tie Structure of the Web

203 million pages, 1.5 billion links [Broder et al. 2000]
What did we learn:
- Some conceptual organization of the Web (i.e., the bowtie)

What did we not learn:
- Treats all pages as equal
 - Google’s homepage == my homepage
- What are the most important pages
 - How many pages have k in-links as a function of k?
 The degree distribution: $\sim 1/k^2$
 - Link analysis ranking -- as done by search engines (PageRank)
- Internal structure inside giant SCC
 - Clusters, implicit communities?
- How far apart are nodes in the giant SCC:
 - Distance = # of edges in shortest path
 - Avg = 16 [Broder et al.]