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Basic Linear Algebra

Linear Function

A linear function M is a function from Rn to Rm that satisfies two
properties:

1 For all x , y ∈ R,

M(x + y) = M(x) + M(y)

2 For all x ∈ R and all a ∈ R

M(ax) = aM(x)

Every linear function can be represented by a matrix. Every
matrix is a linear function.
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Basic Linear Algebra

Matrices and Vectors

Matrix: A rectangular array of numbers, e.g., A ∈ Rm×n:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn


Vector: A matrix consisting of only one column (default) or
one row, e.g., x ∈ Rn

x =


x1
x2
...

xn
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Basic Linear Algebra

Transform Example

Let

M =

[
1 0.3
0 1

]
.

If we apply M to every point on the Mona Lisa, we get the
following:
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Basic Linear Algebra

Matrix Multiplication

If A ∈ Rm×n, B ∈ Rn×p, then their product AB ∈ Rm×p is the
unique matrix such that for any x ∈ Rp,

(AB)(x) = A(B(x)).

We can compute the product C = AB using this formula:

Cij =
n∑

k=1

AikBkj

Special cases: Matrix-vector product, inner product of two
vectors. e.g., with x , y ∈ Rn:

xT y =
n∑

i=1

xiyi ∈ R
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Basic Linear Algebra

Matrix Multiplication

(AB)(x) = A(B(x))
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Basic Linear Algebra

Properties of Matrix Multiplication

Associative: (AB)C = A(BC)

Distributive: A(B + C) = AB + AC
Non-commutative: AB 6= BA
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Basic Linear Algebra

Operators and properties

Transpose: A ∈ Rm×n, then AT ∈ Rn×m: (AT )ij = Aji .
For example, if

A =

[
1 2 3
4 5 6

]
then

AT =

1 4
2 5
3 6


Properties:

(AT )T = A
(AB)T = BT AT

(A + B)T = AT + BT



Quick Tour of Linear Algebra and Graph Theory

Basic Linear Algebra

Identity Matrix

Identity matrix: I = In ∈ Rn×n:

Iij =

{
1 i=j,
0 otherwise.

∀A ∈ Rm×n: AIn = ImA = A



Quick Tour of Linear Algebra and Graph Theory

Basic Linear Algebra

Diagonal Matrix

Diagonal matrix: D = diag(d1,d2, . . . ,dn):

Dij =

{
di j=i,
0 otherwise.
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Basic Linear Algebra

Other Special Mtrices

Symmetric matrices: A ∈ Rn×n is symmetric if A = AT .
Orthogonal matrices: U ∈ Rn×n is orthogonal if
UUT = I = UT U
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Basic Linear Algebra

Linear Independence and Rank

A set of vectors {x1, . . . , xn} is linearly independent if
@{α1, . . . , αn}:

∑n
i=1 αixi = 0

Rank: A ∈ Rm×n, then rank(A) is the maximum number of
linearly independent columns (or equivalently, rows)
Properties:

rank(A) ≤ min{m,n}
rank(A) = rank(AT )
rank(AB) ≤ min{rank(A), rank(B)}
rank(A + B) ≤ rank(A) + rank(B)
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Basic Linear Algebra

Example of Linear Dependence

These three vectors are linearly dependent because they all lie
in the same plane. The matrix with these three vectors as rows
has rank 2.
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Basic Linear Algebra

Rank from row-echelon forms
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Basic Linear Algebra

Matrix Inversion

If A ∈ Rn×n, rank(A) = n, then the inverse of A, denoted
A−1 is the matrix that: AA−1 = A−1A = I
Properties:

(A−1)−1 = A
(AB)−1 = B−1A−1

(A−1)T = (AT )−1

The inverse of an orthogonal matrix is its transpose
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Basic Linear Algebra

Eigenvalues and Eigenvectors

Given A ∈ Rn×n, λ ∈ C is an eigenvalue of A with the
corresponding eigenvector x ∈ Cn (x 6= 0) if:

Ax = λx

For example, if

A =

[
2 1
1 2

]
then the vector

[
3
−3

]
is an eigenvector with eigenvalue 1,

because
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Basic Linear Algebra

Eignevector Example
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Basic Linear Algebra

Eigenvalues and Eigenvectors

Characteristic Polynomial: If Ax = λx then

(A− λI)x = 0

so (A− λI) is singular, and we see that

det(A− λI) = 0.

Thus the eigenvalues are exactly the n possibly complex
roots of the degree n polynomial equation det(A− λI) = 0.
This polynomial det(A− λI) = 0 is known as the
characteristic polynomial.
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Basic Linear Algebra

Eigenvalues and Eigenvectors Properties

Usually eigenvectors are normalized to unit length.
If A is symmetric, then all the eigenvalues are real and the
eigenvectors are orthogonal to each other.
tr(A) =

∑n
i=1 λi

det(A) =
∏n

i=1 λi

rank(A) = |{1 ≤ i ≤ n|λi 6= 0}|



Quick Tour of Linear Algebra and Graph Theory

Basic Linear Algebra

Proofs

Induction:
1 Show result on base case, associated with n = k0

2 Assume result true for n ≤ i . Prove result for n = i + 1
3 Conclude result true for all n ≥ k0

Example:
For all natural number n, 1 + 2 + 3 + ...+ n = n∗(n+1)

2
Base case: when n = 1, 1 = 1.
Assume statement holds for n = k , then
1 + 2 + 3 + ...+ k = k∗(k+1)

2 .
We see 1+2+3+ ...+(k +1) = k∗(k+1)

2 +(k +1) = (k+1)(k+2)
2 .
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Basic Linear Algebra

Graph theory

Definitions: vertex/node, edge/link, loop/cycle, degree,
path, neighbor, tree, clique,. . .
Random graph (Erdos-Renyi): Each possible edge is
present independently with some probability p
(Strongly) connected component: subset of nodes that can
all reach each other
Diameter: longest minimum distance between two nodes
Bridge: edge connecting two otherwise disjoint connected
components



Quick Tour of Linear Algebra and Graph Theory

Basic Linear Algebra

Basic algorithms

BFS: explore by “layers”
DFS: go as far as possible, then backtrack
Greedy: maximize goal at each step
Binary search: on ordered set, discard half of the elements
at each step
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Basic Linear Algebra

Breadth First Search
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Basic Linear Algebra

Depth First Search
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Basic Linear Algebra

Adjacency Matrix

The adjacency matrix M of a graph is the matrix such that
Mi,j = 1 if i is connected to j , and Mi,j = 0 otherwise.

1 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0


For example, this is useful when studying random walks.
Renormalize the rows of M so that every row has sum 1. Then
if we start at vertex i , after k random walk steps, the distribution
of our location is Mkei , where ei has a 1 in the i th coordinate
and 0 elsewhere.
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