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1. Introduction 
Bitcoin (BTC), a form of digital currency started in 2009, functions through a distributed network that catalogues 
transaction activity throughout the network, resulting in a nearly frictionless medium of exchange. Similar to traditional 
currencies, bitcoins are still vulnerable to theft through Bitcoin wallet compromise. We apply the social network analysis 
tools of similarity and status against the problem of bitcoin thief re-identification through passive analysis on the BTC 
transaction history block-chain. We supplement previous research in the field with a two-part method and algorithm to 
improve thief re-identification by probabilistically associating thieves to public facing and associate addresses as well as 
social proof signaling between complicit or status aware actors. This information is used to build a list of suspect users, 
ranked by their status in the bitcoin thief network, which improves upon established association methodologies. 

2. Prior Work 
Bitcoin, a form of digital currency started in 2009 and, functions through a distributed network of public and private key 
exchanges that represent currency transactions. Thefts occur through security holes in intermediary holders or from direct 
attacks on computers storing “wallets,” or a digital collection of private keys that connect a user to their public 
transactions. These thefts involve either some form of hacking of online storage sites or fraud of Bitcoin users. Our review 
of the available literature did not discover any research that viewed BTC users in term of degree of positive/negative links 
between each other. 
 

Research by Reid and Harrison1 demonstrated that while many believe that their identities remain secret when conducting 
business with bitcoins, matching published transactions with IP addresses collected from intermediaries could reveal the 
identity of a bitcoin user. The 2011 study revealed that 60% of users are exposed through this method. While they were 
able to reveal a significant amount of detail about the bitcoin thief, and provide Degree, In-Degree and Out-Degree for 
both user and transaction network structures, their application was retroactive and anecdotal. The Reid and Harrison paper 
does not attempt to discover new BTC financial fraud. 
 

Androulaki, et al.2, also worked to dismantle the aura of anonymity surrounding bitcoins. This study looked at two 
heuristics that are followed by later studies. First, Multi-input Transactions heuristic merges transactions that receive 
multiple inputs from different user, treating the sending users as one user. The second heuristic looked at “shadow” 
addresses, which incorporate the change address property of bitcoins.3 The study then tested these heuristics in a simulated 
university setting and concluded that while the first heuristic cannot be easily evaded, the second heuristic can be evaded 
                                                        
1 Reid, Fergal, and Martin Harrigan. "An analysis of anonymity in the bitcoin system." Security and Privacy in Social Networks. 
Springer New York, 2013. 197-223. 
2 Androulaki, Elli, et al. "Evaluating User Privacy in Bitcoin." IACR Cryptology ePrint Archive 2012 (2012): 596. 
3 “In the case when a Bitcoin transaction has two output addresses, aRn, aRo, such that aRn is a new address (i.e., an address that 
has never appeared in pubLog before), and aRo corresponds to an old address (an address that has appeared previously in 
pubLog), we can safely assume that aRn constitutes a shadow address for ai.” 
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with some effort. The study concludes, “The privacy of users in Bitcoin can be compromised, even if users manually 
create new addresses in order to enhance their privacy in the system.” Under the simulation, the profiles of 40% of users 
could be revealed, even when they are all privacy-aware users. This is particularly interesting when considering that the 
Reid and Harrison study found that 60% of users can be revealed through methods that can be circumvented by 
sophisticated users. Androulaki, et al., however, is limited in that the sampled dataset was a simulation, making 
assumptions about how real-world users use multi-output transactions that fail to hold true. In addition, the study points 
out that the use of mixers (BTC Banks, BTC Anonymizers, etc.) is a real world easy solution to increase the privacy of 
bitcoin clients. 
 

Meiklejohn et al.’s study essentially applies the heuristics of the previous study (Androulaki, et al.) to actual bitcoin data 
instead of a simulated dataset. Meiklejohn et al focused heavily on perfecting the change address heuristic (i.e., the 2nd 
heuristic of the previous study) by closely analyzing the idioms of use. They found the change address heuristic to be 
effective in some small experiments, but were able to conclude that that bitcoin thieves can circumvent this test. When 
examining Bitcoin thieves, the researchers were able to apply the change address heuristic and assumptions about bitcoin 
“peeling” to reveal some thieves’ identities. However, the ability to reveal these users varied depending on the thieves’ 
sophistication – i.e., whether they used complex layering and mixing to mask their identities. This supports our criticism of 
the dangers of applying conclusions from the Androulaki’s simulated dataset of “privacy-aware” users to real world 
applications. Meiklejohn’s study posed its own defects as well. The study selected known thieves retroactively and applied 
their method only to “a list of major Bitcoin thefts” that had public transactions, further increasing the likelihood of thieves 
that would go undetected by the change address heuristic. 
 

We build upon the previous studies by taking a different approach the problem. The previous studies used the transaction 
amounts and addresses to identify bitcoin users. However, the studies were retroactive or theoretical in nature, requiring 
one to already have found a bitcoin theft to flag a transaction as suspect. We attempt to assist in identifying transactions as 
suspect for Bitcoin fraud by two methods: through the similarity of bitcoin users and the claims to status after a heist is 
made. Under the similarity analysis, we group together users and accounts that may be correlated by the time, date, and 
transaction amounts. This is because hackers may attempt to circumvent detection by using multiple wallets or accounts 
but hackers groups may work together and thus be online at the same time, and share similarity of times and dates of 
Bitcoin transactions. Second, we look at coded messages embedded in transactions sent by users. Large heists are often 
difficult to convert to USD and smaller thefts lend themselves to motivations other monetary gain - we believe that other 
motivation is fame in the hacker community and users will send coded messages signaling their accomplishments in 
transactions amounts (e.g., 1337 in leetspeak). 

3. Preparing Data 
The entire bitcoin transaction history is publicly available in the BTC block-chain. Despite this, the block-chain is of 
significant size that performing research on it can become expensive. We use the preprocessed BTC dataset available from 
previous research conducted at the University of Illinois Urbana-Champaign (UIUC). This dataset is approximately 1.5GB 
large and comprises all BTC transactions from the network’s inception through to April 7th of 2013. In order to find 
specific data on Bitcoin thefts and fraudulent bitcoin transactions, we researched online forums and new articles that 
discussed such malicious Bitcoin events. However, despite this research we were only able to find specific identifying 
information, such as the transaction ID, on a portion of the overall volume of the known malicious bitcoin events. We 
speculate that some Bitcoin users are hesitant to provide such information in public forums. Nevertheless, our research 
yielded a list of more than forty individual malicious events, which we believe to be a sufficient level to show the validity 
of our analysis. In this paper, user nodes are referred to using their UIUC dataset reference numbers and not their actual 
Bitcoin addresses. Bitcoin addresses can be recovered using the UIUC dataset. 
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4.1 Method for Similarity Analysis 
Although Bitcoin transactions can occur without physical proximity, some transactions are likely to occur in physical 
proximity to other users in order to coordinate the trade of Bitcoins for goods, cash, or consumables. In addition, there’s a 
strong likelihood that peer groups of Bitcoin users will know more details about each other than is available publicly. 
While some users may experience less variation in transaction characteristics, some individuals along with brick and 
mortar service providers, and businesses adhere to specific transaction characteristics due to schedule and availability 
constraints. Thus we developed a probabilistic association model of similarity based on multiple methods of similarity 
detection such as the hour of day of the transaction as well as the day of the month/week and transaction amount size (both 
in BTC and USD) which seeks to associated thieves on with second degree contact who share a similarity profile with the 
thief and therefore may indeed be the thief or be affiliated with the thief. 

Chart 1: BTC Transactions per Hour of Day (UTC)  Chart 2. Transactions per Day of Month 
An initial examination of these similarity measures found that users 
within the bitcoin network do exhibit non-random characteristics of 
detection and thereby avail themselves to similarity based algorithmic 
analysis. Viewing the entire Bitcoin transaction history we detect a 
modest increase in activity during the mid-morning hours UTC and 
another increase in the early evening UTC. Given that these times 
correlate with the morning and afternoon hours for the US, which 
during the early years of BTC’s existence was its predominant usage 
base, this is unsurprising. Additionally, a small damping effect appears 
to be observed in the mid part of each month. 
 

In constructing a similarity based detection algorithm we observed for 
each target user/node a number of discrete transaction metrics 
including  1) Size of  transaction in BTC 2) Size of Transaction in 

Dollars (estimated with weighted daily averages) 3) Day of Week 4) Day of Month 5)  Time of day  and 6) Hour of day. 
We then compared each transaction from each first-degree connection node (to the thief node) and compared that 
transaction to every other inbound transaction to the first-degree connection node. We checked these other inbound 
transactions for similarity with the thief node transaction for similarity across each of the six characteristics, saving each 
node that triggered a given number of similarity measures against the thief’s transaction. By doing this we establish high 
probability positive associations between separate transactor nodes and the target node that may have affiliation or be 
candidates for address consolidation.   
 
4.2 Method for Status Analysis 
 

Finding Coded Messages using Benford’s Law 
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Benford’s Law, also known as the First Digit Law, states that the distribution of first digits in transactions amount in 
certain datasets will follow a power distribution as illustrated below. This property holds in financial transactions when the 
transactions amounts are determined by volatile pricing or market forces, as opposed to marketing (e.g., $0.99) or 
otherwise manually determined prices (e.g., $5.00). As Bitcoin transaction amounts are heavily determined by market 
forces (exchange rates, etc.) as opposed to manually determined prices, we expect the data to follow Benford’s Law. To 
improve the accuracy, we removed transactions that only had one non-zero digit (e.g., 0.004) from our dataset.  
 

 
 
We found a close fit of Bitcoin transaction data the Benford’s curve, with all digits being less than 1.5 standard deviations 
away from Benford’s Law. Knowing the data fit the Benford’s Law curve closely, this provided a good baseline from 
which to test for frequently occurring deviant transaction amounts. For each user, we calculated their standard error from 
Benford’s Law from their received transactions. We focused on received transactions because an individual user is less 
likely to send a large number of status claims than a receiver is likely to receive a large number of them. To handle small 
samples size (users with only a few incoming transactions), we set a minimum of 6 received transactions and created a 
penalty multiplier for users with less than 30 incoming transactions of (1/ (30-N)), where N is the number of transactions. 
We then excluded users with less than 1.5 standard deviations from Benford’s Law in order to focus on the deviant 
transactions.  
 

Our analysis counted the number of times every numerical phrase with 3 or more digits appears in the transaction amounts. 
For example, a transaction of 23.83 would add 1 count of 238, 383, and 2383. Although this analysis was expensive, it 
generated insightful files containing the most common phrases appearing in the data. We manually searched through the 
list to discover patterns of numbers that exceeded phrases we might expect through Benford’s Law, such as 100, 00002, 
etc. By grouping together similar phrases from low numbers of digits to high numbers of digits (e.g., 337, 1337, and 
31337), we were able to construct a list of new suspected coded messages in the Bitcoin network. The search was very 
successful in revealing disproportionately occurring phrases in the data - the results are described below. We only searched 
through the top 50 3-digit, 4-digit, and 5-digit phrases and the longer phrases they are derived from. Future research may 
incorporate a full extraction of all coded messages. 
 

Developing a Suspicion Score 
The next step was to give rank the users by a combination of their deviation from Benford’s Law and the number of 
disproportionate status claims received. This would give strong weight to a user that received many irregular transactions 
and for which we identified that many of them are in fact coded messages. We used an approximation of Benford’s Law 
for multiple digits for determining the expected value for coded phrases to appear in a user’s received transactions, as 
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shown below. If the number of phrases exceeded the expected amount, then our function only returned the number of 
claims that exceeded the expected amount. 

! !"#$#!!ℎ!"#$#!!"#"$%"&!!"!!"#$ = !! log!"(1 +
1
!)

!

!!!

!

!!!
 

X=number of coded phrases 
Ps=positions that a phrase can appear in a number string (length of string +1 - length of coded phrase) 
x=coded phrase 
N=number of transactions received by a user 
 
We needed what we call a suspicion score to give exponentially increasing weight as a user received higher numbers of 
transactions exceeding the expected amount. We saved only suspicion scores greater than 1, which limited users that 
received no coded messages to those with a standard deviation of e:  
 

!"#$%&%'(!!"#$% = ! log! ! + 1 !"(!!)! 
 
H=Coded messages received by user (above expected value) 
T=Total Transactions received by user 
B=Average STD from Benford’s Law for user’s received transactions 
 
Sample of Results for Top Suspicion Scores 

User ID Suspicion Score Phrases Exceeding Expected Amount Total Number of Transactions STD from Benford's Law 

304467 44.8744207451  159  187  5.59499994618 

162286 41.1325972619  4084  8587  4.88353935813 

489726 39.4922194061  2913  6137  5.08910613525 

1393855 38.9955970536  255  375  3.62694403902 

481128 38.6100255898  442  733  6.46056480133 

 
Creation of Status Network 
The suspicion scores only provided a ranking of users receiving coded messages. We are interested in the users that 
sent those coded messages since we expect some of them to be hackers or thieves laying claim to status. We included 
any user that sent at least one transaction to someone on the top 1,000 of the suspicion score list and created an edge 
that represented a coded term. Interestingly, there was only a 10% difference in the number of included users 
included in the Top 1000 List and the full list (~63,000), but the former avoided including many noisy nodes. Future 
research may consider also analyzing infrequent deviant transactions by including edges from users whose outgoing 
transactions deviate from Benford’s Law to users with high suspicion scores.  

5.1 Results for Similarity Analysis 
For our battery of thief transactions, the table below shows for varying number of similarities which were set as a trigger 
levels (out of the six described) for a varying tightness of focus around the given measure, what percent of the original list 
of second degree contacts remain as candidates for possible consolidation/affiliation with the thief after performing our 
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analysis. The figures listed are the averages of our similarity algorithm run against all of the thief transactions that we were 
able to find. For example, if a trigger similarity number is set to 3 and the tightness of similarity required for a trigger is 
0.5 standard deviations, then for all thief events, the number of second degree users which had at least three measures of 
similarity fall within an absolute distance of .5 standard deviations from the given first degree node (for both the thief to 
first degree node and subsequent first degree to second degree node) per similarity type was -on average- 45.39% of the 
starting list of second degree nodes..  Thus we count a lower number averages a more focused set of potentially affiliated 
nodes, given the -assumably- high costs of pursuing a large number of second degree connections vs. a small number of 
list candidates.  
 

The gradient effect of the reduction in the second 
degree list to the consolidated list as we increase 
the number of similarities and the tightness of the 
events gives us good reason to conclude that our 
results match our goal of providing a reduced set 
of probable nodes for affiliation and/or 
consolidation with the given thief address. That 
said, finding ways to validate the consolidated lists 
continues to prove challenging as it would require 
the ability to definitively evaluate the consolidated 
list against a given thief’s actual similarity to the 
users it transacts with, which requires additional 
assets and capabilities to explore. 

5.2 Results for Status Analysis 
Our Benford’s Law analysis test was able to detect a 31 terms that appear more frequently than terms expected to appear 
frequently by Benford’s Law. Here is a summary of those terms: 

Coded Messages 
 Category # of Phrases Number of Times Phrase(s) is Used 

Node 25 Phrases (explained below) 11 92,9584 

LEET (Elite) 9 980 

Suspected Hacker Group 1 2 405 

Suspected Hacker Group 2 2 893 

Suspected Hacker Group 3 (possibly Anonymous) 2 108 

Phrase that possibly means "target" 3 204 

Unknown 2 21 

Graph Analysis 

Network of Coded Messages 
                                                        
4 Used 4,106 times by users other than Node25 
5 This was used more frequently than the terms relating to other hacker groups, but was not sent to nodes with high suspicion 
scores. 
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          Node Size Proportional to its PageRank Score                Node Size Proportional to its Clustering Coefficient 
 
 

Because of the size of the graph, the visualization had to be zoomed out significantly. The black areas are large groups of 
nodes and edges consisting of hundreds or thousands of nodes. Black nodes and edges have no incoming edges. Mostly, 
we notice groups of such nodes in an orb shape all directed toward a central node, giving that central node a very large 
PageRank score and thus, size, in the left graph. In addition, nodes with 1 in degree are colored yellow. The yellow and 
red grouping of nodes at 10:00 on the graph is a central node (the red dot) sending coded messages out mostly to the 
yellow group of nodes around it. This group deserves attention because it deviates significantly from the rest of the graph, 
as shown in visualization of the Clustering Coefficient graph. 
 

Unlike the other groups of nodes, node 25 (the central node in the yellow cluster) is giving a significant number of hacker 
signals to other users, not receiving them. It has an In-Degree of 42 and Out-Degree of 9002. Node 25 sends 11 different 
phrases very frequently, sometimes repeatedly the same users - the meaning of these phrases are unknown. Although 
others use these 11 terms as codes as well, Node 25 sends these phrases significantly more than others do. For example, 
node 25 used the phrase “118506” 12376 times while the rest of the users used the term 704 times (still a significant 
number for a 6 digit long phrase). This user also receives a significant amount of coded phrases, at least enough to receive 
a top 20 suspicion score. The clustering coefficient shows that the users affiliated with node 25 occasionally send codes 
amongst themselves, suggesting a community where users communicate through phrases. Node 25 also expands beyond 
its local community, as shown by the edges spanning the center of the graph. It and its network have many weak ties with 
the rest of the network, often pointing directly to or from nodes with high in-degrees. Thus, we believe that node 25 is a 
leader in a communication network of coded messages. An in-depth investigation in the nature of node 25 may 
alternatively reveal an odd payment arrangement for consumer transactions or some other strange characteristics. Once we 
remove node 25, we achieve a graph with a uniform pattern: 

Network of Coded Messages after Removing Node 25 
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               Node Size Weighted by PageRank Score    Node Size Weighted by Clustering Coefficient   
The above diagrams show a graph with very high modularity, as node 25 was providing most of the graph’s weak ties. 
Removal of just that one node significantly increases the modularity from 0.860 (71 communities) to 0.932 (362 
communities). The largest node in the diagram above (the large green node at 4:00) is representative of user 493524, who 
received 8446 hacker terms above the expected amount out of 22103 total incoming transactions (38.2% of its transactions 
were suspicious). Like the nodes surrounding 493524, nearly all users in the graph have no incoming nodes and send their 
messages to only one user, as we see largely isolated groupings of nodes. This structure describes users that only send 
coded messages to their one favorite group. This may suggest allegiances, affiliations to a hacker group (represented by a 
user or node), locality, or other similarities. Applying the similarity analysis to the top 50 PageRanked users, we find a 
high level of similarity for each node. A mean of 97.73% (with a minimum of 90.5%) of nodes are two hops away are 
within 1 standard deviation of at least 3/6 triggers. This is compared to the results in 4.1, where for the same given 
standard deviation and trigger amount, the result included only 73.93% of nodes. This means that the nodes receiving a 
high number of coded messages are likely to share other characteristics with those users, perhaps implying geographic 
locality or cultural locality, based on similar purchase amounts. Locality can help explain the high modularity in this 
graph. 
 

Ranking the Users 
We used PageRank to determine the reputation of each node. PageRank captures the nature of the status claims - when one 
user of high status seeks status from another node, we expect the latter is of higher status than the first. When a reputable 
user begins sending much status to others, we want those claims to diluted. Thus, if we assume that coded messages are all 
hacker terms and those receiving the terms are hackers, we produce a list based on PageRank scores that ranks hackers or 
thieves by their reputation. For the filtered list of only the top 1000 suspicion scores and excluding node 25 from the 
analysis, we return the following ranking for the top 10 users: 493524, 491900, 489726, 162286, 507859, 518110, 491931, 
491307, 126106, 89936. Additional tests will be able to determine if hubs for codes are likely affiliated with the same 
hacker group. If a node were to receive a disproportionate number of suspicious transactions and nearly all of those 
transactions are the same code, then we can group that node with others that affiliated with the same code.  

6. Conclusion and Future Work 
Evaluation 
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The similarity analysis returned results as expected and appears promising to lower the number of suspects when seeking 
affiliates with a known thief. While the analysis proves effective theoretically, empirical evaluation of this method against 
real world data requires in-depth knowledge about the groupings of nodes - data that is unavailable at this time.  
 

Detailed information about bitcoin thieves online is scarce, but one source collected a list of known transaction IDs that 
relate to a known major theft. Because no further information is given regarding these transactions, it’s unknown whether 
the source ID or the destination ID is a thief. However, we expect the destination user of a malicious transaction to be the 
recipient of the theft, and thus the thief or hacker. In the abbreviated list (nodes connecting to top 1000 suspicious 
receivers), no destination IDs were detected on only one source ID was found, but it had the 94th highest PageRank, 
making it the 99.68% highest PageRank. Full list was able to find 2 destination IDs and 5 source IDs (all of which were in 
the top 10% of the PageRank). Our results thus are thus inconclusive on their effectiveness in finding actual bitcoin thefts. 
It is not known positively known that any of the known thieves in our list have sent coded messages. 
 

Difficulties: 
Our major difficulty was the difficulty of testing our data against a strong control groups. While information about Bitcoin 
is available, the only detailed list we were able to find for known hackers contained only 40 actual transaction IDs but did 
not state the nature of those transactions. We thus were required to assume that destination IDs were the thief IDs and 
evaluate our results from there. Similarly, little data is available to test the actual effectiveness of our similarity measures. 
A close study of small groups of identified international users may be effective in proving the similarity algorithm shows 
geographical or other types of locality in the users.  
 

Future Work: 
The status test revealed the peculiar nature of node 25, suggesting a rather large communication network. Node 25 also 
significantly decreased modularity in the network. It’s worth investigating Node 25 for the meaning of its highly used 
hacker terms, why Node 25 sends signals to other users, and why it’s so well connected to the rest of the graph. Removing 
Node 25, nodes with high clustering or Betweenness centrality are also worth investing further, since they are providing 
the weak ties in the graph and possibly suggest a communication network. 
 

Additional research in the area of similarity might expand the number of degrees of separation that our similarity searches 
use as initial screening pool from which to compare transactions from thieves. Separately, future research might attempt to 
formulate new similarity metrics, though no such metrics present themselves to us at this moment. 
 

Conclusion 
Our similarity algorithm yields results that are significantly smaller than the possible comparison sets of the second-degree 
connection (e.g., ~4% of users given 1 standard deviation and 6 similarity metrics). As a result, we believe this algorithm 
provides a potent tool for interested parties who want to identify bitcoin thieves.  
 

We discovered Bitcoin transactions fit very closely to Benford’s Law, and we were thus able to detect 31 coded messages 
in the Bitcoin network. Using these phrases, we detected a potential community of users communicating through coded 
phrases (i.e., node 25 and its neighbors). We discovered the graph is highly modular, especially if node 25 is excluded. 
Combining PageRank with both analyses, we are able to support a theory that localized segments in the coded messages 
network are highly similar, possibly suggesting geographic or cultural closeness for each segment. Although we 
discovered much about the nature of the Bitcoin network - that it’s highly segmented and localized - our results are 
inconclusive about whether our methods are capable of detecting actual Bitcoin thefts, as our data for evaluation was 
limited. More data about Bitcoin thefts would be useful to test our results, such as an actual investigation to the most 
highly ranked nodes in the graph. 
 


