
Finding great software engineers with GitHub
Group #33

James Kunz (jkunz) Kenny Root (rootk)

Stanford University

December 10, 2013
Introduction

Measuring software engineering project success and developer efficiency is useful for
individuals hobbyists looking to spend their time wisely and companies looking to spend their
money wisely. But how do projects form? Which are the most important projects? How does a
developer select projects? How productive or important is an engineer? What are good metrics
for determining developer quality?

Open source repositories, where projects, engineers, and changes are readily open to
inspection, provide an opportunity to study the process of software engineering in general and
open source communities in particular. We will use GitHub event data to explore what might
be learned.

Review of Relevant Work

The following work is of interest given the techniques employed in this paper.

PageRank Exploration of Graphs

PageRank[2] and Topic-Sensitive PageRank[5] were discussed in lecture. Concretely, they are
methods to find prominent nodes in a graph. In the first case, we imagine a random walker
following edges at random on a graph and measure her stationary distribution. To handle
nodes with zero out-degree and other corner cases of graph topology, we periodically teleport
her to a random node on the graph.

The formulation of Topic-Sensitive PageRank is very similar, except that we teleport the
random walker only to a specific subset of graph nodes that are representative in some way of
some property we are interested in finding elsewhere in the graph. In the classic formulation,
this algorithm teleported to, for example, a manually curated set of medical webpages on the
internet. The resulting stationary probability would be biased towards pages these pages linked
to. In aggregate, medical pages would be given higher scores than other documents.

A more detailed explanation of our implementation follows.

1 of 13

Since Pregel-like infrastructure performs a superstep for each batch of messages emitted, it is
easier to randomly select all the nodes that will be teleported to ahead of time and run that
many walkers concurrently on the graph.

Naïve PageRank Results

Building the graph such that there exists edges between developers and a projects weighted by
the number of pull or push events and sorting by PageRank, we discover many well known
projects. This formulation has a nice property that the fraction of PageRank flowing out of a
repository node to an actor node is proportional to the fraction of commits to that project
made by that actor. Conversely, the fraction of PageRank flowing from a repository node to
an actor is proportional to the fraction of the actor’s time they spend on that project (as
measured by number of contributions).

Repository URL Relative PageRank

https://github.com/CocoaPods/Specs 2509179.407214

https://github.com/mxcl/homebrew 1990023.300471

https://github.com/rails/rails 1237714.404296

https://github.com/mozilla-b2g/gaia 1067667.260020

https://github.com/saltstack/salt 887057.806753

The list continues with many other well known projects: Django, Mozilla Rust, Twitter Bootstrap,
emberjs. Figure 3 shows a plot of relative PageRank across projects.

4 of 13

Failed Fix: Edge Reweighting

In response to the bot issue - where one user contributes heavily to a single repository, we
experimented with variations on edge weight with the intuition: after a certain number of
contributions, additional contributions aren’t as informative. This approach seemed
reasonably promising. Many bots fell off the top of the list; however, some really productive,
senior people in the GitHub community also had their ranks significantly diminished.
Generally these developers started a significant project and most of their commits are to that
one project. On this metric, they and the bots are indistinguishable. Here is a glance at how
the PageRank values were adjusted using this modification.

Figure 4: Distribution of PageRank scores by developer when weighted by activity and not.
Among the top 100 or so actors, many bots lost significant rank, yet so did many important
developers with singular focus.

7 of 13

Conclusions

In this project we replicated existing results in the literature that PageRank can do a
reasonable job assigning scores to both projects and developers. We built upon that
foundation by applying intuition gleaned from analyzing the failure modes the naive
implementation. We experimented with the weights, teleport sets and edges in the graph and
rigorously studied the resulting top 100 actors in each case. We were able to build intuition
and understanding that we applied to resolve the most egregiously mis-scored actors.

These scores may prove useful to recruiters looking to hire the best and engineers looking to
find projects with very high impact.

Future Work

Based on the observations and intuitions gleaned from this project, there are several
approaches that might further yield improvement in the analysis of GitHub data.

Most of the PageRank spam networks were from bots that were not intentionally made to
game the PageRank system, but their pattern had the same effect. Algorithmic detection of
these bots would allow their pruning from the result set early.

Developers who initially contributed to large projects may be of more interest. Weighting
earlier contributions as more important would bring those developers higher in PageRank.
Care would need to be taken as applying it directly also has the negative effect of penalizing
new maintainers of old projects. Time weighting contributions with the most recent
contributions first would allow the system to avoid grandfathering old rankings.

More analysis into the worth of code durability, or how long contributed lines of source code
are retained in the repository, would provide insight into the quality of a contribution. This
could be further normalized by the amount of churn each project has in the average case.
These normalized values could also be used as edge weights between a developer and a
project.

A final aspect worth exploring is the construction of the graph itself. Inferring that a user that
makes substantial contributions to an important project is important is reasonable. It should
be difficult to claim credit for a successful project. On the other hand, it might be useful,
where lacking sufficient pull/push evidence, to attach lightly-weighted edges from developers
to the projects they are watching. If one of the top 15 developers listed above is watching a
new project, that’s a pretty significant statement, even if those incredibly productive – yet
busy – people haven’t had a chance to directly contribute.

11 of 13

http://www.google.com/url?q=http%3A%2F%2Fgit-scm.org%2F&sa=D&sntz=1&usg=AFQjCNG0iFxo1qAst8EWESk0hxQbchg8QQ

References

1. GitHub, Inc. "API v3." GitHub Developer. 16 Oct. 2013
<http://developer.github.com/v3/>.

2. Page, Lawrence and Brin, Sergey and Motwani, Rajeev and Winograd, Terry (1999)
The PageRank Citation Ranking: Bringing Order to the Web. Technical Report.
Stanford InfoLab.

3. Jeffrey Dean and Sanjay Ghemawat (2004), MapReduce: Simplified Data Processing
on Large Clusters. OSDI'04: Sixth Symposium on Operating System Design and
Implementation.

4. Grzegorz Malewicz et. al (2010), Pregel: a system for large-scale graph processing.
Proceedings of the 2010 ACM SIGMOD International Conference on Management of
data. Pages 135-146

5. Haveliwala, “Topic-Sensitive Pagerank”, Proceedings of the 11th international
conference on World Wide Web (2002): 517-526

6. Thung, Ferdian; LO, David; and JIANG, Lingxiao, "Network Structure of Social
Coding in GitHub" (2013). Research Collection School of Information Systems (Open
Access). Paper 1687.

13 of 13

http://www.google.com/url?q=http%3A%2F%2Fdeveloper.github.com%2Fv3%2F&sa=D&sntz=1&usg=AFQjCNFL5AoSKYLwa1PMGy6pXL_69xUCSA

