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1 Introduction

The spectral clustering algorithm is a powerful clustering algorithm that is known to give better cluster-
ings than other algorithms such as k-means. Most spectral clustering scenarios require the computation of
the distance between every pair of points in order to construct the similarity matrix that is the input to the
spectral clustering algorithm. In fact, this similarity matrix construction step is one of the most expensive
steps of the algorithm, sometimes taking significantly longer than the actual clustering.

We study an optimization to this similarity matrix construction step. We apply the locality sensitive
hashing algorithm which we use to approximately compute all pairs of near neighbors. We test our algorithm
on the Wikipedia edit history dataset on which we define article similarity using the list of editors of each
article. We find that using locality sensitive hashing results in a 10- to 20- fold decrease in the running time
of the similarity matrix construction step without a significant decrease in the quality of the final clustering.

2 Details of Spectral Clustering Algorithm

2.1 Key Definitions

1. Jaccard Similarity: The Jaccard similarity measures the similarity between 2 sets. It is defined as the

size of the intersection divided by the size of the union of the sets: J(A,B) = |A∩B|
|A∪B| . In the case of

Wikipedia articles each article is associated with the set of editors who have edited the article. Then
the Jaccard similarity is defined as the number of common editors between the 2 articles divided by
the number of editors who have edited either article.

2. Similarity Matrix: The similarity matrix W gives for each pair of Wikipedia articles the Jaccard
similarity between those articles. This matrix is the primary input to the spectral clustering algorithm.
One problem with using the full similarity matrix is that it can contain very large numbers of non-
zero entries, taking a long time to compute and slowing down all the later steps of the spectral
clustering algorithm. Thus, an important step in applying the spectral clustering algorithm is efficiently
computing a similarity matrix of reduced size. This step is the primary focus of this project.

3. Normalized Laplacian: The Laplacian matrix is defined as L = I −W . This matrix has a number
of useful spectral properties and is often used in spectal graph analysis. The normalized Laplacian
is defined as L = I − D−1/2WD−1/2 where D is the degree matrix defined as Dii =

∑n
j=1Wij . For

practical purposes, however, most implementations actually use L = D−1/2WD−1/2. Doing so simply
changes the eigenvalues of the matrix to be 1 − λ, instead of λ, without changing the corresponding
eigenvectors.
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4. Spectral Graph Theory: Spectral graph theory examines the eigenvalues and eigenvectors of a graph’s
Laplacian matrix and uses them to determine structural properties of the graph

2.2 Steps of the Algorithm

For this project we use the variant of the spectral clustering algorithm proposed in [5]. This variant is
described below, with details about our usage of it.

Step 1: Process raw data and build symmetric similarity matrix W : Given a set of points build similarity
matrix containing similarities between points in the graph. We build the similarity matrix for
Wikipedia articles using the Jaccard similarirty as defined in section 2.1. We also make the matrix
sparse by making entries in the matrix that are > ε into 1s and the rest into 0s.

Step 2: Build diagonal degree matrix D: The ith entry on the diagonal of this matrix is defined as the sum
of the entries for row i or column i of the similarity matrix. Since the matrix is symmetric these are
the same.

Step 3: Build normalized Laplacian matrix L: From W and D, build L = D−1/2WD−1/2

Step 4: Find the top k eigenvectors of L: Find the k eigenvectors of the Laplacian matrix L that correspond
to the largest eigenvalues. Form matrix V ∈ Rn×k containing these eigenvectors.

Step 5: Normalize the rows of V : Normalize each row so that its norm is equal to 1. Form matrix Y such
that Yij =

Vij√∑
l V

2
il

Step 6: Cluster Y by treating each row in Y as a point in Rk: Commonly this clustering is done using the
k-means algorithm. This is the algorithm that we use.

Step 7: Assign points in the graph to clusters: Each point i of the original graph is assigned to the cluster
that the ith row of Y belongs to.

We implemented steps 2 - 7 of the algorithm using the implementation described in [1]. Their code is
published online and is also available internally at Google. We ran steps 2 - 7 using roughly 50 machines.

2.3 Algorithm Explanation

There are multiple ways of measuring the quality of a graph clustering. Generally clustering has 2
objectives:

• Minimizing between-cluster similarity: Points in different clusters are dissimilar to each other.

• Maximizing within-cluster similarity: Points in the same cluster are similar to each other.

There are multiple different metrics that capture these objectives. These metrics are generally referred to
as minimum cut metrics. Unfortunately, most useful minimum cut problems are NP-hard. However, there
are ways of relaxing the minimum cut problem that result in efficient algorithms. [10] shows that the spectral
clustering algorithm applied to the normalized Laplacian in fact solves a relaxed version of the minimum cut
problem where the 2 objectives defined above are optimized.

You can also look at spectral clustering from a different angle. Computing the top eigenvectors of
the Laplacian is similar to computing the SVD of the matrix and choosing the left-singular eigenvectors
corresponding to the largest singular values. The result is a low-rank approximation where each point is
represented by a low-dimensional embedding. This process can be said to remove noise from the data [7].
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2.4 Similarity Matrix Computation

The input to the spectral clustering algoritm is a similarity matrix W . To compute this matrix, we need
to calculate the similarity between every pair of articles and then choose only those with similarity > ε.
There are

(
n
2

)
such pairs, which given the size of Wikipedia is computationally expensive.

One optimization that we make is to filter out all editors who have edited more than 1000 articles. Doing
so results in significant decreases in the runtimes of all the steps and offers some quality improvements. This
filtering removes a number of editors who have bot-like behavior, editing 1000s of articles and adding noise
to the data.

2.4.1 Exhaustive Computation

The standard way of computing the similarity matrix is to exhaustively compute the similarity between
every pair of articles, yielding the exact similarity matrix. Using this dataset we ran a full O(n2) computation
of Jaccard similarities between every pair of articles. This computation took 200 machines roughly 4 hours.

2.4.2 Locality Sensitive Hashing (LSH)

To optimize the computation of the similarity matrix, we use locality sensitive hashing to find subsets of
articles that are all approximately similar to each other. The locality sensitive hashing algorithm efficiently
puts similar items in the same buckets.

The steps to perform LSH are as follows:

Step 1: Each article in represented by the editors that edited the article, with the editors who have edited
more than 1000 articles excluded.

Step 2: Each of the editors of a particular article is hashed using b ·r different hash functions. Then, for each
hash function the minimum value over all the editors is taken as the minhash. It can be shown that
the probability that any one minhash of 2 articles is equal is the same as their Jaccard similarity.

Step 3: The minhash vector of each article is divided into b bands of r rows each. A hash is computed from
the minhashes in each band. All articles which have the same hash for the same band are placed in
the same bucket. Note that each article gets placed in b different buckets.

Step 4: All articles which fall into the same bucket are similar to each other with high probability. A 1 is
added to the output similarity matrix for every pair of articles in some bucket.

The probability that 2 articles with similarity s will be hashed to the same bucket is 1−(1−sr)b. Choosing(
1
b

) 1
r ≈ ε ensures that with high probability only articles with similarity ε will be hashed to the same bucket

in at least one of the bands. Low values of b and r result in less accuracy of the output similarity matrix,
thus giving a lower quality of clustering. The choice of b and r represents a tradeoff between computation
time and cluster quality. Figure 1 shows the tradeoff between values of b and r, and the accuracy of the
resulting output.
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Figure 1: Probability of hashing to the same bucket
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Note that a big benefit of using locality sensitive hashing is that the similarity matrix computation is
trivially parallelizable. For example, using MapReduce [2] the Mappers compute the buckets for each of the
articles in parallel. Then, each bucket becomes the key in the Reduce phase. All the articles that are in the
same bucket are joined in the Reducers.

3 Prior Work

Spectral clustering is an algorithm that is known to work very well in practice [5]. However, it is hard
to explain exactly why it works and what it does. Several papers provide different explanations. Notable
work by Ng et al. [5] uses matrix perturbation theory. Other works use random walks [3] or relaxation of
the graph normalized cut problem [8].

A good survey on the current state of spectral clustering is given by Luxburg [10]. It discusses various
aspects of spectral clustering including the mathematical concepts and theories. It presents several different
ways of doing the spectral clustering. Finally, it gives practical advice, based on a geometric interpretation
of the data, on which type of Laplacian to use and how to compute the similarity matrix.

Most of the algorithms and advice from the previous papers are based on small datasets. Chen et al [1]
describe attempts to handle large scale data using a distributed system. Their paper provides a thorough
analysis of the parallelizability of different steps of the algorithm, showing how the processing time changes
as the number of computing machines is increased. However, the computation of the similarity matrix takes
a very long time, even with large numbers of machines. The Mahout package includes a spectral clustering
implementation that is similar to the one discussed in [1], except for the fact that it uses Hadoop, instead
of message passing. However, we find that the implementation does not seem to work in a distributed
environment. Even then, the implementation still needs the similarity matrix as input.

More recently, the Spectral Neighborhood (SPAN) algorithm has been described in [9]. This algorithm
performs spectral clustering without computing pairwise similarities. It is similar to our work since it uses
a technique called blocking where points are divided into blocks and the similarities are computed only for
points in the same block. Although, an important difference in their application of spectral clustering is that
they do spectral biclustering where they repeatedly divide the points into 2 clusters using spectral graph
methods.

For this project we use the variant of spectral clustering and its distributed implementation as presented
in [1]. We apply the algorithm to the large Wikipedia edit history dataset and attempt to improve the
performance of the similarity matrix computation step.

4 Data Collection

We downloaded the Wikipedia edit history dataset containing all edits to the main namespace until some
point in 2008 from a link given on the SNAP website. We extracted the compressed 8.1G input file and
converted the data into 2202 sharded files totaling 205G. We then used MapReduce [2] to parse the data,
drop unnessary fields and put the data into a more structured format, yielding 100 files totaling 5.6G. We
also converted the data into a columnar data format for quick adhoc analysis using the Dremel tool [4].

Finally, using the structured data we built the article signature dataset containing for each article the
list of editors in sorted order. The resulting file is 99M in size, and is the input to the similarity matrix
computation.

5 Dataset Description

Our dataset includes information on 78,437,759 edits of 2,920,796 Wikipedia articles by 1,525,755 users.
2,144,290 of the articles have one or more of 543,502 categories associated with them. On average, each
article has 12.5 editors, with the maximum number of editors for some article being 5,913. The degree
distribution is shown in figure 2 and seems to follow a powerlaw for the most part.
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Figure 2: Article degree distribution

A total of 929,752,989,192 pairs of articles has non-zero similarity, with the similarities distributed as
shown in figure 3.
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Figure 3: Article similarity distribution

6 Clustering Quality Evaluation

We used the category information attached to each article in order to evaluate the different clusterings.
We summarized the category information of each article, giving us a single category for that article. To do
so we found the following quantities: number of edits, e, number of edits of article a, ea, number of edits
containing category c, ec, and number of edits of article a that contained the category c, ea,c. Then we
found the top category for each article by choosing the category with the highest tf · idf calculated using
the formula

tf · idf =

(
ea,c
ea

)
·
(

log
e

ec

)
We chose a sample of all the articles when calculating the quality metrics. This sampling was done to

ensure that the metrics for different clusterings were comparable to each other. The set of articles that were
clustered varied with the parameter ε since some articles did not have any other articles with similarity > ε.
The sample we chose included all the articles that had more than 2 editors, that had a category and that
had other articles with > 0.832 similarity to them. This sample consisted of a total of 18550 articles.
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We implemented 2 metrics: Ncut and normalized mutual information (NMI), described below. We used
2 baselines for our metrics. For the first baseline we randomly partitioned all of the articles into some given
number of clusters. For the second baseline we found the connected components of the similarity matrix
calculated using ε = 0.5. Each of these gave us a clustering that we then compared to the clusterings returned
by the algorithm.

6.1 Ncut

The Ncut metric is a minimum cut metric that captures 2 important goals of clustering: minimizing
between-cluster similarity and maximizing within-cluster similarity. For a graph G = (V,E) with each edge
(u, v) ∈ E having a weight wuv the between-cluster similarity is measured using the cut which is defined for
a cluster A as

cut(A, Ā) =
∑

(u,v)∈E|u∈A,v∈Ā

wuv

Between-cluster similarity is minimized when the cut is minimized.
The within-cluster similarity is measured using the difference between the volume and the cut, vol(A)−

cut(A, Ā), where the volume is defined as

vol(A) =
∑

(u,v)∈E|u∈A,v∈V

wuv

Within-cluster similarity is maximized when volume is maximized and cut is minimized.
Ncut captures both of the goals and is defined using the formula

Ncut(A1, . . . , Ak) =
1

2

k∑
i=1

cut(Ai, Āi)

vol(Ai)

where Ai is the set of articles in cluster i. Smaller values of Ncut are better.
We define a graph G = (V,E) on the articles using the top category information. We connect all the

articles in a given category to each other. Each edge of an article is given a uniform weight in such a way
that the total degree of each article is equal to 1.

6.2 Normalized Mutual Information (NMI)

The normalized mutual information metric is a measure of dependence of 2 random variables, where in
our case the random variables are the clusters, CLS and the top categories, CAT . The normalized mutual
information achieves a maximum value of 1 when the clusters exactly match the categories. The normalized
mutual information is defined as

NMI(CAT ;CLS) =
I(CAT ;CLS)√
H(CAT )H(CLS)

I(CAT ;CLS) captures the mutual information between the clusters and the categories. The category
and cluster entropies H(CAT ) and H(CLS), respectively, are used to normalize the mutual information to
be in the range [0, 1]. The formula is implemented by calculating 4 counts: the total number of articles, n,
the number of articles in a given category, ni, the number of articles in a given cluster, nj , and the number
of articles in a given category i and cluster j, nij . Given these counts, the normalized mutual information is
calculated as

NMI =

∑
i,j

ni,j

n log
n·nij

ni·nj√(∑
i−

ni

n log ni

n

) (∑
j −

nj

n log
nj

n

)
Larger values of NMI are better.
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7 Findings

We conducated 3 experiments in order to evaluate the performance of each of the 2 methods of construct-
ing the similarity matrix. In the first 2 experiments we determined how the quality of the clustering changes
as we vary the threshold, ε, and the number of clusters, k. We ran these experiments in order to understand
how sensitive our metrics are to changes in these parameters. Doing so helped us make sure that we were
not misinterpretting the final results. For our last experiment we fixed ε and k, and varied the values of
the 2 parameters of the locality sensitive hashing algorithm: b and r. In the last experiment we measured
the quality of the clustering as well as the runtime of the similarity matrix construction step using locality
sensitive hashing. We compared the results to the quality and the runtime of the algorithm on the exact
similarity matrix.

Additionally, we manually looked at the final clusterings and verified that they looked reasonable using
the manually compiled lists of articles as available on Wikipedia.

7.1 Experiments

7.1.1 Varying ε

In our first experiment we fixed the number of clusters, k, to 500. Then, we chose several levels of ε. We
chose ε based on the article similarity distribution graph shown in figure 3. Each ε was chosen to capture
a particularly frequently occuring value of the Jaccard similarity. The levels we settled on are 0.499, 0.57,
0.599, 0.624, 0.665, 0.713, 0.749, 0.799 and 0.823. The metrics for these values of ε are shown in figures 4
and 5.

●

● ●
● ●

● ● ●

●

500 random clusters500 random clusters500 random clusters500 random clusters500 random clusters500 random clusters500 random clusters500 random clusters500 random clusters

Connected componentsConnected componentsConnected componentsConnected componentsConnected componentsConnected componentsConnected componentsConnected componentsConnected components

1

10

100

1000

0.5 0.6 0.7 0.8
ε

N
cu

t

Figure 4: Ncut
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We find that the lower we choose ε the better the final clustering. However, computing the clustering
with lower values of ε takes more time. For the rest of our experiments we decided to use ε = 0.499.

7.1.2 Varying number of clusters k

In the second experiment we wanted to understand how the quality changes as we change the number
of clusters. We calculated each of the clusterings with ε = 0.499 and varying k. The results are shown in
figures 6 and 7.
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As expected as the number of clusters is increased the quality of the resulting clustering increases. This
experiment proved that the clustering was working as expected and showed how sensitive the metrics are to
the number of clusters. However, choosing higher values of k caused the runtime to increase significantly.
The slowest step of the algoritm, aside from the similarity matrix computation, was the eigendecomposition
step which we ran on 50 machines. For k = 100 this step took 20 minutes. For k = 500 this step took 3
hours. For k = 1000 this step took 10 hours. Since chosing higher values of k caused the runtime to increase
significantly, for the last experiment we fixed k to 500.

7.1.3 Locality Sensitive Hashing Evaluation

For our last experiment we compared locality sensitive hashing to the exhaustive matrix computation.
We chose 9 different values of the locality sensitive hashing parameters, b and r, all chosen in such a way that(

1
b

) 1
r = 0.5. We looked at the quality of the clusterings resulting from each choice. This data is presented

in figures 8 and 9.
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Figure 8: Ncut
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Figure 9: NMI

We can see that the quality of the LSH clusterings is comparable to the quality of the exact matrix
clusterings. In fact, for b · r = 32 ·5 = 160 or more the Ncut of the LSH clusterings is within 13% of the Ncut
of the exact matrix clusterings. What’s surprising is that for b · r = 8 · 3 = 24 or more the NMI is actually
better for the LSH clusterings.

The runtime of the LSH algorithm, however, is significantly lower than the runtime of the exhaustive
matrix computation, as shown in figure 10. For both the exact computation and for the locality sensitive
hashing computations 200 machines were used.
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Figure 10: LSH similarity matrix computation timings

This experiment shows that using the approximation of the similarity matrix as calculated using locality
sensitive hashing results in a final clustering the quality of which is comparable to the quality of the clustering
done on the exact similarity matrix. However, using locality sensitive hashing reduces the runtime of the
similarity matrix computation step by 10- to 20 fold.

7.2 Qualitative Evaluation

We handpicked a few lists of articles and checked to see if the articles in those lists were clustered together.
The examples that we found interesting were:

• Legislative districts of the Philippines

• Seasons of St. Louis Baseball team

• Seasons of CSI Miami (TV Show)

All the 82 articles about “Legislative districts of Phillipines” were clustered together, as were articles
about all the seasons of “CSI Miami”. 123 of the 124 of the articles for “Seasons of St. Louis Baseball team”
were in the same cluster.

Although most of the elements in the lists were in the same cluster, the clusters had lot of other articles
as well. This is because our k (500) was too small for a dataset this size. Choosing higher values of k was
prohibitive based on runtime.

We also filtered out articles which were not similar to any other article based on editors. This reduced
the number of articles by approximately 50%. We could not validate some lists like “American Presidents”.

8 Discussion

We show that using locality sensitive hashing during the computation of the similarity matrix computation
step significantly decreases the runtime of the overall algorithm. A major limitation of our work, though, is
the fact that not all distance functions have a nice locality sensitive hashing scheme. There exist schemes
for a number of other distance functions, such as cosine similarity [6]. However, such schemes are not always
easy to work with.

Another limitation of our work is the runtime of the eigendecomposition step. We show that as the
number of clusters increases the quality of the clustering increases significantly. However, the runtime
quickly becomes unmanageable. One way to address this issue is to do repeated spectral biclustering. This
divide and conquer algorithm is much easier to parallelize and may be more numerically stable. A variant
of this algorithm is presented in [9].
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