Network Effects and
Cascading Behavior




How the Class Fits Together

Observations

Small diameter,
Edge clustering

Patterns of signed
edge creation

Viral Marketing, Blogosphere,
Memetracking

Scale-Free

Densification power law,
Shrinking diameters

Strength of weak ties,
Core-periphery

Models

Erdos-Renyi model,
Small-world model

Structural balance,
Theory of status

Independent cascade model,
Game theoretic model

Preferential attachment,
Copying model

Microscopic model of
evolving networks

Kronecker Graphs

Algorithms

Decentralized search

Models for predicting
edge signs

Influence maximization,
Outbreak detection, LIM

PageRank, Hubs and
authorities

Link prediction,
Supervised random walks

Community detection:
Girvan-Newman, Modularity
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Spreading Through Networks

Spreading through Examples:

networks: Biological:
Cascading behavior Diseases via contagion
Diffusion of innovations Technological:
Network effects Cascading failures
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Epidemics

Jure

Spread of information

Social:

Rumors, news, new
technology

Viral marketing
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Information Diffusion

Obscure
tech story
Small tech
blog
Engadget
Slashdot Wired
BBC
NYT CNN
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Diffusion in Viral Marketing

Senders and followers of recommendations




Spread of Diseases
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Network Cascades

Contagion that spreads over the edges
of the network

It creates a propagation tree, i.e., cascade

/.

<l

Cascade

Network .
(propagation graph)
Terminology:
o Stuff that spreads: Contagion
* “Infection” event: Adoption, infection, activation

 We have: Infected/active nodes, adoptors
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How to Model Diffusion?

Probabilistic models:

Models of influence or disease spreading

An infected node tries to “push”
the contagion to an uninfected node

Example:

You “catch” a disease with some prob.
from each active neighbor in the network

Decision based models (today!):

Models of product adoption, decision making

A node observes decisions of its neighbors
and makes its own decision

Example:
You join demonstrations if k of your friends do so too
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Decision Based Model of
Diffusion



Decision Based Models

Two ingredients:
Payoffs:

Utility of making a particular choice
Signals:

Public information:

What your network neighbors have done

(Sometimes also) Private information:

Something you know

Your belief
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[Morris 2000]

Game Theoretic Model of Cascades

Based on 2 player coordination game
2 players — each chooses technology A or B

You gain more payoff if your friend has adopted the
same behavior as you

Local view of the
network of node v
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Example: BlueRay vs. HD DVD

=D o

Blet-rowy Disc
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The Model for Two Nodes

Payoff matrix:

If both v and w adopt behavior A,
they each get payoffa >0

If vand w adopt behavior B,
they reach get payoff b > 0

If vand w adopt the opposite
behaviors, they each get 0

Each node v is playing a copy of the
game with each of its neighbors

Payoff: sum of node payoffs per game
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Calculation of Node v

Threshold:
v choses A If

P>(=
(1-p)d X a+Db

neighbors
use B

/
|
|
\
|
|

pd neighbors
use A

Let v have d neighbors
Assume fraction p of v's neighbors adopt A

Payoff, = a-p-d If vchooses A
= b-(1-p)-d If vchooses B

Thus: v chooses A if: a-p-d > b-(1-p)-d
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Example Scenario

Scenario:
Graph where everyone starts with B.
Small set S of early adopters of A

Hard-wire S — they keep using A no matter
what payoffs tell them to do

Assume payoffs are set in such a way that
nodes say:

If 50% of my friends take A
I’ll also take A

(this means: a = b-e and g>1/2)
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Example Scenario

S ={u,v}

If than
50% of my
friends are red
'll be red
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Example Scenario

S ={u,v}

If than
50% of my
friends are red
'll be also red
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Example Scenario

S ={u,v}

If than
50% of my
friends are red
'll be red

10/16/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 18



Example Scenario

S ={u,v}

If than
50% of my
friends are red
'll be red
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Example Scenario

S ={u,v}

If than
50% of my
friends are red
'll be red
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Example Scenario

S ={u,v}

If than
50% of my
friends are red
'll be red
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Monotonic Spreading

Use of A spreads monotonically

(Nodes only switch B—>A, but never back to B)

10/16/2012

Proof sketch:
B—A

Now, suppose some node switched back
from A—B, consider the first node u to
do so (say at time t)

Earlier at some time t’ (t’<t) the same
node u switched B—A

So at time t” u was above threshold for A

But up to time t no node switched back to
B, so node u could only had more neighbors
who used A at time t compared to t’.

There was no reason for u to switch.

Il Contradiction !!
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Infinite Graphs

v choses A if p>q

Consider infinite graph G q:Lb

(but each node has finite number of neighbors!)
We say that a finite set in

G with threshold g if, when S adopts A,
eventually
Example:

If g<1/2 then cascade occurs

@—0@ 0@ 0 0O

S
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Infinite Graphs

X /
AL
| T s If q<1/3 then
b | < cascade occurs
/ S %

¢ If q<1/4 then
I 3 cascade occurs
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Cascade Capacity

Def:
The cascade capacity of a graph G is the
for which some can cause a
Fact:

There is no G where cascade capacity > %
Proof idea:

Suppose such G exists: >,
finite S causes cascade

Argue that
nodes stop switching after a
finite # of steps
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Cascade Capacity

Fact: There is no G where cascade capacity > %

Suppose such G exists: g>%, finite S causes cascade

Contradiction: Switching stops after a finite # of steps
Define “potential energy”

Argue that it starts finite (non-negative)
and strictly decreases at every step

“Energy”: = [d°oUY{(X) |
| dovt(X) | := # of outgoing edges of active set X

The only nodes that switch have a
strict majority of its neighborsin S ~

| d°u(X) | strictly decreases
It can do so only a finite number of steps
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Stopping Cascades

Def: IS a
where each node in the set has at least
fraction of edges in C.

p=3/5 p=2/3
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Stopping Cascades

Let S be an initial set of
adopters of A

All nodes apply threshold
g to decide whether

to switch to A p=3/5
No cascade if g>2/5

S

1) If G\S contains a cluster of density >(1-q)
then S can not cause a cascade

2) If S fails to create a cascade, then
there is a cluster of density >(1-q) in G\S
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Extending the Model:
Allow People to Adopt A and B



Cascades & Compatibility

Behaviors A and B compete

Can only get utility from neighbors of same
behavior:

Let’s add an extra strategy “A-B”
gets
gets
gets

Some for the effort of maintaining
both strategies (summed over all interactions)
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Cascades & Compatibility: Model

Every node in an infinite network starts with B
Then a finite set S initially adopts A
Run the model for t=1,2,3,...

Each node selects behavior that will optimize
payoff (given what its neighbors did in at time t-1)

-C -C

AB max(ab) IN:

\ Payoff

How will nodes switch from B to A or AB?
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Example: Path Graph

Path graph: Start with all Bs, a > b (A is better)
One node switches to A — what happens?

With just A, B: Aspreadsifa>b
With A, B, AB: Does A spread?

Cascade stops
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Example
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For what pairs (c,a) does A spread?

Infinite path, start with all Bs
A:a, B:1, AB:a+1-c

BvsA AB vs B
a+l-c=1

AB vs A
at+l-c=a

AB AB
1 a
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For what pairs (c,a) does A spread?

Infinite path, start with all Bs
A:a, B:1, AB:a+1-c

Bvs A AB vs B
C at+l-c=1
B
Since
a<l, c>1
1 AB vs A
a is high a+1-c=a
c <1, ABis opt
AB AB
1 a

10/16/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 35



For what pairs (c,a) does A spread?

A:a, B:1+1, AB:a+1-c

Bvs A AB vs B

1 ABvs A

AB | AB
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For what pairs (c,a) does A spread?

A:a, B:1+1, AB:a+1-c

BvsA AB vs B
C
B
a<2, c>1
then 2b > 2a
1 AB vs A
B c <1, then
atl-c>a
AB AB is opt
1 2 a
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For what pairs (c,a) does A spread?

C
5 A
1
AV B>AB — A
1 2 a
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Lesson

You manufacture default B and
new/better A comes along:

If B IS C
then people A spreads
will take on both and then 5 B-A
drop the worse one (B) stays
If A makes
itself — people ................
on the border must choose.
They pick the better one (A) SA B—~AB—A
If you choose an a

optimal level then you keep
a static “buffer” between A and B
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