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1 Introduction 
Facebook is currently one of the largest social 

networks with millions of daily active users logging 

in to access content posted by friends, family, 

colleagues, or even mere acquaintances. This 

social network and others have grown to become 

hosts to external applications that leverage the 

capabilities of the platform for anything from 

authentication to messaging to social interactions 

and customizations[1]. Some of the largest 

applications that leverage these features are the 

social online games. These gaming companies 

create applications that allow players with social 

media accounts to share their personal profile and 

friend information with the game to create a 

customized game experience. These companies 

are then able to collect rich behavioral data that 

can be used to give insight into communication, 

influence, and trade patterns in the games. 

Often, companies want to increase their active 

user base by bringing in new users or reactivating 

dormant users. One technique they employ is 

convincing players to send invites to friends by 

offering in-game incentives. However, most 

companies will ideally want to bring in new 

monetizing users, users who spend real money in 

the game. Therefore, it is important to target 

players who are good at bringing in monetizing 

users specifically. To this aim, we will experiment 

with influence maximization algorithms on one of 

these social game datasets to identify good 

methods of finding the most influential users at 

bringing in monetizing users. We will also perform 

a side experiment where we attempt to identify 

common attributes of these influential players. 

 

2 Prior Work 
There is significant work being done on social 

network data e.g. analyzing network properties [1]. 

Many have researched the diffusion of information 

or behavior adoption in social networks (generally 

categorized as social contagion). In general, the 

connections between two individuals, friendships, 

are extremely important in predicting behavior 

adoption due to the high level of trust friends have 

in one another [2]. 

Additionally, Microsoft researchers have 

compared the runtime of different influence 

maximization algorithms including Greedy and 

Cost-Effective Lazy Forward (CELF). They also 

test the runtime and optimal solution outputted by 

Hill Climbing algorithms that use the traditional 

marginal benefit method against a Degree 

Discount Heuristic-based approach. They showed 

that this approach returns a comparable optimal 

solution but runs much more quickly than either 
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greedy algorithm[4] Since the social game 

networks are very large, we will attempt to employ 

the Degree Discount approach as well as a 

reduced version of Lazy Hill Climbing that was 

inspired by Degree Discount to model influence 

maximization. 

We have not read previous research that 

attempts to identify characteristics of high 

influence players. 

 

3 Data 
    The social game we are analyzing for this 

project was currently has 700,000 daily active 

users (DAU) and just over 3.8 million total players. 

The company that produces this game has 

collected and stored all data generated by the 

game (e.g. user interactions, clicks, login activity) 

in a data warehouse. Therefore, the dataset is rich 

and contains a lot of data that will be unnecessary 

in our experiments. 

    We will use a subset of the social game graph 

that contains just users in April 2012, early in the 

game release. We chose this month because it is 

still a large network but is relatively free from 

inconsistencies in data that arise from users 

quitting the game or modifying their profile 

information. 

3.1 Data Collection 

The game collects data two ways: (1) by 

sending events to a dedicated analytics service in 

real time as they occur in the game on a per-

player basis and (2) by updating player state 

information and aggregate data in a database on 

the game server. From this server, we pulled a 

graph of current (October 2012) friend edge 

connections, list of user ids that existed in April 

2012, and a directed edge list of current friend 

connections where the destination node is a 

monetizing node called the Current Monetizing 

Graph. 

Now, we build the two networks we will use for 

influence maximization. From the current friend 

connection network, we pull all nodes that existed 

in the April node list. We then add all the edge 

connections between this subset of nodes. This 

graph is the April graph where directed edges 

indicate that the source node invited the 

destination node to the game. The second network 

is the subset of the Current Monetizing Graph that 

existed in April. Here, the directed edge implies 

that the source node invited and successfully 

brought in the destination node and that the 

destination node is a monetizing node. However, 

the source nodes are not necessarily monetizing 

nodes. Given a scenario where a high level, non-

monetizing player invites a new player. The new 

player may feel incentive to purchase in-game 

items in order to compete with his or her high-level 

friend. Therefore, we do not require source nodes 

to be monetizing nodes. This is the motivation for 

feature analysis on influential nodes rather than 

monetizing nodes. 

For analyzing features of influential nodes, we 

pulled some player attributes from the company’s 

database. Table 1 is a summary of the player 

attributes we retrieved. 

In order to make the data available to our 

graph analysis software, we store the data in a 

combination of tab-delimited files and serialized 

Python dictionaries (using pickle).  

Our current player data set includes all players 

identified by unique IDs, purchase behavior e.g. 

monetizing status, some activity attributes, and 

number of invitations sent and responded to. Of 

the invitations sent, there are 2 primary types: (1) 

Direct: direct messaging between players using 

the social platform’s integrated messaging system 

and (2) Spam: broadcast messaging to all friends 

of a player using the social platform’s “wall”.  

3.2 Initial Observations 

The graph of April players has 123,954 

players. The number of nodes with zero in-degree, 

players who found the game through banners or 

ads rather than friend invite, is 13,181. The 

average degree (in and out) of nodes in the graph 

is 4. 

We note that the in degree of each node can 

be greater than one. While each player ultimately 

accepts at most one invitation, they may receive 

multiple invitations before accepting. Using in 

degrees greater than 1 is reasonable since the 

combination of invitations is what ultimately 

influences a node to join the social game. 
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The other main data we are looking at is the 

player transaction data. The game sells bundles of 

in-game currency for Facebook Credits that 

players purchase with USD. Players can then use 

the currency they purchased to buy in-game items. 

Our data set shows that there are 37,245 current 

players who have purchased currency bundles for 

real money and that the range of amounts spent 

are 35 FBC to 24,250 FBC (over the life of the 

game) with an average of 319 FBC and a standard 

deviation of 675 FBC.  

We find that the growth of the graph is 

somewhere between a Preferential Graph (PG), 

leaning towards a Real World Graph (RWG). 

Figure 1 shows the degree distribution plot for the 

April graph. This type of growth makes sense 

since: there will be high clustering among the 

nodes since a significant portion of the people 

joining the game are through invites from friends 

(PG nature, node joining an existing node set) 

while the other significant portion of people joining 

are through advertising by the game publisher 

(RWG nature, new node through advertisements).  

Due to the nature of the graph we believe that 
we can effectively convert non-paying customers 
in the gaming network by pinpointing the true 
influencers, and giving them incentive and tools to 
influence.

Figure 1: plot of degree distribution proves April 
graph follows power law. Expected degree is 4 

Incentive example: Give an high influencer the 

option to earn X paid credits by distributing 

matching number of  X credits e.g. 5 each to X/5 

friends of his which are non-paying.  
 

Tool example: The option to distribute credits is 

the tool of influence that brings in new users.  
 

Our Influence Maximization algorithm will look 

to optimize incentive distribution in the network as 

incentives may be limited. We want to try to reach 

the maximum number of non-monetizing, either 

not in the game yet or in game and non-

monetizing, players possible while giving 

incentives to only a limited number of players.  

 

 

 Represents Attributes 

Node 

Player (unique ID) -purchase behavior (monetizing) 
-participation in company loyalty program 
- login streak 
-total play time 
-sessionCount 
-number directed invites sent 
-number spam invites sent 
-number direct invite responses 
-number spam invite responses 

Edge 

Player Interactions 
-social message sent/received 
-friendship (i.e. edge only 
exists if a social message was 
sent and accepted) 

-source node (inviter) 
-destination node (invited) 

Table 1: Summary of node  and edge attributes 
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3.3 Extracting True Values 
To find the true nodes of highest influence, we 

calculate the size of each node’s monetizing 

descendent set size, the number of monetizing 

nodes each node can reach. We use a Breadth-

First search (though a depth first search works as 

well) and count the number of monetizing nodes 

encountered during the search. Because many 

nodes can reach the same number of monetizing 

nodes due to the relatively small number of 

monetizing nodes in the graph, we do not rank 

nodes individually. Instead, we allow ties so that 

nodes with the same monetizing descendent set 

size have the same rank. 

 

4 Experiments 
Implementing the algorithms does not require 

much mathematical background. In general, 

influence maximization is a NP-hard problem 

(reducible tn vertex cover) so we only use 

approximations. Feature analysis on features that 

affect a node’s influence probability requires some 

basic machine learning knowledge in order to 

interpret the results 

 

4.1 Algorithms 

4.1.1 Lazy Hill Climbing 

To identify influential friends, we use the Lazy 

Hill-Climbing algorithm (LHC), a faster version of 

the traditional greedy Hill-Climbing algorithm. We 

define the influence of a node to be the number of 

nodes it can reach and thus influence. Briefly, the 

greedy Hill-Climbing algorithm is repeatedly 

identifies the most influential node by finding the 

node with maximum marginal benefit with respect 

to our current seed set then adding that node to 

our seed set. We repeat this until the seed set 

reaches a target size. We calculate the marginal 

benefit, delta, of each node u using the following 

equation: 

 

                         

                                                

 

However, greedy hill-climbing will not run 

efficiently on our dataset because it will recompute 

the marginal benefits for all nodes in the network 

for each iteration.  

Therefore, we implemented LHC. LHC utilizes 

the fact that marginal benefits only shrink as the 

set S grows. Instead of recomputing the marginal 

benefit for all nodes, we keep an ordered, 

descending list of marginal benefits from the 

previous iteration. We then re-evaluate the 

marginal benefit for the node with the max 

marginal benefit from the previous iteration and re-

sort the list. 

If the top node’s new marginal benefit is still 

greater than the marginal benefit (from the 

previous iteration) of the other nodes, then we add 

this node to the seed set since the marginal 

benefit of the remaining nodes cannot increase 

past this node’s marginal benefit. If the top node’s 

marginal benefit is not greater than the marginal 

benefit from the previous iteration of some other 

node, the algorithm will recompute and resort until 

one of the top nodes remains the top node after 

the re-sorting. 

 

4.1.2 Discount Degree Heuristic Selection 

To optimize the generation of each node’s 

influence set, we implement Discount Degree 

Selection (DDS)[4], a non-greedy influence 

maximization optimization. DDS is a modification 

on the pure degree heuristic that is commonly 

implemented for selecting seeds for influence 

maximization. The idea behind DDS is that if a 

node v has a neighbor u that is already in the seed 

set, v’s degree, the nodes it can influence, should 

be reduced since u being in the seed set already 

has lowered v’s helpfulness (case: edge v → u, 

where u is in the seed set). 

Now the benefit of adding the node v into the 

seed set is reduced to a relatively simple function 

of its out-degree, neighbors, and probability of 

influence. From [4] we have, 

 

For each node v, calculate: 

 t = num neighbors in seed set 

 out = out degree 

 p = according to equation from 4.2.1 

then:     marginal benefit = out - 2*t + (out-t)*t*p 

 

We will run the lazy hill-climbing algorithm 

using this heuristic instead of the previous 
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definition of “marginal benefit”. This modification 

should greatly reduce the runtime but we will 

experiment to see if using this heuristic results in a 

comparable seed set on our network.  

Additionally, DDS is able to ignore the multi-

level influence set due to the assumption that the 

probability of influence, p, for the nodes in the 

graph is very small (around 0.01). We will see in 

the Experiments section that this is an accurate 

assumption for this network. 

 

4.1.3 Lazy Hill Climbing-Direct Influence Set 

Since DDS can ignore the benefit from indirect 

descendents due to its assumption that the 

probability of influence is very small, we decided to 

test modified version of LHC based on the same 

assumption. Since the probability of any given 

node influencing another is very small, we assume 

that in general, nodes are only able to influence 

their direct neighbors (since the probability of 

influencing a neighbor and that neighbor 

influencing another node should be very small).  

Now, we restrict the influence set of each 

node to only the direct neighbors it can influence. 

We expect the runtime to decrease significantly 

since we no longer need to recursively calculate 

influence sets. However, the results of the 

algorithm will determine if ignoring the effects of 

indirect descendents is an appropriate assumption. 

We describe the implementation of this algorithm 

in the Experiments section. 

 

4.1.4 Best First for Feature Analysis 

We use a best first algorithm that chooses 

features using a greedy hill climbing algorithm with 

backtracking capabilities. Best first starts with the 

empty set of features and adds new features to 

the subset of selected features. We will use best 

first in conjunction with correlation feature 

selection (CFS). CFS evaluates each subset of 

features and returns higher scores for subsets that 

contain features with high correlation to the class 

labeling but low correlation between features. 

 

4.2 Experiments 

4.2.1 Choosing best algorithm 

When running LHC, LHC-direct and Degree 

Discount algorithms, we want to determine if a 

particular algorithm is consistently better than the 

other. We use multiple metrics to determine the 

conditions upon which we would recommend each 

algorithm to a social gaming company. 

We calculated each node’s probability of 

influence by counting the number of monetizing 

friends it has and dividing by the total number of 

invitations sent regardless of type: 

 

   
                            

                                     
 

 

The highest influence percentage (percentage 

representation of p) was .33. However, over 99% 

of the nodes had a probability of influence that 

was less than 0.2. Therefore, we are able to test 

degree discount and LHC-direct knowing that, in 

general, the p value is small. 

 

4.2.2 Feature selection for probability of 

influence 

The probability of a node v influencing a 

neighbor to monetize is dependent on multiple 

features. The node v’s activity, level in the game, 

amount of total playtime, and other attributes may 

affect the probability of influence. Additionally, 

edge properties of invitation (spam versus directed) 

also affect the probability. 

Since we want to determine the characteristics 

of high influence players, we will use feature 

selection analysis tool, weka, to determine how 

important each feature is with respect to 

determining the players’ p value. We will identify a 

subset of features that is relevant to determining 

probability of influence while also identifying some 

features that are irrelevant. 

 

4.3 Results 

4.3.1 Influence Max Results - Timing 
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The traditional version of lazy-hill climbing 

used recursion to generate each node’s influence 

set. We also tried with a slight modification to the 

recursive algorithm just for timing purposes. The 

second version generated each node’s direct 

influence set (influenced neighbors) then 

concatenated the influenced neighbors’ influence 

sets and so on to generate the full influence set 

Figure2: Runtimes for IM Algorithms 

Figure3: Seed Set Size by Monetizing influence set size 
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The timing comparison for both traditional LHC 

implementations along with LHC-direct and degree 

discount is shown in Figure 2. 

As expected, we found that the direct 

influence set version of LHC ran significantly faster 

than both traditional implementations since we did 

not need to generate the influence sets recursively.  

We were not surprised to see that degree 

discount ran significantly faster than the traditional 

LHC and comparably to LHC-direct. But we were 

surprised to note that traditional LHC ran very 

quickly after generating the initial influence sets. 

We observed that the top node usually remained 

the top node even after the reevaluating marginal 

benefit. This explains why the lazy hill climbing 

portion for traditional LHC is fast since re-

evaluation is only performed for a few nodes.  

For traditional LHC, the majority of the run 

time was spent generating the influence set for 

each of the nodes. This bottleneck has order    

run time as each of the nodes in the graph must 

execute a depth-first search (DFS) starting from 

that node to get the individual nodes’ influence 

sets. 

 

4.3.2 Influence Max Results – Influence Set 

To analyze the performance of the influence 

maximization algorithms, we plotted the seed set 

size versus the influence set size. The results are 

shown in Figure 3.
1
 

As expected, both LHC-direct and degree 

discount performed much better than the baseline 

of choosing random nodes. Additionally, the 

performance of LHC-direct and degree discount 

was comparable. However, degree discount 

consistently chose nodes that generated a larger 

influence set size than LHC-direct. 

Since LHC is supposed to be more accurate 
than degree discount, we attribute LHC-direct's 
performance to calculating influence set from only 
direct neighbors. The assumption that we can 
generally represent influence set for each node 
using direct neighbors only is too naive. Because 
LHC-direct loses a lot of information about the 
nodes such as degree and original neighbor set, 
the influential nodes the algorithm picked were not 
always optimal.  

                                                           
1
 It was infeasible for us to generate graph data for traditional LHC 

during this project given our resources and the algorithm runtime. 

 

4.3.3 Feature Analysis Results 

Using the true probability influence values as 

the labeling of each node, we analyzed the 

relevance of each of nine features: 

 number directed invites sent 

 number spam invites sent 

 number responses from directed invites 

 number responses from spam invites 

 monetizing status (true or false) 

 total play time 

 participation in company loyalty program 

(true or false)
2
 

 session count (number of logins) 

 login streak (number consecutive days) 

 

The subset returned by best first using CFS is: 

 (1) monetizing status 

 (2) session count 

Therefore, our hypothesis monetizing status not 

necessarily affecting node influence probability is 

inaccurate Session count is chosen as the other 

correlated attribute. Performing attribute selection 

without the session count attribute returns (1) 

monetizing and (2) total play time. This result is 

expected since the number of logins should be 

highly correlated with the amount of time played. 

However, session count may be a better feature 

because there may be players who played a lot 

when they first joined but did not continue playing 

the game over time. 

We then ran the feature selection algorithm 

again without the monetizing attribute and found 

that the best subset of features was: 

(1) number of responses to spam invites  

(2) session count 

This is interesting because the feature subset 

does not include direct responses. Feature 

selection without the spam responses still does 

not pick direct responses as a feature. We believe 

this is due to the higher volume of responses 

                                                           
2
 We were surprised to note that participation in company 

loyalty program had no correlation to the probability of 

influence since those players would generally be more active. 

We then observed that the values for that feature were all “true”. 

This is an error in data we received from the company. 
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received due to spam invites as opposed to direct 

invites.  

Finally, we ran feature selection without 

monetizing status and session count. The resulting 

subset is: 

(1) number directed invites 

(2) number spam invites 

(3) number directed responses 

(4) total play time 

We expected total play time in the subset but 

we were surprised to see the first three features 

instead of number spam responses. First, we now 

know that the number of directed and spam invites 

are not very correlated. This makes sense 

because players who enjoy spamming their friends 

would generally not also send direct invites. The 

opposite is also true where players who select 

individuals to invite would generally not also spam 

the rest of their friends. Second, this probably 

implies that the number of spam responses is 

correlated with total play time and/or number of 

spam invites since they do not appear together in 

feature subsets. This conclusion makes sense 

because players who spend more time in the 

game would probably send a higher volume of 

invites and receive a higher volume of responses 

as well. 

 

5 Summary 
5.1 Conclusion  

Our timing results are consistent with our 
expectations. Both degree discount and LHC-
direct run significantly faster than traditional LHC. 
However, we are only able to justify the use of 
degree discount and LHC-direct because we know 
that the true probabilities of influence for nodes in 

the graph are generally small so we are able to 
ignore non-neighbor influence.  

Overall, we find that degree discount and 
LHC-direct algorithms give similar influence set 
sizes. However, degree discount performs slightly 
better at selecting influential nodes than LHC-
direct. Therefore, we do not recommend LHC-
direct for influence maximization because degree 
discount heuristics produce better results with 
similar runtime. 

In feature selection, we concluded that 
monetizing status and session count composed a 
good feature set for determining a node's 
probability of influencing a node to join the game 
and monetize. However, we also determined that 
some of the features were correlated with session 
count and could also be used to predict a node's p 
value 

 

5.2 Future Work 

This project was only able to run on the social 

network data. It would be interesting to run similar 

algorithms for influence maximization and feature 

selection on the underlying social network data. 

Experiments in influence maximization on social 

network data would allow us compare the 

intersection of the high influence nodes at bringing 

in new users in general versus new monetizing 

users. Since companies are highly interested in 

increasing their monetizing user base specifically, 

such comparisons would be beneficial.  

Running feature selection on a larger feature 

set that includes geographical location, 

interactions on the underlying social network, 

user's social network statistics, etc. would be 

produce more insight into the characteristics and 

attributes of high influence nodes in the social 

game.
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