
1

Identifying Influential

Friends in Social Network

Gaming
December 11, 2012

Group 9

Ashley Jin Jessica Tai Karan Verma
ashpjin@stanford.edu jmtai@stanford.edu karanv@stanford.edu

1 Introduction
Facebook is currently one of the largest social

networks with millions of daily active users logging

in to access content posted by friends, family,

colleagues, or even mere acquaintances. This

social network and others have grown to become

hosts to external applications that leverage the

capabilities of the platform for anything from

authentication to messaging to social interactions

and customizations[1]. Some of the largest

applications that leverage these features are the

social online games. These gaming companies

create applications that allow players with social

media accounts to share their personal profile and

friend information with the game to create a

customized game experience. These companies

are then able to collect rich behavioral data that

can be used to give insight into communication,

influence, and trade patterns in the games.

Often, companies want to increase their active

user base by bringing in new users or reactivating

dormant users. One technique they employ is

convincing players to send invites to friends by

offering in-game incentives. However, most

companies will ideally want to bring in new

monetizing users, users who spend real money in

the game. Therefore, it is important to target

players who are good at bringing in monetizing

users specifically. To this aim, we will experiment

with influence maximization algorithms on one of

these social game datasets to identify good

methods of finding the most influential users at

bringing in monetizing users. We will also perform

a side experiment where we attempt to identify

common attributes of these influential players.

2 Prior Work
There is significant work being done on social

network data e.g. analyzing network properties [1].

Many have researched the diffusion of information

or behavior adoption in social networks (generally

categorized as social contagion). In general, the

connections between two individuals, friendships,

are extremely important in predicting behavior

adoption due to the high level of trust friends have

in one another [2].

Additionally, Microsoft researchers have

compared the runtime of different influence

maximization algorithms including Greedy and

Cost-Effective Lazy Forward (CELF). They also

test the runtime and optimal solution outputted by

Hill Climbing algorithms that use the traditional

marginal benefit method against a Degree

Discount Heuristic-based approach. They showed

that this approach returns a comparable optimal

solution but runs much more quickly than either

2

greedy algorithm[4] Since the social game

networks are very large, we will attempt to employ

the Degree Discount approach as well as a

reduced version of Lazy Hill Climbing that was

inspired by Degree Discount to model influence

maximization.

We have not read previous research that

attempts to identify characteristics of high

influence players.

3 Data
 The social game we are analyzing for this

project was currently has 700,000 daily active

users (DAU) and just over 3.8 million total players.

The company that produces this game has

collected and stored all data generated by the

game (e.g. user interactions, clicks, login activity)

in a data warehouse. Therefore, the dataset is rich

and contains a lot of data that will be unnecessary

in our experiments.

 We will use a subset of the social game graph

that contains just users in April 2012, early in the

game release. We chose this month because it is

still a large network but is relatively free from

inconsistencies in data that arise from users

quitting the game or modifying their profile

information.

3.1 Data Collection

The game collects data two ways: (1) by

sending events to a dedicated analytics service in

real time as they occur in the game on a per-

player basis and (2) by updating player state

information and aggregate data in a database on

the game server. From this server, we pulled a

graph of current (October 2012) friend edge

connections, list of user ids that existed in April

2012, and a directed edge list of current friend

connections where the destination node is a

monetizing node called the Current Monetizing

Graph.

Now, we build the two networks we will use for

influence maximization. From the current friend

connection network, we pull all nodes that existed

in the April node list. We then add all the edge

connections between this subset of nodes. This

graph is the April graph where directed edges

indicate that the source node invited the

destination node to the game. The second network

is the subset of the Current Monetizing Graph that

existed in April. Here, the directed edge implies

that the source node invited and successfully

brought in the destination node and that the

destination node is a monetizing node. However,

the source nodes are not necessarily monetizing

nodes. Given a scenario where a high level, non-

monetizing player invites a new player. The new

player may feel incentive to purchase in-game

items in order to compete with his or her high-level

friend. Therefore, we do not require source nodes

to be monetizing nodes. This is the motivation for

feature analysis on influential nodes rather than

monetizing nodes.

For analyzing features of influential nodes, we

pulled some player attributes from the company’s

database. Table 1 is a summary of the player

attributes we retrieved.

In order to make the data available to our

graph analysis software, we store the data in a

combination of tab-delimited files and serialized

Python dictionaries (using pickle).

Our current player data set includes all players

identified by unique IDs, purchase behavior e.g.

monetizing status, some activity attributes, and

number of invitations sent and responded to. Of

the invitations sent, there are 2 primary types: (1)

Direct: direct messaging between players using

the social platform’s integrated messaging system

and (2) Spam: broadcast messaging to all friends

of a player using the social platform’s “wall”.

3.2 Initial Observations

The graph of April players has 123,954

players. The number of nodes with zero in-degree,

players who found the game through banners or

ads rather than friend invite, is 13,181. The

average degree (in and out) of nodes in the graph

is 4.

We note that the in degree of each node can

be greater than one. While each player ultimately

accepts at most one invitation, they may receive

multiple invitations before accepting. Using in

degrees greater than 1 is reasonable since the

combination of invitations is what ultimately

influences a node to join the social game.

3

The other main data we are looking at is the

player transaction data. The game sells bundles of

in-game currency for Facebook Credits that

players purchase with USD. Players can then use

the currency they purchased to buy in-game items.

Our data set shows that there are 37,245 current

players who have purchased currency bundles for

real money and that the range of amounts spent

are 35 FBC to 24,250 FBC (over the life of the

game) with an average of 319 FBC and a standard

deviation of 675 FBC.

We find that the growth of the graph is

somewhere between a Preferential Graph (PG),

leaning towards a Real World Graph (RWG).

Figure 1 shows the degree distribution plot for the

April graph. This type of growth makes sense

since: there will be high clustering among the

nodes since a significant portion of the people

joining the game are through invites from friends

(PG nature, node joining an existing node set)

while the other significant portion of people joining

are through advertising by the game publisher

(RWG nature, new node through advertisements).

Due to the nature of the graph we believe that
we can effectively convert non-paying customers
in the gaming network by pinpointing the true
influencers, and giving them incentive and tools to
influence.

Figure 1: plot of degree distribution proves April
graph follows power law. Expected degree is 4

Incentive example: Give an high influencer the

option to earn X paid credits by distributing

matching number of X credits e.g. 5 each to X/5

friends of his which are non-paying.

Tool example: The option to distribute credits is

the tool of influence that brings in new users.

Our Influence Maximization algorithm will look

to optimize incentive distribution in the network as

incentives may be limited. We want to try to reach

the maximum number of non-monetizing, either

not in the game yet or in game and non-

monetizing, players possible while giving

incentives to only a limited number of players.

 Represents Attributes

Node

Player (unique ID) -purchase behavior (monetizing)
-participation in company loyalty program
- login streak
-total play time
-sessionCount
-number directed invites sent
-number spam invites sent
-number direct invite responses
-number spam invite responses

Edge

Player Interactions
-social message sent/received
-friendship (i.e. edge only
exists if a social message was
sent and accepted)

-source node (inviter)
-destination node (invited)

Table 1: Summary of node and edge attributes

4

3.3 Extracting True Values
To find the true nodes of highest influence, we

calculate the size of each node’s monetizing

descendent set size, the number of monetizing

nodes each node can reach. We use a Breadth-

First search (though a depth first search works as

well) and count the number of monetizing nodes

encountered during the search. Because many

nodes can reach the same number of monetizing

nodes due to the relatively small number of

monetizing nodes in the graph, we do not rank

nodes individually. Instead, we allow ties so that

nodes with the same monetizing descendent set

size have the same rank.

4 Experiments
Implementing the algorithms does not require

much mathematical background. In general,

influence maximization is a NP-hard problem

(reducible tn vertex cover) so we only use

approximations. Feature analysis on features that

affect a node’s influence probability requires some

basic machine learning knowledge in order to

interpret the results

4.1 Algorithms

4.1.1 Lazy Hill Climbing

To identify influential friends, we use the Lazy

Hill-Climbing algorithm (LHC), a faster version of

the traditional greedy Hill-Climbing algorithm. We

define the influence of a node to be the number of

nodes it can reach and thus influence. Briefly, the

greedy Hill-Climbing algorithm is repeatedly

identifies the most influential node by finding the

node with maximum marginal benefit with respect

to our current seed set then adding that node to

our seed set. We repeat this until the seed set

reaches a target size. We calculate the marginal

benefit, delta, of each node u using the following

equation:

However, greedy hill-climbing will not run

efficiently on our dataset because it will recompute

the marginal benefits for all nodes in the network

for each iteration.

Therefore, we implemented LHC. LHC utilizes

the fact that marginal benefits only shrink as the

set S grows. Instead of recomputing the marginal

benefit for all nodes, we keep an ordered,

descending list of marginal benefits from the

previous iteration. We then re-evaluate the

marginal benefit for the node with the max

marginal benefit from the previous iteration and re-

sort the list.

If the top node’s new marginal benefit is still

greater than the marginal benefit (from the

previous iteration) of the other nodes, then we add

this node to the seed set since the marginal

benefit of the remaining nodes cannot increase

past this node’s marginal benefit. If the top node’s

marginal benefit is not greater than the marginal

benefit from the previous iteration of some other

node, the algorithm will recompute and resort until

one of the top nodes remains the top node after

the re-sorting.

4.1.2 Discount Degree Heuristic Selection

To optimize the generation of each node’s

influence set, we implement Discount Degree

Selection (DDS)[4], a non-greedy influence

maximization optimization. DDS is a modification

on the pure degree heuristic that is commonly

implemented for selecting seeds for influence

maximization. The idea behind DDS is that if a

node v has a neighbor u that is already in the seed

set, v’s degree, the nodes it can influence, should

be reduced since u being in the seed set already

has lowered v’s helpfulness (case: edge v → u,

where u is in the seed set).

Now the benefit of adding the node v into the

seed set is reduced to a relatively simple function

of its out-degree, neighbors, and probability of

influence. From [4] we have,

For each node v, calculate:

 t = num neighbors in seed set

 out = out degree

 p = according to equation from 4.2.1

then: marginal benefit = out - 2*t + (out-t)*t*p

We will run the lazy hill-climbing algorithm

using this heuristic instead of the previous

5

definition of “marginal benefit”. This modification

should greatly reduce the runtime but we will

experiment to see if using this heuristic results in a

comparable seed set on our network.

Additionally, DDS is able to ignore the multi-

level influence set due to the assumption that the

probability of influence, p, for the nodes in the

graph is very small (around 0.01). We will see in

the Experiments section that this is an accurate

assumption for this network.

4.1.3 Lazy Hill Climbing-Direct Influence Set

Since DDS can ignore the benefit from indirect

descendents due to its assumption that the

probability of influence is very small, we decided to

test modified version of LHC based on the same

assumption. Since the probability of any given

node influencing another is very small, we assume

that in general, nodes are only able to influence

their direct neighbors (since the probability of

influencing a neighbor and that neighbor

influencing another node should be very small).

Now, we restrict the influence set of each

node to only the direct neighbors it can influence.

We expect the runtime to decrease significantly

since we no longer need to recursively calculate

influence sets. However, the results of the

algorithm will determine if ignoring the effects of

indirect descendents is an appropriate assumption.

We describe the implementation of this algorithm

in the Experiments section.

4.1.4 Best First for Feature Analysis

We use a best first algorithm that chooses

features using a greedy hill climbing algorithm with

backtracking capabilities. Best first starts with the

empty set of features and adds new features to

the subset of selected features. We will use best

first in conjunction with correlation feature

selection (CFS). CFS evaluates each subset of

features and returns higher scores for subsets that

contain features with high correlation to the class

labeling but low correlation between features.

4.2 Experiments

4.2.1 Choosing best algorithm

When running LHC, LHC-direct and Degree

Discount algorithms, we want to determine if a

particular algorithm is consistently better than the

other. We use multiple metrics to determine the

conditions upon which we would recommend each

algorithm to a social gaming company.

We calculated each node’s probability of

influence by counting the number of monetizing

friends it has and dividing by the total number of

invitations sent regardless of type:

The highest influence percentage (percentage

representation of p) was .33. However, over 99%

of the nodes had a probability of influence that

was less than 0.2. Therefore, we are able to test

degree discount and LHC-direct knowing that, in

general, the p value is small.

4.2.2 Feature selection for probability of

influence

The probability of a node v influencing a

neighbor to monetize is dependent on multiple

features. The node v’s activity, level in the game,

amount of total playtime, and other attributes may

affect the probability of influence. Additionally,

edge properties of invitation (spam versus directed)

also affect the probability.

Since we want to determine the characteristics

of high influence players, we will use feature

selection analysis tool, weka, to determine how

important each feature is with respect to

determining the players’ p value. We will identify a

subset of features that is relevant to determining

probability of influence while also identifying some

features that are irrelevant.

4.3 Results

4.3.1 Influence Max Results - Timing

6

The traditional version of lazy-hill climbing

used recursion to generate each node’s influence

set. We also tried with a slight modification to the

recursive algorithm just for timing purposes. The

second version generated each node’s direct

influence set (influenced neighbors) then

concatenated the influenced neighbors’ influence

sets and so on to generate the full influence set

Figure2: Runtimes for IM Algorithms

Figure3: Seed Set Size by Monetizing influence set size

7

The timing comparison for both traditional LHC

implementations along with LHC-direct and degree

discount is shown in Figure 2.

As expected, we found that the direct

influence set version of LHC ran significantly faster

than both traditional implementations since we did

not need to generate the influence sets recursively.

We were not surprised to see that degree

discount ran significantly faster than the traditional

LHC and comparably to LHC-direct. But we were

surprised to note that traditional LHC ran very

quickly after generating the initial influence sets.

We observed that the top node usually remained

the top node even after the reevaluating marginal

benefit. This explains why the lazy hill climbing

portion for traditional LHC is fast since re-

evaluation is only performed for a few nodes.

For traditional LHC, the majority of the run

time was spent generating the influence set for

each of the nodes. This bottleneck has order

run time as each of the nodes in the graph must

execute a depth-first search (DFS) starting from

that node to get the individual nodes’ influence

sets.

4.3.2 Influence Max Results – Influence Set

To analyze the performance of the influence

maximization algorithms, we plotted the seed set

size versus the influence set size. The results are

shown in Figure 3.
1

As expected, both LHC-direct and degree

discount performed much better than the baseline

of choosing random nodes. Additionally, the

performance of LHC-direct and degree discount

was comparable. However, degree discount

consistently chose nodes that generated a larger

influence set size than LHC-direct.

Since LHC is supposed to be more accurate
than degree discount, we attribute LHC-direct's
performance to calculating influence set from only
direct neighbors. The assumption that we can
generally represent influence set for each node
using direct neighbors only is too naive. Because
LHC-direct loses a lot of information about the
nodes such as degree and original neighbor set,
the influential nodes the algorithm picked were not
always optimal.

1
 It was infeasible for us to generate graph data for traditional LHC

during this project given our resources and the algorithm runtime.

4.3.3 Feature Analysis Results

Using the true probability influence values as

the labeling of each node, we analyzed the

relevance of each of nine features:

 number directed invites sent

 number spam invites sent

 number responses from directed invites

 number responses from spam invites

 monetizing status (true or false)

 total play time

 participation in company loyalty program

(true or false)
2

 session count (number of logins)

 login streak (number consecutive days)

The subset returned by best first using CFS is:

 (1) monetizing status

 (2) session count

Therefore, our hypothesis monetizing status not

necessarily affecting node influence probability is

inaccurate Session count is chosen as the other

correlated attribute. Performing attribute selection

without the session count attribute returns (1)

monetizing and (2) total play time. This result is

expected since the number of logins should be

highly correlated with the amount of time played.

However, session count may be a better feature

because there may be players who played a lot

when they first joined but did not continue playing

the game over time.

We then ran the feature selection algorithm

again without the monetizing attribute and found

that the best subset of features was:

(1) number of responses to spam invites

(2) session count

This is interesting because the feature subset

does not include direct responses. Feature

selection without the spam responses still does

not pick direct responses as a feature. We believe

this is due to the higher volume of responses

2
 We were surprised to note that participation in company

loyalty program had no correlation to the probability of

influence since those players would generally be more active.

We then observed that the values for that feature were all “true”.

This is an error in data we received from the company.

8

received due to spam invites as opposed to direct

invites.

Finally, we ran feature selection without

monetizing status and session count. The resulting

subset is:

(1) number directed invites

(2) number spam invites

(3) number directed responses

(4) total play time

We expected total play time in the subset but

we were surprised to see the first three features

instead of number spam responses. First, we now

know that the number of directed and spam invites

are not very correlated. This makes sense

because players who enjoy spamming their friends

would generally not also send direct invites. The

opposite is also true where players who select

individuals to invite would generally not also spam

the rest of their friends. Second, this probably

implies that the number of spam responses is

correlated with total play time and/or number of

spam invites since they do not appear together in

feature subsets. This conclusion makes sense

because players who spend more time in the

game would probably send a higher volume of

invites and receive a higher volume of responses

as well.

5 Summary
5.1 Conclusion

Our timing results are consistent with our
expectations. Both degree discount and LHC-
direct run significantly faster than traditional LHC.
However, we are only able to justify the use of
degree discount and LHC-direct because we know
that the true probabilities of influence for nodes in

the graph are generally small so we are able to
ignore non-neighbor influence.

Overall, we find that degree discount and
LHC-direct algorithms give similar influence set
sizes. However, degree discount performs slightly
better at selecting influential nodes than LHC-
direct. Therefore, we do not recommend LHC-
direct for influence maximization because degree
discount heuristics produce better results with
similar runtime.

In feature selection, we concluded that
monetizing status and session count composed a
good feature set for determining a node's
probability of influencing a node to join the game
and monetize. However, we also determined that
some of the features were correlated with session
count and could also be used to predict a node's p
value

5.2 Future Work

This project was only able to run on the social

network data. It would be interesting to run similar

algorithms for influence maximization and feature

selection on the underlying social network data.

Experiments in influence maximization on social

network data would allow us compare the

intersection of the high influence nodes at bringing

in new users in general versus new monetizing

users. Since companies are highly interested in

increasing their monetizing user base specifically,

such comparisons would be beneficial.

Running feature selection on a larger feature

set that includes geographical location,

interactions on the underlying social network,

user's social network statistics, etc. would be

produce more insight into the characteristics and

attributes of high influence nodes in the social

game.

References

[1] Ugander J, Karer B, Backstrom L, Marlow C (2011). The Anatomy of the Facebook Social Graph. 1-14.
[2] Guha R, Kumar R, Raghavan P, Tomkins A (2004). Propagation of Trust and Distrust. 403-412.
[3] Szeil M, Lambiotte R, Thurner S (2010). Multirelational Organization of large-scale social networks in an online world. PNAS
[4] Chen, W., Wang, Y., and Yang, S. Efficient Influence Maximization in Social Networks. ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining: 199-209, 2009

