Quick Tour of Basic Probability Theory and Linear Algebra

CS224w: Social and Information Network Analysis Fall 2011

Basic Probability Theory

Outline

■ Definitions and theorems: independence, Bayes,...
■ Random variables: pdf, expectation, variance, typical distributions,...
■ Bounds: Markov, Chebyshev and Chernoff
■ Method of indicators
■ Multi-dimensional random variables: joint distribution, covariance,...

- Maximum likelihood estimation

■ Convergence: Central limit theorem and interesting limits

Elements of Probability

Definition:
■ Sample Space Ω : Set of all possible outcomes
■ Event Space \mathcal{F} : A family of subsets of Ω
■ Probability Measure: Function $P: \mathcal{F} \rightarrow \mathbb{R}$ with properties:
$1 P(A) \geq 0 \quad(\forall A \in \mathcal{F})$
$2 P(\Omega)=1$
$3 A_{i}$'s disjoint, then $P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)$
Sample spaces can be discrete (rolling a die) or continuous (wait time in line)

Conditional Probability and Independence

Conditional probability:
\square For events A, B :

$$
P(A \mid B)=\frac{P(A \bigcap B)}{P(B)}
$$

■ Intuitively means "probability of A when B is known" Independence

■ A, B independent if $P(A \mid B)=P(A)$ or equivalently: $P(A \bigcap B)=P(A) P(B)$
\square Beware of intuition: roll two dies (x_{a} and x_{b}), outcomes $\left\{x_{a}=2\right\}$ and $\left\{x_{a}+x_{b}=k\right\}$ are independent if $k=7$, but not otherwise!

Basic laws and bounds

\square Union bound: since $P(A \cup B)=P(A)+P(B)-P(A \cap B)$, we have

$$
P\left(\bigcup_{i} A_{i}\right) \leq \sum_{i} P\left(A_{i}\right)
$$

■ Law of total probability: if $\bigcup_{i} A_{i}=\Omega$, then

$$
P(B)=\sum_{i} P\left(A_{i} \cap B\right)=\sum_{i} P\left(A_{i}\right) P\left(B \mid A_{i}\right)
$$

■ Chain rule: $P\left(A_{1}, A_{2}, \ldots, A_{N}\right)=$
$P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1}, A_{2}\right) \cdots P\left(A_{N} \mid A_{1}, \ldots, A_{N-1}\right)$
■ Bayes rule: $P(A \mid B)=P(B \mid A) \frac{P(A)}{P(B)}$ (several versions)

Random Variables and Distributions

- A random variable X is a function $X: \Omega \rightarrow \mathbb{R}$ Example: Number of heads in 20 tosses of a coin
■ Probabilities of events associated with random variables defined based on the original probability function. e.g., $P(X=k)=P(\{\omega \in \Omega \mid X(\omega)=k\})$
■ Cumulative Distribution Function (CDF) $F_{X}: \mathbb{R} \rightarrow[0,1]$: $F_{X}(x)=P(X \leq x)$
■ (X discrete) Probability Mass Function (pmf): $p_{X}(x)=P(X=x)$
■ (X continuous) Probability Density Function (pdf): $f_{X}(x)=d F_{X}(x) / d x$

Properties of Distribution Functions

■ CDF:
■ $0 \leq F_{X}(x) \leq 1$

- F_{X} monotone increasing, with $\lim _{x \rightarrow-\infty} F_{X}(x)=0$,

$$
\lim _{x \rightarrow \infty} F_{X}(x)=1
$$

■ pmf:
■ $0 \leq p_{x}(x) \leq 1$

- $\sum_{x} p_{x}(x)=1$

■ $\sum_{x \in A} p_{X}(x)=p_{X}(A)$
■ pdf:

- $f_{X}(x) \geq 0$
- $\int_{-\infty}^{\infty} f_{X}(x) d x=1$
- $\int_{x \in A} f_{X}(x) d x=P(X \in A)$

Expectation and Variance

$■$ Assume random variable X has pdf $f_{X}(x)$, and $g: \mathbb{R} \rightarrow \mathbb{R}$. Then

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f_{x}(x) d x
$$

- for discrete $X, E[g(X)]=\sum_{x} g(x) p_{X}(x)$
\square Expectation is linear:
■ for any constant $a \in \mathbb{R}, E[a]=a$
- $E[a g(X)]=a E[g(X)]$

■ $E[g(X)+h(X)]=E[g(X)]+E[h(X)]$
■ $\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}$

Conditional Expectation

$\square E[g(X, Y) \mid Y=a]=\sum_{X} g(x, a) p_{X \mid Y=a}(x)$ (similar for continuous random variables)
■ Iterated expectation:

$$
E[g(X, Y)]=E_{a}[E[g(X, Y) \mid Y=a]]
$$

Often useful in practice. Example: number of heads in N flips of a coin with random bias $p \in[0,1]$ with pdf $f_{p}(x)=2(1-x)$ is $\frac{N}{3}$

Some Common Random Variables

■ $X \sim \operatorname{Bernoulli}(p)(0 \leq p \leq 1): p_{X}(x)= \begin{cases}p & x=1, \\ 1-p & x=0 .\end{cases}$
■ $X \sim \operatorname{Geometric}(p)(0 \leq p \leq 1): p_{X}(x)=p(1-p)^{x-1}$

- $X \sim \operatorname{Uniform}(a, b)(a<b): f_{X}(x)= \begin{cases}\frac{1}{b-a} & a \leq x \leq b, \\ 0 & \text { otherwise } .\end{cases}$

■ $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right): f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}$

Binomial distribution

■ Combinatorics: consider a bag with n different balls
■ number of different ordered subsets with k elements:

$$
n(n-1) \cdots(n-k+1)
$$

■ number of different unordered subsets with k elements:

$$
\binom{\mathrm{n}}{\mathrm{k}}=\frac{n!}{k!(n-k)!}
$$

■ $X \sim \operatorname{Binomial}(n, p)(n>0, \quad 0 \leq p \leq 1)$:

$$
p_{X}(x)=\binom{\mathrm{n}}{\mathrm{x}} p^{x}(1-p)^{n-x}
$$

Method of indicators

■ Goal: find expected number of successes out of N trials

- Method: define an indicator (Bernoulli) random variable for each trial, find expected value of the sum
■ Examples:
\square Bowl with N spaghetti strands. Keep picking ends and joining. Expected number of loops?
■ N drunk sailors pass out on random bunks. Expected number on their own?

Some Useful Inequalities

$■$ Markov's Inequality: X random variable, and $a>0$. Then:

$$
P(|X| \geq a) \leq \frac{E[|X|]}{a}
$$

■ Chebyshev's Inequality: If $E[X]=\mu, \operatorname{Var}(X)=\sigma^{2}, k>0$, then:

$$
\operatorname{Pr}(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

■ Chernoff bound: Let X_{1}, \ldots, X_{n} independent Bernoulli with $P\left(X_{i}=1\right)=p_{i}$. Denoting $\mu=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} p_{i}$,

$$
P\left(\sum_{i=1}^{n} X_{i} \geq(1+\delta) \mu\right) \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

for any δ. Multiple variants of Chernoff-type bounds exist, which can be useful in different settings

Multiple Random Variables and Joint Distributions

X_{1}, \ldots, X_{n} random variables
$■$ Joint CDF: $F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)$
$■$ Joint pdf: $f_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial^{n} F_{X_{1}, \ldots, x_{n}\left(x_{1}, \ldots, x_{n}\right)}^{\partial x_{1} \ldots \partial x_{n}}}{}$
■ Marginalization:

$$
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right) d x_{2} \ldots d x_{n}
$$

\square Conditioning: $f_{X_{1} \mid X_{2}, \ldots, x_{n}}\left(x_{1} \mid x_{2}, \ldots, x_{n}\right)=\frac{f_{x_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right)}{f_{x_{2}}, \ldots, x_{n}\left(x_{2}, \ldots, x_{n}\right)}$
■ Chain Rule: $f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}\right) \prod_{i=2}^{n} f\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$
■ Independence: $f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}\right)$.

Random Vectors

X_{1}, \ldots, X_{n} random variables. $X=\left[X_{1} X_{2} \ldots X_{n}\right]^{T}$ random vector.

■ If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then

$$
E[g(X)]=\int_{\mathbb{R}^{n}} g\left(x_{1}, \ldots, x_{n}\right) f_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

■ if $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, g=\left[g_{1} \ldots g_{m}\right]^{T}$, then $E[g(X)]=\left[E\left[g_{1}(X)\right] \ldots E\left[g_{m}(X)\right]\right]^{T}$
■ Covariance Matrix:

$$
\Sigma=\operatorname{Cov}(X)=E\left[(X-E[X])(X-E[X])^{T}\right]
$$

■ Properties of Covariance Matrix:
$■ \Sigma_{i j}=\operatorname{Cov}\left[X_{i}, X_{j}\right]=E\left[\left(X_{i}-E\left[X_{i}\right]\right)\left(X_{j}-E\left[X_{j}\right]\right)\right]$
$\square \Sigma$ symmetric, positive semidefinite

Multivariate Gaussian Distribution

$\mu \in \mathbb{R}^{n}, \Sigma \in \mathbb{R}^{n \times n}$ symmetric, positive semidefinite $X \sim \mathcal{N}(\mu, \Sigma) n$-dimensional Gaussian distribution:

$$
f_{X}(x)=\frac{1}{(2 \pi)^{n / 2} \operatorname{det}(\Sigma)^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

■ $E[X]=\mu$
■ $\operatorname{Cov}(X)=\Sigma$

Parameter Estimation: Maximum Likelihood

■ Parametrized distribution $f_{X}(x ; \theta)$ with parameter(s) θ unknown.
■ IID samples x_{1}, \ldots, x_{n} observed.
■ Goal: Estimate θ
■ (Ideally) MAP: $\hat{\theta}=\operatorname{argmax}_{\theta}\left\{f_{\Theta \mid X}\left(\theta \mid X=\left(x_{1}, \ldots, x_{n}\right)\right)\right\}$
■ (In practice) MLE: $\hat{\theta}=\operatorname{argmax}_{\theta}\left\{f_{X \mid \theta}\left(x_{1}, \ldots, x_{n} ; \theta\right)\right\}$

MLE Example

$X \sim \operatorname{Gaussian}\left(\mu, \sigma^{2}\right) . \theta=\left(\mu, \sigma^{2}\right)$ unknown. Samples x_{1}, \ldots, x_{n}. Then:

$$
f\left(x_{1}, \ldots, x_{n} ; \mu, \sigma^{2}\right)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left(-\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)
$$

Setting: $\frac{\partial \log f}{\partial \mu}=0$ and $\frac{\partial \log f}{\partial \sigma}=0$ Gives:

$$
\hat{\mu}_{M L E}=\frac{\sum_{i=1}^{n} x_{i}}{n}, \hat{\sigma}_{M L E}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}}{n}
$$

Sometimes it is not possible to find the optimal estimate in closed form, then iterative methods can be used.

Central limit theorem

■ Central limit theorem: Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid with finite mean μ and finite variance σ^{2}, then the random variable $Y=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is approximately Gaussian with mean μ and variance $\frac{\sigma^{2}}{n}$

- Approximation becomes better as n grows

■ Law of large numbers as a corollary

Interesting limits

- $\lim _{n \rightarrow \infty}\left(1+\frac{k}{n}\right)^{n} \rightarrow e^{k}$

■ $\lim _{n \rightarrow \infty} n!\rightarrow \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$ (lower bound)

- $\lim _{n \rightarrow \infty} n^{\frac{1}{n}} \rightarrow 1$
- $\lim _{(n, \epsilon) \rightarrow(\infty, 0)} \operatorname{Binomial}(n, \epsilon) \rightarrow \operatorname{Poisson}(n \epsilon)$
- $\lim _{n \rightarrow \infty} \operatorname{Binomial}(n, p) \rightarrow \operatorname{Normal}(n p, n p(1-p))$

References

1 CS229 notes on basic linear algebra and probability theory
2 Wikipedia!

