Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and

Linear Algebra

CS224w: Social and Information Network Analysis
Fall 2011



Quick Tour of Basic Probability Theory and Linear Algebra

L Basic Probability Theory

Basic Probability Theory



Quick Tour of Basic Probability Theory and Linear Algebra

L Basic Probability Theory

Outline

m Definitions and theorems: independence, Bayes,. ..

m Random variables: pdf, expectation, variance, typical
distributions,. ..

m Bounds: Markov, Chebyshev and Chernoff
m Method of indicators

m Multi-dimensional random variables: joint distribution,
covariance,. ..

m Maximum likelihood estimation
m Convergence: Central limit theorem and interesting limits
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Elements of Probability

Definition:
m Sample Space Q: Set of all possible outcomes
m Event Space F: A family of subsets of Q2
m Probability Measure: Function P : F — R with properties:
P(A) >0 (VA€ F)
P(Q) =1
Ay’s disjoint, then P(|J; Ai) = Y P(A)
Sample spaces can be discrete (rolling a die) or continuous
(wait time in line)
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Conditional Probability and Independence

Conditional probability:
m For events A, B:

p(alB) = "A(B)

m Intuitively means “probability of A when B is known”
Independence
m A, B independentif P(A|B) = P(A) or equivalently:
P(ANB)=P(A)P(B)
m Beware of intuition: roll two dies (x4 and xp), outcomes
{Xa = 2} and {Xa + X, = k} are independentif k = 7, but
not otherwise!
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Basic laws and bounds

m Union bound: since P(AUB) =P(A)+ P(B) — P(ANB),
we have
P(LJA) <D P(A
i i
m Law of total probability: if | J; Aj = ©, then

B)_ZPA,mB)_ZP P(B|A)

m Chainrule: P(A1,A,,...,Ay) =
P(A1)P(A2|A1)P(A3|A1,A2) - - P(An]AL, ..., An—1)

m Bayes rule: P(AB) = P(B|A)% (several versions)
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Random Variables and Distributions

m A random variable X isafunction X : Q@ — R
Example: Number of heads in 20 tosses of a coin

m Probabilities of events associated with random variables
defined based on the original probability function. e.g.,
P(X =k) =P({w € QX(w) =k})

m Cumulative Distribution Function (CDF) Fx : R — [0, 1]:
Fx(x) =P(X <x)

m (X discrete) Probability Mass Function (pmf):
px(X) = P(X =x)

m (X continuous) Probability Density Function (pdf):
fx (x) = dFx (x)/dx
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Properties of Distribution Functions

m CDF:

BO<Fx(x)<1

m Fx monotone increasing, with limy_, . Fx(x) =0,
m pmf:
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Expectation and Variance

m Assume random variable X has pdf fx(x), and g : R — R.
Then

Elg00)] = [ " g0 (x)dx

m for discrete X, E[g(X)] = >, 9(X)px(X)
m Expectation is linear:

m forany constanta € R, E[a] = a
m E[ag(X)] = aE[g(X)]
m E[g(X) +h(X)] = E[g(X)] + E[h(X)]

m Var[X] = E[(X — E[X])?] = E[X?] — E[X]?
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Conditional Expectation

m E[g(X, Y)Y =a] =}, 9(x,a)pxy=a(x) (similar for
continuous random variables)

m lterated expectation:
Elg(X,Y)] = Ea[E[g(X, Y)Y =a]]

Often useful in practice. Example: number of heads in N
flips of a coin with random bias p < [0, 1] with pdf
fo(x) =2(1 —x)is §
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Some Common Random Variables
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Binomial distribution

m Combinatorics: consider a bag with n different balls
m number of different ordered subsets with k elements:

nn—1)---(n—k +1)

m number of different unordered subsets with k elements:

m X ~ Binomial(n,p)(n >0, 0<p<1):

Px (x) = ( ) )px(l—p)”‘x
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Method of indicators

m Goal: find expected number of successes out of N trials

m Method: define an indicator (Bernoulli) random variable for
each trial, find expected value of the sum
m Examples:
m Bowl with N spaghetti strands. Keep picking ends and
joining. Expected number of loops?

m N drunk sailors pass out on random bunks. Expected
number on their own?
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Some Useful Inequalities

m Markov’s Inequality: X random variable, and a > 0. Then:

E[IX
P(IX| > a) < [I )
m Chebyshev’s Inequality: If E[X] = p, Var(X) = o2, k > 0,
then: L
Pr(|IX —u| > ko) < 2
m Chernoff bound: Let Xy, ..., X, independent Bernoulli with

P(Xi = 1) = p;. Denoting . = E[>1 4 Xi] = 3311 pi,

n e‘S a
P(; Xi Z (140)p) < <m)

for any é. Multiple variants of Chernoff-type bounds exist,
which can be useful in different settings
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Multiple Random Variables and Joint Distributions

X4, ...,Xn random variables
m Joint CDF: Fyx,  x.(X1,---,%Xn) =P (X1 < Xq,...,Xh < Xn)

m Joint pdf: fx,  x.(X1,...,%Xn) = S O

m Marginalization:
fx,(X1) = [20 o [0 B xa (Xa, - Xn)dX L dXy

m Conditioning: fx, x, . x,(X1X2,...,Xn) = ; .

m Chain Rule: f(xq,...,Xn) = f(x2) [T, f(Xi[X1, . - -, Xi_1)
m Independence: f(Xq,...,X%n) = [TL; f(Xi).



Quick Tour of Basic Probability Theory and Linear Algebra

L Basic Probability Theory

Random Vectors

X1,...,Xn random variables. X = [X1Xz...X,]T random vector.

m Ifg:R" — R, then
E[9(X)] = Jgn O(X1, - Xn)fxy, %o (X2, - -+ Xn )dXy ... dXp
mifg:R" - R™, g=1[01...09m]", then
E[g(X)] = [Elg1(X)]. .- Elgn(X)]]"
m Covariance Matrix:
¥ = Cov(X) = E[(X — E[X])(X — E[X])T]
m Properties of Covariance Matrix:
m X = Cov[X;, X] = E[(Xi — E[X])(X; — E[X]])]
B > symmetric, positive semidefinite
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Multivariate Gaussian Distribution

uw e R Y e R™" symmetric, positive semidefinite
X ~ N(u, X) n-dimensional Gaussian distribution:

exp (— Z(x — 1) = 2(x - )

fx (x) = 5

1
(27)"2det (T)1/2

mEX]=pn
m Cov(X)=X
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Parameter Estimation: Maximum Likelihood

m Parametrized distribution fy (x; ) with parameter(s) 0
unknown.

m |ID samples x4, ..., X, observed.

m Goal: Estimate ¢

m (Ideally) MAP: § = argmaxg{fox (0|X = (X1,...,%n))}
m (In practice) MLE: § = argmaxg{fx|g(Xe, ..., X%n; 0)}
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MLE Example

X ~ Gaussian(u,o?). 0 = (i, o?) unknown. Samples Xy, .. . , Xn.
Then:

(X, .o Xni 1, 02) = (5—

27TUz)n/z exp (— Do (i — M)Z)

2072

Setting: %gf =0 and % =0
Gives:

DisXi a2 Ml — iy
— Owe o

Sometimes it is not possible to find the optimal estimate in
closed form, then iterative methods can be used.

AMLE =
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Central limit theorem

m Central limit theorem: Let X4, X5, ..., X, be iid with finite
mean 1 and finite variance o2, then the random variable
Y = % >, X is approximately Gaussian with mean x and

. 2
variance %

m Approximation becomes better as n grows
m Law of large numbers as a corollary
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Interesting limits

liMn_o0(1 + K)7 — ek

liMn_0o N! — V270 (2)" (lower bound)
IMn_oo nm— 1

lim(n,¢)— (00,0)BiNOMIal(n, €) — Poisson(ne)
limy_,ooBinomial(n, p) —Normal(np, np(1 — p))
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