Quick Tour of Basic Probability Theory and Linear Algebra

CS224w: Social and Information Network Analysis Fall 2011

・ロト・西ト・ヨト ・ヨー うへの

Basic Probability Theory

Outline

- Definitions and theorems: independence, Bayes,...
- Random variables: pdf, expectation, variance, typical distributions,...
- Bounds: Markov, Chebyshev and Chernoff
- Method of indicators
- Multi-dimensional random variables: joint distribution, covariance,...
- Maximum likelihood estimation
- Convergence: Central limit theorem and interesting limits

Elements of Probability

Definition:

- Sample Space Ω: Set of all possible outcomes
- Event Space F: A family of subsets of Ω
- Probability Measure: Function $P : \mathcal{F} \to \mathbb{R}$ with properties:

1
$$P(A) \ge 0 \ (\forall A \in \mathcal{F})$$

$$2 P(\Omega) = C$$

3
$$A_i$$
's disjoint, then $P(\bigcup_i A_i) = \sum_i P(A_i)$

Sample spaces can be discrete (rolling a die) or continuous (wait time in line)

Conditional Probability and Independence

Conditional probability:

For events A, B:

$$P(A|B) = rac{P(A igcarrow B)}{P(B)}$$

Intuitively means "probability of A when B is known" Independence

- A, B independent if P(A|B) = P(A) or equivalently: $P(A \cap B) = P(A)P(B)$
- Beware of intuition: roll two dies (x_a and x_b), outcomes {x_a = 2} and {x_a + x_b = k} are independent if k = 7, but not otherwise!

Basic laws and bounds

■ Union bound: since $P(A \cup B) = P(A) + P(B) - P(A \cap B)$, we have

$$P(\bigcup_i A_i) \leq \sum_i P(A_i)$$

• Law of total probability: if $\bigcup_i A_i = \Omega$, then

$$P(B) = \sum_{i} P(A_i \cap B) = \sum_{i} P(A_i)P(B|A_i)$$

Random Variables and Distributions

- A random variable X is a function X : Ω → ℝ Example: Number of heads in 20 tosses of a coin
- Probabilities of events associated with random variables defined based on the original probability function. e.g., P(X = k) = P({ω ∈ Ω|X(ω) = k})
- Cumulative Distribution Function (CDF) $F_X : \mathbb{R} \to [0, 1]$: $F_X(x) = P(X \le x)$
- (X discrete) Probability Mass Function (pmf): $p_X(x) = P(X = x)$
- (X continuous) Probability Density Function (pdf): $f_X(x) = dF_X(x)/dx$

Properties of Distribution Functions

CDF: \bullet 0 < $F_X(x)$ < 1 F_X monotone increasing, with $\lim_{x\to -\infty} F_X(x) = 0$, $\lim_{x\to\infty}F_X(x)=1$ pmf: **0** < $p_X(x)$ < 1 $\square \sum_{x} p_X(x) = 1$ $\sum_{x \in A} p_X(x) = p_X(A)$ pdf: $f_X(x) \ge 0$ $\int_{-\infty}^{\infty} f_X(x) dx = 1$ $\int_{x \in A} f_X(x) dx = P(X \in A)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Expectation and Variance

Assume random variable X has pdf $f_X(x)$, and $g : \mathbb{R} \to \mathbb{R}$. Then

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

- for discrete X, $E[g(X)] = \sum_{x} g(x)p_X(x)$
- Expectation is linear:
 - for any constant $a \in \mathbb{R}$, E[a] = a
 - $\blacksquare E[ag(X)] = aE[g(X)]$
 - $\blacksquare E[g(X) + h(X)] = E[g(X)] + E[h(X)]$
- $Var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$

Conditional Expectation

•
$$E[g(X, Y)|Y = a] = \sum_{x} g(x, a)p_{X|Y=a}(x)$$
 (similar for continuous random variables)

Iterated expectation:

$$E[g(X, Y)] = E_a[E[g(X, Y)|Y = a]]$$

Often useful in practice. Example: number of heads in N flips of a coin with random bias $p \in [0, 1]$ with pdf $f_p(x) = 2(1 - x)$ is $\frac{N}{3}$

Some Common Random Variables

X ~ Bernoulli(p)
$$(0 \le p \le 1)$$
: $p_X(x) = \begin{cases} p & x=1, \\ 1-p & x=0. \end{cases}$
X ~ Geometric(p) $(0 \le p \le 1)$: $p_X(x) = p(1-p)^{x-1}$
X ~ Uniform(a, b) $(a < b)$: $f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b, \\ 0 & \text{otherwise.} \end{cases}$
X ~ Normal(μ, σ^2): $f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 ●の�?

Binomial distribution

Combinatorics: consider a bag with *n* different balls
 number of different ordered subsets with k elements:

$$n(n-1)\cdots(n-k+1)$$

number of different unordered subsets with k elements:

$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{k!(n-k)!}$$

a $X \sim Binomial(n, p)$ $(n > 0, 0 \le p \le 1)$:

$$p_X(x) = \begin{pmatrix} n \\ x \end{pmatrix} p^x (1-p)^{n-x}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Method of indicators

- Goal: find expected number of successes out of *N* trials
- Method: define an indicator (Bernoulli) random variable for each trial, find expected value of the sum
- Examples:
 - Bowl with N spaghetti strands. Keep picking ends and joining. Expected number of loops?
 - N drunk sailors pass out on random bunks. Expected number on their own?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Some Useful Inequalities

Markov's Inequality: X random variable, and a > 0. Then:

$$P(|X| \ge a) \le rac{E[|X|]}{a}$$

Chebyshev's Inequality: If $E[X] = \mu$, $Var(X) = \sigma^2$, k > 0, then:

$$\mathsf{Pr}(|\mathsf{X}-\mu| \ge k\sigma) \le rac{1}{k^2}$$

Chernoff bound: Let $X_1, ..., X_n$ independent Bernoulli with $P(X_i = 1) = p_i$. Denoting $\mu = E[\sum_{i=1}^n X_i] = \sum_{i=1}^n p_i$, $P(\sum_{i=1}^n X_i \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$

for any δ . Multiple variants of Chernoff-type bounds exist, which can be useful in different settings

Multiple Random Variables and Joint Distributions

 X_1, \ldots, X_n random variables

- Joint CDF: $F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 \le x_1,...,X_n \le x_n)$
- Joint pdf: $f_{X_1,...,X_n}(x_1,...,x_n) = \frac{\partial^n F_{X_1,...,X_n}(x_1,...,x_n)}{\partial x_1...\partial x_n}$
- Marginalization: $f_{X_1}(x_1) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{X_1,\dots,X_n}(x_1,\dots,x_n) dx_2 \dots dx_n$
- Conditioning: $f_{X_1|X_2,...,X_n}(x_1|x_2,...,x_n) = \frac{f_{X_1,...,X_n}(x_1,...,x_n)}{f_{X_2,...,X_n}(x_2,...,x_n)}$
- Chain Rule: $f(x_1, ..., x_n) = f(x_1) \prod_{i=2}^n f(x_i | x_1, ..., x_{i-1})$ Independence: $f(x_1, ..., x_n) = \prod_{i=1}^n f(x_i)$.

Random Vectors

 X_1, \ldots, X_n random variables. $X = [X_1 X_2 \ldots X_n]^T$ random vector.

If
$$g : \mathbb{R}^n \to \mathbb{R}$$
, then
 $E[g(X)] = \int_{\mathbb{R}^n} g(x_1, \dots, x_n) f_{X_1, \dots, X_n}(x_1, \dots, x_n) dx_1 \dots dx_n$
If $g : \mathbb{R}^n \to \mathbb{R}^m$, $g = [g_1 \dots g_m]^T$, then
 $E[g(X)] = [E[g_1(X)] \dots E[g_m(X)]]^T$

$$\Sigma = Cov(X) = E[(X - E[X])(X - E[X])^T]$$

Properties of Covariance Matrix:

$$\Sigma_{ij} = Cov[X_i, X_j] = E[(X_i - E[X_i])(X_j - E[X_j])]$$

Σ symmetric, positive semidefinite

Multivariate Gaussian Distribution

 $\mu \in \mathbb{R}^{n}$, $\Sigma \in \mathbb{R}^{n \times n}$ symmetric, positive semidefinite $X \sim \mathcal{N}(\mu, \Sigma)$ *n*-dimensional Gaussian distribution:

$$f_X(x) = \frac{1}{(2\pi)^{n/2} det(\Sigma)^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Parameter Estimation: Maximum Likelihood

- Parametrized distribution f_X(x; θ) with parameter(s) θ unknown.
- IID samples x_1, \ldots, x_n observed.
- Goal: Estimate θ
- (Ideally) MAP: $\hat{\theta} = argmax_{\theta} \{ f_{\Theta|X}(\theta|X = (x_1, \dots, x_n)) \}$

(日) (日) (日) (日) (日) (日) (日) (日)

• (In practice) MLE: $\hat{\theta} = argmax_{\theta}\{f_{X|\theta}(x_1, \dots, x_n; \theta)\}$

MLE Example

 $X \sim Gaussian(\mu, \sigma^2)$. $\theta = (\mu, \sigma^2)$ unknown. Samples x_1, \ldots, x_n . Then:

$$f(x_1,...,x_n;\mu,\sigma^2) = (\frac{1}{2\pi\sigma^2})^{n/2} \exp(-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2})$$

Setting: $\frac{\partial \log f}{\partial \mu} = 0$ and $\frac{\partial \log f}{\partial \sigma} = 0$ Gives:

$$\hat{\mu}_{MLE} = \frac{\sum_{i=1}^{n} \mathbf{x}_i}{n}, \ \hat{\sigma}_{MLE}^2 = \frac{\sum_{i=1}^{n} (\mathbf{x}_i - \hat{\mu})^2}{n}$$

Sometimes it is not possible to find the optimal estimate in closed form, then iterative methods can be used.

Central limit theorem

Central limit theorem: Let $X_1, X_2, ..., X_n$ be iid with finite mean μ and finite variance σ^2 , then the random variable $Y = \frac{1}{n} \sum_{i=1}^{n} X_i$ is approximately Gaussian with mean μ and variance $\frac{\sigma^2}{n}$

(日) (日) (日) (日) (日) (日) (日) (日)

- Approximation becomes better as n grows
- Law of large numbers as a corollary

Interesting limits

$$\blacksquare \lim_{n\to\infty} (1+\frac{k}{n})^n \to e^k$$

■
$$\lim_{n\to\infty} n! \to \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 (lower bound)

Iim_{$$n\to\infty$$} $n^{\frac{1}{n}} \to 1$

- $\blacksquare \lim_{(n,\epsilon)\to(\infty,0)} \mathsf{Binomial}(n,\epsilon) \to \mathsf{Poisson}(n\epsilon)$
- $\lim_{n\to\infty}$ Binomial $(n, p) \to$ Normal(np, np(1-p))

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Quick Tour of Basic Probability Theory and Linear Algebra

Basic Probability Theory

CS229 notes on basic linear algebra and probability theory
 Wikipedia!

