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Outline

Definitions and theorems: independence, Bayes,. . .

Random variables: pdf, expectation, variance, typical
distributions,. . .

Bounds: Markov, Chebyshev and Chernoff

Method of indicators

Multi-dimensional random variables: joint distribution,
covariance,. . .

Maximum likelihood estimation

Convergence: Central limit theorem and interesting limits
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Elements of Probability

Definition:

Sample Space Ω: Set of all possible outcomes

Event Space F : A family of subsets of Ω
Probability Measure: Function P : F → R with properties:

1 P(A) ≥ 0 (∀A ∈ F)
2 P(Ω) = 1
3 Ai ’s disjoint, then P(

⋃

i Ai) =
∑

i P(Ai )

Sample spaces can be discrete (rolling a die) or continuous
(wait time in line)
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Conditional Probability and Independence

Conditional probability:

For events A,B:

P(A|B) =
P(A

⋂

B)

P(B)

Intuitively means “probability of A when B is known”

Independence

A, B independent if P(A|B) = P(A) or equivalently:
P(A

⋂

B) = P(A)P(B)

Beware of intuition: roll two dies (xa and xb), outcomes
{xa = 2} and {xa + xb = k} are independent if k = 7, but
not otherwise!
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Basic laws and bounds

Union bound: since P(A ∪ B) = P(A) + P(B)− P(A ∩ B),
we have

P(
⋃

i

Ai) ≤
∑

i

P(Ai)

Law of total probability: if
⋃

i Ai = Ω, then

P(B) =
∑

i

P(Ai ∩ B) =
∑

i

P(Ai)P(B|Ai)

Chain rule: P(A1,A2, . . . ,AN) =
P(A1)P(A2|A1)P(A3|A1,A2) · · ·P(AN |A1, . . . ,AN−1)

Bayes rule: P(A|B) = P(B|A)P(A)
P(B) (several versions)
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Random Variables and Distributions

A random variable X is a function X : Ω → R

Example: Number of heads in 20 tosses of a coin

Probabilities of events associated with random variables
defined based on the original probability function. e.g.,
P(X = k) = P({ω ∈ Ω|X (ω) = k})
Cumulative Distribution Function (CDF) FX : R → [0,1]:
FX (x) = P(X ≤ x)

(X discrete) Probability Mass Function (pmf):
pX (x) = P(X = x)

(X continuous) Probability Density Function (pdf):
fX (x) = dFX (x)/dx
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Properties of Distribution Functions

CDF:
0 ≤ FX (x) ≤ 1
FX monotone increasing, with limx→−∞FX (x) = 0,
limx→∞FX (x) = 1

pmf:
0 ≤ pX (x) ≤ 1
∑

x pX (x) = 1
∑

x∈A pX (x) = pX (A)

pdf:
fX (x) ≥ 0
∫

∞

−∞
fX (x)dx = 1

∫

x∈A fX (x)dx = P(X ∈ A)
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Expectation and Variance

Assume random variable X has pdf fX (x), and g : R → R.
Then

E [g(X )] =

∫ ∞

−∞
g(x)fX (x)dx

for discrete X , E [g(X )] =
∑

x g(x)pX (x)
Expectation is linear:

for any constant a ∈ R, E [a] = a
E [ag(X)] = aE [g(X)]
E [g(X) + h(X)] = E [g(X)] + E [h(X)]

Var [X ] = E [(X − E [X ])2] = E [X 2]− E [X ]2
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Conditional Expectation

E [g(X ,Y )|Y = a] =
∑

x g(x ,a)pX |Y=a(x) (similar for
continuous random variables)

Iterated expectation:

E [g(X ,Y )] = Ea[E [g(X ,Y )|Y = a]]

Often useful in practice. Example: number of heads in N
flips of a coin with random bias p ∈ [0,1] with pdf
fp(x) = 2(1 − x) is N

3
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Some Common Random Variables

X ∼ Bernoulli(p) (0 ≤ p ≤ 1): pX (x) =

{

p x=1,

1 − p x=0.

X ∼ Geometric(p) (0 ≤ p ≤ 1): pX (x) = p(1 − p)x−1

X ∼ Uniform(a,b) (a < b): fX (x) =

{

1
b−a a ≤ x ≤ b,

0 otherwise.

X ∼ Normal(µ, σ2): fX (x) =
1√
2πσ

e− 1
2σ2 (x−µ)2
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Binomial distribution

Combinatorics: consider a bag with n different balls
number of different ordered subsets with k elements:

n(n − 1) · · · (n − k + 1)

number of different unordered subsets with k elements:
(

n
k

)

=
n!

k !(n − k)!

X ∼ Binomial(n,p) (n > 0, 0 ≤ p ≤ 1):

pX (x) =
(

n
x

)

px(1 − p)n−x
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Method of indicators

Goal: find expected number of successes out of N trials

Method: define an indicator (Bernoulli) random variable for
each trial, find expected value of the sum
Examples:

Bowl with N spaghetti strands. Keep picking ends and
joining. Expected number of loops?
N drunk sailors pass out on random bunks. Expected
number on their own?
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Some Useful Inequalities

Markov’s Inequality: X random variable, and a > 0. Then:

P(|X | ≥ a) ≤ E [|X |]
a

Chebyshev’s Inequality: If E [X ] = µ, Var(X ) = σ2, k > 0,
then:

Pr(|X − µ| ≥ kσ) ≤ 1
k2

Chernoff bound: Let X1, . . . ,Xn independent Bernoulli with
P(Xi = 1) = pi . Denoting µ = E [

∑n
i=1 Xi ] =

∑n
i=1 pi ,

P(

n
∑

i=1

Xi ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

for any δ. Multiple variants of Chernoff-type bounds exist,
which can be useful in different settings
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Multiple Random Variables and Joint Distributions

X1, . . . ,Xn random variables

Joint CDF: FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn)

Joint pdf: fX1,...,Xn(x1, . . . , xn) =
∂nFX1,...,Xn (x1,...,xn)

∂x1...∂xn

Marginalization:
fX1

(x1) =
∫∞
−∞ . . .

∫∞
−∞ fX1,...,Xn(x1, . . . , xn)dx2 . . . dxn

Conditioning: fX1|X2,...,Xn(x1|x2, . . . , xn) =
fX1,...,Xn (x1,...,xn)

fX2,...,Xn (x2,...,xn)

Chain Rule: f (x1, . . . , xn) = f (x1)
∏n

i=2 f (xi |x1, . . . , xi−1)

Independence: f (x1, . . . , xn) =
∏n

i=1 f (xi).
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Random Vectors

X1, . . . ,Xn random variables. X = [X1X2 . . .Xn]
T random vector.

If g : Rn → R, then
E [g(X )] =

∫

Rn g(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn)dx1 . . . dxn

if g : Rn → R
m, g = [g1 . . . gm]

T , then
E [g(X )] =

[

E [g1(X )] . . .E [gm(X )]
]T

Covariance Matrix:
Σ = Cov(X ) = E

[

(X − E [X ])(X − E [X ])T
]

Properties of Covariance Matrix:
Σij = Cov [Xi ,Xj ] = E

[

(Xi − E [Xi ])(Xj − E [Xj ])
]

Σ symmetric, positive semidefinite
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Multivariate Gaussian Distribution

µ ∈ R
n, Σ ∈ R

n×n symmetric, positive semidefinite
X ∼ N (µ,Σ) n-dimensional Gaussian distribution:

fX (x) =
1

(2π)n/2det(Σ)1/2
exp

(

− 1
2
(x − µ)TΣ−1(x − µ)

)

E [X ] = µ

Cov(X ) = Σ
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Parameter Estimation: Maximum Likelihood

Parametrized distribution fX (x ; θ) with parameter(s) θ
unknown.

IID samples x1, . . . , xn observed.

Goal: Estimate θ

(Ideally) MAP: θ̂ = argmaxθ{fΘ|X (θ|X = (x1, . . . , xn))}
(In practice) MLE: θ̂ = argmaxθ{fX |θ(x1, . . . , xn; θ)}



Quick Tour of Basic Probability Theory and Linear Algebra

Basic Probability Theory

MLE Example

X ∼ Gaussian(µ, σ2). θ = (µ, σ2) unknown. Samples x1, . . . , xn.
Then:

f (x1, . . . , xn;µ, σ
2) = (

1
2πσ2 )

n/2 exp
(

−
∑n

i=1(xi − µ)2

2σ2

)

Setting: ∂ log f
∂µ = 0 and ∂ log f

∂σ = 0
Gives:

µ̂MLE =

∑n
i=1 xi

n
, σ̂2

MLE =

∑n
i=1(xi − µ̂)2

n
Sometimes it is not possible to find the optimal estimate in
closed form, then iterative methods can be used.
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Central limit theorem

Central limit theorem: Let X1,X2, . . . ,Xn be iid with finite
mean µ and finite variance σ2, then the random variable
Y = 1

n

∑n
i=1 Xi is approximately Gaussian with mean µ and

variance σ2

n

Approximation becomes better as n grows

Law of large numbers as a corollary



Quick Tour of Basic Probability Theory and Linear Algebra

Basic Probability Theory

Interesting limits

limn→∞(1 + k
n )

n → ek

limn→∞ n! →
√

2πn
(n

e

)n (lower bound)

limn→∞ n
1
n → 1

lim(n,ǫ)→(∞,0)Binomial(n, ǫ) → Poisson(nǫ)

limn→∞Binomial(n,p) →Normal(np,np(1 − p))
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