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Matrices and Vectors

Matrix: A rectangular array of numbers, e.g., A ∈ Rm×n:

A =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn











Vector: A matrix consisting of only one column (default) or
one row, e.g., x ∈ Rn

x =











x1

x2
...

xn










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Matrix Multiplication

If A ∈ Rm×n, B ∈ Rn×p, C = AB, then C ∈ Rm×p:

Cij =

n
∑

k=1

AikBkj

Special cases: Matrix-vector product, inner product of two
vectors. e.g., with x , y ∈ Rn:

xT y =
n

∑

i=1

xiyi ∈ R
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Properties of Matrix Multiplication

Associative: (AB)C = A(BC)

Distributive: A(B + C) = AB + AC
Non-commutative: AB 6= BA
Block multiplication: If A = [Aik ], B = [Bkj ], where Aik ’s and
Bkj ’s are matrix blocks, and the number of columns in Aik is
equal to the number of rows in Bkj , then C = AB = [Cij ]
where Cij =

∑

k AikBkj

Example: If −→x ∈ Rn and A = [
−→a1|

−→a2| . . . |
−→an] ∈ Rm×n,

B = [
−→
b1|

−→
b2| . . . |

−→
bp] ∈ Rn×p:

A−→x =

n
∑

i=1

xi
−→ai

AB = [A
−→
b1|A

−→
b2| . . . |A

−→
bp]
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Operators and properties

Transpose: A ∈ Rm×n, then AT ∈ Rn×m: (AT )ij = Aji

Properties:
(AT )T = A
(AB)T = BT AT

(A + B)T = AT + BT

Trace: A ∈ Rn×n, then: tr(A) =
∑n

i=1 Aii

Properties:
tr(A) = tr(AT )
tr(A + B) = tr(A) + tr(B)
tr(λA) = λtr(A)
If AB is a square matrix, tr(AB) = tr(BA)
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Special types of matrices

Identity matrix: I = In ∈ Rn×n:

Iij =

{

1 i=j,

0 otherwise.

∀A ∈ Rm×n: AIn = ImA = A

Diagonal matrix: D = diag(d1,d2, . . . ,dn):

Dij =

{

di j=i,

0 otherwise.

Symmetric matrices: A ∈ Rn×n is symmetric if A = AT .

Orthogonal matrices: U ∈ Rn×n is orthogonal if
UUT = I = UT U
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Linear Independence and Rank

A set of vectors {x1, . . . , xn} is linearly independent if
∄{α1, . . . , αn}:

∑n
i=1 αixi = 0

Rank: A ∈ Rm×n, then rank(A) is the maximum number of
linearly independent columns (or equivalently, rows)
Properties:

rank(A) ≤ min{m, n}
rank(A) = rank(AT )
rank(AB) ≤ min{rank(A), rank(B)}
rank(A + B) ≤ rank(A) + rank(B)
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Matrix Inversion

If A ∈ Rn×n, rank(A) = n, then the inverse of A, denoted
A−1 is the matrix that: AA−1 = A−1A = I
Properties:

(A−1)−1 = A
(AB)−1 = B−1A−1

(A−1)T = (AT )−1

The inverse of an orthogonal matrix is its transpose
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Range and Nullspace of a Matrix

Span: span({x1, . . . , xn}) = {
∑n

i=1 αixi |αi ∈ R}

Projection:
Proj(y ; {xi}1≤i≤n) = argminv∈span({xi}1≤i≤n){||y − v ||2}

Range: A ∈ Rm×n, then R(A) = {Ax | x ∈ Rn} is the span
of the columns of A

Proj(y ,A) = A(AT A)−1AT y

Nullspace: null(A) = {x ∈ Rn|Ax = 0}
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Determinant

A ∈ Rn×n, a1, . . . ,an the rows of A, then det(A) is the
volume of S = {

∑n
i=1 αiai |0 ≤ αi ≤ 1}.

Properties:
det(I) = 1
det(λA) = λdet(A)
det(AT ) = det(A)
det(AB) = det(A)det(B)
det(A) 6= 0 if and only if A is invertible.
If A invertible, then det(A−1) = det(A)−1
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Quadratic Forms and Positive Semidefinite Matrices

A ∈ Rn×n, x ∈ Rn, xT Ax is called a quadratic form:

xT Ax =
∑

1≤i ,j≤n

Aijxixj

A is positive definite if ∀ x ∈ Rn : xT Ax > 0

A is positive semidefinite if ∀ x ∈ Rn : xT Ax ≥ 0

A is negative definite if ∀ x ∈ Rn : xT Ax < 0

A is negative semidefinite if ∀ x ∈ Rn : xT Ax ≤ 0
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Eigenvalues and Eigenvectors

A ∈ Rn×n, λ ∈ C is an eigenvalue of A with the
corresponding eigenvector x ∈ Cn (x 6= 0) if:

Ax = λx

eigenvalues: the n possibly complex roots of the
polynomial equation det(A − λI) = 0, and denoted as
λ1, . . . , λn

Properties:
tr(A) =

∑n
i=1 λi

det(A) =
∏n

i=1 λi

rank(A) = |{1 ≤ i ≤ n|λi 6= 0}|
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Matrix Eigendecomposition

A ∈ Rn×n, λ1, . . . , λn the eigenvalues, and x1, . . . , xn the
eigenvectors. X = [x1|x2| . . . |xn], Λ = diag(λ1, . . . , λn),
then AX = XΛ.

A called diagonalizable if X invertible: A = XΛX−1

If A symmetric, then all eigenvalues real, and X orthogonal
(hence denoted by U = [u1|u2| . . . |un]):

A = UΛUT =
n

∑

i=1

λiuiu
T
i

A special case of Singular Value Decomposition
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Optimization

A set of points S is convex if, for any x , y ∈ S and for any
0 ≤ θ ≤ 1,

θx + (1 − θ)y ∈ S

A function f : S → R is convex if its domain S is a convex
set and

f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y)

for all x , y ∈ S, 0 ≤ θ ≤ 1.
A function f : S → R is submodular if for any subset A ⊆ B,

f (A ∪ {x})− f (A) ≥ f (B ∪ {x}) − f (B)

Convex functions can easily be minimized. Submodular
functions allow approximate discrete optimization.
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Proofs

Induction:
1 Show result on base case, associated with n = k0

2 Assume result true for n ≤ i. Prove result for n = i + 1
3 Conclude result true for all n ≥ k0

Example: In a complete graph, E = 1
2N(N − 1)

Contradiction (reductio ad absurdum):
1 Assume result is false
2 Follow implications in a deductive manner, until a

contradiction is reached
3 Conclude initial assumption was wrong, hence result true

Example: Strongly connected components partition nodes



Quick Tour of Basic Probability Theory and Linear Algebra

Basic Linear Algebra

Graph theory

Definitions: vertex/node, edge/link, loop/cycle, degree,
path, neighbor, tree, clique,. . .

Random graph (Erdos-Renyi): Each possible edge is
present with some probability p

(Strongly) connected component: subset of nodes that can
all reach each other

Diameter: longest minimum distance between two nodes

Bridge: edge connecting two otherwise disjoint connected
components
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Basic algorithms

BFS: explore by “layers”

DFS: go as far as possible, then backtrack

Greedy: maximize goal at each step

Binary search: on ordered set, discard half of the elements
at each step



Quick Tour of Basic Probability Theory and Linear Algebra

Basic Linear Algebra

Complexity

Number of operations as a function of the problem
parameters.
Examples

1 Find shortest path between two nodes:
DFS: very bad idea, could end up with the whole graph as a
single path
BFS from origin: good idea
BFS from origin and destination: even better!

2 Given a node, find its connected component
Loop over nodes: bad idea, needs N path searches
BFS or DFS: good idea


	Basic Linear Algebra

