Social and Information Network Analysis: Review of Key Concepts

CS224W: Social and Information Network Analysis
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Networks

How do we reason about networks?

Reasoning About Networks

How do we reason about networks?

- Empirical: Study network data to find organizational principles
- Mathematical models: Probabilistic, graph theory
- Algorithms for analyzing graphs
- What do we hope to achieve from models of networks?
 - Patterns and statistical properties of network data
 - Design principles and models
 - Understand why networks are organized the way they are (Predict behavior of networked systems)

Networks: Structure & Process

What do we study in networks?

- Structure and evolution:
 - What is the structure of a network?
 - Why and how did it became to have such structure?
- Processes and dynamics:
 - Networks provide "skeleton" for spreading of information, behavior, diseases

What We Have Covered

- Network diameter
- Edge clustering
- Scale-free networks
- Strength of weak ties
- Core-periphery structure
- Densification power law
- Shrinking diameters
- Structural Balance
- Status Theory
- Memetracking
- Small-world model
- Erdös-Renyi model
- Preferential attachment
- Network cascades

- Independent cascade model
- Decentralized search
- PageRank
- Hubs and authorities
- Girvan-Newman
- Modularity
- Clique percolation
- Supervised random walks
- Influence maximization
- Outbreak detection
- Linear Influence Model
- Network Inference
- Kronecker Graphs
- Bow-tie structure

How It All Fits Together

Observations

Small diameter, Edge clustering

Scale-free

Strength of weak ties, Core-periphery

Densification power law, Shrinking diameters

Patterns of signed edge creation

Viral Marketing, Blogosphere, Memetracking

Models

Small-world model, Erdös-Renyi model

Preferential attachment,
Copying model

Kronecker Graphs

Microscopic model of evolving networks

Structural balance, Theory of status

Independent cascade model, Game theoretic model

Algorithms

Decentralized search

PageRank, Hubs and authorities

Community detection: Girvan-Newman, Modularity

Link prediction, Supervised random walks

Models for predicting edge signs

Influence maximization, Outbreak detection, LIM

Small World Phenomena

Observations:

- Six degrees of separation
 - Networks have small diameters
- Edges in the networks cluster
 - Clustering coefficient

Models:

- Erdös-Renyi model
 - Baseline model for networks
- The Small-World model
 - Small diameter and clustered edges
- Algorithms:
 - Decentralized search in networks
 - Kleinberg's model and algorithm

Scale-Free Networks

Observations:

- Power-law degrees
 - Degrees are heavily skewed

Networks are resilient to random attacks

Models:

- Preferential attachment
 - Rich get richer
- Algorithms:
 - Hubs and Authorities
 - Recursive: $a_i = \sum_{j \to i} h_j$, $h_i = \sum_{i \to j} a_j$
 - PageRank
 - Recursive formulation, Random jumps

Community Detection

- Observations:
 - Strength of weak ties
 - Core-periphery structure
- Models:
 - Kronecker graphs model
- Algorithms:
 - Girvan-Newman (Betweeness centrality)
 - Modularity optimization
 - #edges within group E[#edges within group]
 - Clique Percolation Method
 - Ovarlapping communities

Network Evolution

- Observations:
 - Densification Power Law
 - $\bullet E(t) \propto N(t)^a$
 - Shrinking Diameter
- Models:

- Exponential life-times, Evolving sleeping times
- Random-Random edge attachment
- Algorithms:
 - Link prediction
 - Supervised Random Walks

Signed Networks

Observations:

- Signed link creation
- +links are more embedded
- Models:
 - Structural Balance
 - Coalition structure of networks
 - Status Theory
 - Global node status ordering
- Algorithms:
 - Predicting edge signs

Network Diffusion (1)

Observations:

- Tracking contagions
 - Viral Marketing
 - Hyperlinks
- Models Decision Based

Node i will adopt the behavior iff at least t_i other people are adopters

Game theoretic model:

Payoffs, Competing products

Network Diffusion (2)

- Models Probabilistic
 - Independent Cascade Model
 - Each node infects a neighbor with some probability
- Algorithms:
 - Influence Maximization
 - Set of k nodes producing largest expected cascade size if activated
 - Submodularity
 - Greedy hill-climbing
 - Outbreak Detection

Network Diffusion (3)

Observations:

- Memetracking
 - Blogs train mass media
- Models:
 - Linear influence model
 - Predict information popularity based on influence functions
- Algorithms:
 - Network Inference
 - Given infection times
 - Infer the network

Map of Superpowers

Observations

Small diameter, Edge clustering

Scale-free

Strength of weak ties, Core-periphery

Densification power law, Shrinking diameters

Patterns of signed edge creation

Viral Marketing, Blogosphere, Memetracking

Models

Small-world model, Erdös-Renyi model

Preferential attachment,
Copying model

Kronecker Graphs

Microscopic model of evolving networks

Structural balance, Theory of status

Independent cascade model, Game theoretic model

Algorithms

Decentralized search

PageRank, Hubs and authorities

Community detection: Girvan-Newman, Modularity

Link prediction, Supervised random walks

Models for predicting edge signs

Influence maximization, Outbreak detection, LIM

Link prediction

Suggest friends in networks

Trust and distrust

Predict who are your friends/foes. Who you trust.

Community detection

 Find clusters and communities in social networks

Marketing and advertising

- Finding influencers
- Tracing information flows

Diffusion of information

- How to trace information as it spreads
- How to efficiently detect epidemics and information outbreaks

Intelligence and fighting (cyber) terrorism

Predicting epidemics

Real Predicted

- Interactions of human disease
- Drug design

Map of Superpowers

Observations

Small diameter, Edge clustering

Scale-free

Strength of weak ties, Core-periphery

Densification power law,
Shrinking diameters

Patterns of signed edge creation

Viral Marketing, Blogosphere, Memetracking

Models

Small-world model, Erdös-Renyi model

Preferential attachment, Copying model

Kronecker Graphs

Microscopic model of evolving networks

Structural balance, Theory of status

Independent cascade model, Game theoretic model

Algorithms

Decentralized search

PageRank, Hubs and authorities

Community detection: Girvan-Newman, Modularity

Link prediction, Supervised random walks

Models for predicting edge signs

Influence maximization, Outbreak detection, LIM

Networks: BIG PICTURE

- Availability of network data:
 - Web & Social media: a "telescope" into humanity
- Task: find patterns, rules, clusters, ...
 - ... in large static and evolving graphs
 - ... in processes spreading over the networks
- Goal:
 - Predict/anticipate future behaviors
 - Detect outliers
 - Design novel applications

Networks: BIG PICTURE

- Universal language for describing complex data
 - We are surrounded by hopelessly complex systems
 - Society is a collection of six billion individuals
 - Communication systems link electronic devices
 - Information and knowledge is organized and linked
 - Networks from various domains of science, nature, and technology are more similar than expected
- Shared vocabulary between fields
 - Computer Science, Social science, Physics, Economics, Statistics, Biology

What Next?

Project writeups

- Due Sunday Dec 11 at 11:59 pacific time
- Poster session
 - Friday Dec 16 from 12:15 3:15 in Packard Atrium
 - All groups which have at least one non-SCPD member are expected to present
 - One group member should be at the poster at all times, but the goal of this is to give you a chance to see what your classmates have been working on, so make sure to explore
 - There will be snacks!

What Next? Seminars

Seminars:

- RAIN Seminar: http://rain.stanford.edu
- InfoSeminar: http://i.stanford.edu/infoseminar
- Conferences:
 - WWW: ACM World Wide Web Conference
 - WSDM: ACM Web search and Data Mining
 - ICWSM: AAAI Int. Conference on Web-blogs and Social Media
 - KDD: ACM Conference on Knowledge Discovery and Data Mining

What Next? Courses

- CS246: Mining Massive Datasets (Winter 2012)
 - Data Mining & Machine Learning for big data
 - (big=does' fit in memory/single machine)
 - MapReduce, Hadoop and similar
- CS341: Project in Data Mining (Spring 2012)
 - Do a research project on big data
 - Groups of 3 students
 - We provide interesting data, projects and unlimited access to the Amazon computing infrastructure
 - Nice way to finish up your class project & publish it!

What Next? Courses

Other relevant courses

- CS276: Information Retrieval and Web Search
- CS229: Machine Learning
- CS245: Database System Principles
- CS347: Transaction Processing and Distributed Databases
- CS448g: Interactive Data Analysis

In Closing

- You Have Done a Lot!!!
- And (hopefully) learned a lot!!!
 - Answered questions and proved many interesting results
 - Implemented a number of methods
 - And did excellently on the final project!

Thank You for the Hard Work!!!

