Link Prediction and Network Inference
The link prediction task:

- Given $G[t_0, t_0']$ a graph on edges up to time t_0', output a ranked list L of links (not in $G[t_0, t_0']$) that are predicted to appear in $G[t_1, t_1']$.

Evaluation:

- $n = |E_{new}|$: # new edges that appear during the test period $[t_1, t_1']$.
- Take top n elements of L and count correct edges.
Predict links in a evolving collaboration network

<table>
<thead>
<tr>
<th></th>
<th>authors</th>
<th>training period</th>
<th>collaborations</th>
<th>Core</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>astro-ph</td>
<td>5343</td>
<td>5816</td>
<td>41852</td>
<td>1561</td>
<td>6178</td>
<td>5751</td>
</tr>
<tr>
<td>cond-mat</td>
<td>5469</td>
<td>6700</td>
<td>19881</td>
<td>1253</td>
<td>1899</td>
<td>1150</td>
</tr>
<tr>
<td>gr-qc</td>
<td>2122</td>
<td>3287</td>
<td>5724</td>
<td>486</td>
<td>519</td>
<td>400</td>
</tr>
<tr>
<td>hep-ph</td>
<td>5414</td>
<td>10254</td>
<td>47806</td>
<td>1790</td>
<td>6654</td>
<td>3294</td>
</tr>
<tr>
<td>hep-th</td>
<td>5241</td>
<td>9498</td>
<td>15842</td>
<td>1438</td>
<td>2311</td>
<td>1576</td>
</tr>
</tbody>
</table>

Core: Since network data is very sparse
- Consider only nodes with in-degree and out-degree of at least 3
Methodology:

- For every pair of nodes \((x,y)\) compute proximity \(c\)
 - \# of common neighbors \(c(x,y)\) of \(x\) and \(y\)
- Sort pairs by the decreasing score
- \(E^*_{new} := E_{new} \cap (\text{Core} \times \text{Core})\)
 - (only consider/predict edges where both endpoints are in the core)
- Predict top \(n\) pairs as new links
For every pair of nodes \((x,y)\) compute:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree of node (x) (\Gamma(x))</td>
<td>(\Gamma(x) \cap \Gamma(y))</td>
</tr>
<tr>
<td>common neighbors</td>
<td>(\frac{</td>
</tr>
<tr>
<td>Jaccard’s coefficient</td>
<td>(\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log</td>
</tr>
<tr>
<td>Adamic/Adar</td>
<td>(</td>
</tr>
<tr>
<td>preferential attachment</td>
<td>(\sum_{\ell=1}^{\infty} \beta^\ell \cdot</td>
</tr>
</tbody>
</table>

where \(\text{paths}_{x,y}^{(\ell)} := \{\text{paths of length exactly } \ell \text{ from } x \text{ to } y\}\) weighted: \(\text{paths}_{x,y}^{(1)} := \text{number of collaborations between } x, y.\) unweighted: \(\text{paths}_{x,y}^{(1)} := 1 \text{ iff } x \text{ and } y \text{ collaborate.}\)
Results: Improvement over Random

\[
\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log |\Gamma(z)|}
\]
Results: Common Neighbors

- Improvement over \#common neighbors
How to learn to predict new friends?

- Facebook’s People You May Know
- Let’s look at the data:
 - 92% of new friendships on FB are friend-of-a-friend
 - More common friends helps
Supervised Link Prediction

- Recommend a list of possible friends
- Supervised machine learning setting:
 - Training example:
 - For every node s have a list of nodes she will create links to $\{v_1 \ldots v_k\}$
 - Use FB network from May 2011 and $\{v_1\ldots v_k\}$ are the new friendships you created since then
 - Task:
 - For a given node s rank nodes $\{v_1 \ldots v_k\}$ higher than other nodes in the network
- Supervised Random Walks based on work by Agarwal&Chakrabarti

“positive” nodes
“negative” nodes

Green nodes are the nodes to which s creates links in the future

How to combine node/edge attributes and the network structure?

- Learn a **strength** of each edge based on:
 - Profile of user u, profile of user v
 - Interaction history of u and v
- Do a PageRank-like random walk from s to measure the “**proximity**” between s and other nodes
- Rank nodes by their “**proximity**” (i.e., visiting prob.)
Let s be the center node

Let $f_w(u,v)$ be a function that assigns a strength to each edge:

$$a_{uv} = f_{\beta}(u,v) = \exp(-\beta^T \Psi_{uv})$$

- Ψ_{uv} is a feature vector
 - Features of node u
 - Features of node v
 - Features of edge (u,v)
 - (β is the parameter vector we want to learn!)

Do Random Walk with Restarts from s where transitions are according to edge strengths a_{uv}
SRW: Prediction

How to estimate edge strengths?

- How to set parameters β of $f_\beta(u,v)$?

Network

Set edge strengths $a_{uv} = f_\beta(u,v)$

Personalized PageRank on the weighted graph. Each node u gets a PageRank proximity p_u

Sort nodes by the decreasing PageRank proximity p_u

Recommend top k nodes with the highest proximity p_u to node s
Personalized PageRank

- a_{uv} Strength of edge $(u,v,)$
- Random walk transition matrix:

$$Q'_{uv} = \begin{cases} \frac{a_{uv}}{\sum_w a_{uw}} & \text{if } (u, v) \in E, \\ 0 & \text{otherwise} \end{cases}$$

- PageRank transition matrix:

$$Q_{ij} = (1 - \alpha)Q'_{ij} + \alpha 1(j = s)$$
 - with prob. α jump back to s

- Compute PageRank vector: $p = p^T Q$

- Rank nodes u by p_u
The Optimization Problem

- Each node u has a score p_u
- Positive nodes $D = \{d_1, \ldots, d_k\}$
- Negative nodes $L = \{\text{the rest}\}$
- **What do we want?**
 Want to find β such that $p_l < p_d$

$$\min_{\beta} F(\beta) = ||\beta||^2$$

such that

$$\forall d \in D, l \in L : p_l < p_d$$

- The exact solution to the above problem may not exist
- So we make the constrains “soft” (i.e., optional)
Want to minimize:

\[
\min_{\beta} F(\beta) = \sum_{d \in D, l \in L} h(p_l - p_d) + \lambda ||\beta||^2
\]

- **Loss:** \(h(x) = 0 \) if \(x < 0 \), \(x^2 \) else

\[
h(x) = \max\{x, 0\}^2
\]
How to minimize F?

$$\min_{\beta} F(\beta) = \sum_{d \in D, l \in L} h(p_l - p_d) + \lambda ||\beta||^2$$

Both p_l and p_d depend on β

- Given β assign edge weights $a_{uv} = f_\beta(u,v)$
- Using transition matrix $Q = [a_{uv}]$
 compute PageRank scores p_u
- Rank nodes by the PageRank score

Want to find β such that $p_l < p_d$
How to minimize F?

\[\min_{\beta} F(\beta) = \sum_{d \in D, l \in L} h(p_l - p_d) + \lambda \|\beta\|^2 \]

- Take the derivative!

\[\frac{\partial F(\beta)}{\partial \beta} = \sum_{l,d} \frac{\partial h(p_l - p_d)}{\partial \beta} + 2\lambda \beta \]

\[= \sum_{l,d} \frac{\partial h(p_l - p_d)}{\partial (p_l - p_d)} \left(\frac{\partial p_l}{\partial \beta} - \frac{\partial p_d}{\partial \beta} \right) + 2\lambda \beta \]

- We know:

\[p = p^T Q \quad \text{i.e.} \quad p_u = \sum_j p_j Q_{ju} \]

- So:

\[\frac{\partial p_u}{\partial \beta} = \sum_j Q_{ju} \frac{\partial p_j}{\partial \beta} + p_j \frac{\partial Q_{ju}}{\partial \beta} \]

- Looks like the PageRank equation!
To optimize F, use gradient based method:

- Pick a random starting point β_0
- Compute the personalized PageRank vector p
- Compute the gradient with respect to the weight vector β
- Update β
 - Optimize using quasi-Newton method
Facebook Iceland network
- 174,000 nodes (55% of population)
- Avg. degree 168
- Avg. person added 26 friends/month

For every node s:
- Positive examples:
 - $D = \{ \text{new friendships of } s \text{ created in Nov ‘09} \}$
- Negative examples:
 - $L = \{ \text{other nodes } s \text{ did not create new links to} \}$
- Limit to friends of friends:
 - on avg. there are 20k FoFs (max 2M)
Node and Edge features for learning:
- **Node:** Age, Gender, Degree
- **Edge:** Age of an edge, Communication, Profile visits, Co-tagged photos

Baselines:
- Decision trees and logistic regression:
 - Above features + 10 network features (PageRank, common friends)

Evaluation:
- AUC and Precision at Top20
Results: Facebook Iceland

- **Facebook:** predict future friends
 - Adamic-Adar already works great
 - Logistic regression also strong
 - SRW gives slight improvement

<table>
<thead>
<tr>
<th>Learning Method</th>
<th>AUC</th>
<th>Prec@20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Walk with Restart</td>
<td>0.81725</td>
<td>6.80</td>
</tr>
<tr>
<td>Adamic-Adar</td>
<td>0.81586</td>
<td>7.35</td>
</tr>
<tr>
<td>Common Friends</td>
<td>0.80054</td>
<td>7.35</td>
</tr>
<tr>
<td>Degree</td>
<td>0.58535</td>
<td>3.25</td>
</tr>
<tr>
<td>DT: Node features</td>
<td>0.59248</td>
<td>2.38</td>
</tr>
<tr>
<td>DT: Network features</td>
<td>0.76979</td>
<td>5.38</td>
</tr>
<tr>
<td>DT: Node+Network</td>
<td>0.76217</td>
<td>5.86</td>
</tr>
<tr>
<td>DT: Path features</td>
<td>0.62836</td>
<td>2.46</td>
</tr>
<tr>
<td>DT: All features</td>
<td>0.72986</td>
<td>5.34</td>
</tr>
<tr>
<td>LR: Node features</td>
<td>0.54134</td>
<td>1.38</td>
</tr>
<tr>
<td>LR: Network features</td>
<td>0.80560</td>
<td>7.56</td>
</tr>
<tr>
<td>LR: Node+Network</td>
<td>0.80280</td>
<td>7.56</td>
</tr>
<tr>
<td>LR: Path features</td>
<td>0.51418</td>
<td>0.74</td>
</tr>
<tr>
<td>LR: All features</td>
<td>0.81681</td>
<td>7.52</td>
</tr>
<tr>
<td>SRW: one edge type</td>
<td>0.82502</td>
<td>6.87</td>
</tr>
<tr>
<td>SRW: multiple edge types</td>
<td>0.82799</td>
<td>7.57</td>
</tr>
</tbody>
</table>
Network Inference
Many networks are implicit or hard to observe:

- Hidden/hard-to-reach populations:
 - Network of needle sharing between drug injection users
- Implicit connections:
 - Network of information propagation in online news media

But we can observe results of the processes taking place on such (invisible) networks:

- Virus propagation:
 - Drug users get sick, and we observe when they see the doctor
- Information networks:
 - We observe when media sites mention information

Question: Can we infer the hidden networks?
Inferring the Diffusion Networks

- There is a **hidden** diffusion network:

- We only see **times** when nodes get “infected”:
 - Cascade c_1: (a,1), (c,2), (b,3), (e,4)
 - Cascade c_2: (c,1), (a,4), (b,5), (d,6)

- **Want to infer who-infects-whom network!**
Examples and Applications

Virus propagation

- Process: Viruses propagate through the network
- We observe: We only observe when people get sick
- It’s hidden: But NOT who infected whom

Word of mouth & Viral marketing

- Process: Recommendations and influence propagate
- We observe: We only observe when people buy products
- It’s hidden: But NOT who influenced whom

Can we infer the underlying network?
Inferring the Diffusion Network

Network G^*

Cascade c_1

Cascade c_2

Cascade c_3

Node i
Goal: Find a graph G that best explains the observed information times

- Given a graph G, define the likelihood $P(C|G)$:
 - Define a model of information diffusion over a graph
 - $P_c(u,v)$... prob. that u infects v in cascade c
 - $P(c|T)$... prob. that c spread in particular pattern T
 - $P(c|G)$... prob. that cascade c occurred in G
 - $P(G|C)$... prob. that a set of cascades C occurred in G

Questions:

- How to efficiently compute $P(G|C)$? (given a single G)
- How to efficiently find G^* that maximizes $P(G|C)$? (over $O(2^{N*N})$ graphs)
Continuous time cascade diffusion model:

- Cascade \(c \) reaches node \(u \) at \(t_u \) and spreads to \(u \)'s neighbors:
 - With probability \(\beta \) cascade propagates along edge \((u, v) \) and we determine the infection time of node \(v \):

 \[t_v = t_u + \Delta \]

 e.g.: \(\Delta \sim \text{Exponential or Power-law} \)

We assume each node \(v \) has only one parent!
The model for 1 cascade:
- Cascade reaches node \(u \) at time \(t_u \), and spreads to \(u \)'s neighbors \(v \):
 - With prob. \(\beta \) cascade propagates along edge \((u,v) \) and \(t_v = t_u + \Delta \)
- Transmission probability:
 \[
P_c(u,v) \propto P(t_v - t_u) \quad \text{if} \quad t_v > t_u \quad \text{else} \quad \epsilon
\]
 - e.g.: \(P_c(u,v) \propto e^{-\Delta t} \)
 - \(\epsilon \) captures influence external to the network
 - At any time a node can get infected from outside with small probability \(\epsilon \)
Cascade Probability

- Given node infection times and pattern T:
 - $c = \{(a, 1), (c, 2), (b, 3), (e, 4)\}$
 - $T = \{a \rightarrow b, a \rightarrow c, b \rightarrow e\}$

- Prob. that c propagates in pattern T

$$P(c|T) = \prod_{(u,v) \in E_T} \beta P_c(u,v) \prod_{u \in V_T, (u,x) \in E \setminus E_T} (1 - \beta)$$

 Edges that “propagated”
 Edges that failed to “propagate”

- Approximate it as:

$$P(c|T) \approx \prod_{(u,v) \in E_T} P_c(v,u)$$

Graph G
How likely is cascade c to spread in graph G?

$c = \{(a,1), (c,2), (b,3), (e,4)\}$

Need to consider all possible ways for c to spread over G (i.e., all spanning trees T):

$$P(c|G) = \sum_{T \in \mathcal{T}_c(G)} P(c|T) \approx \max_{T \in \mathcal{T}_c(G)} P(c|T)$$

Consider only the most likely propagation tree
The Optimization Problem

- Score of a graph G for a set of cascades C:

$$P(C|G) = \prod P(c|G)$$

$$F_C(G) = \sum_{c \in C} \log P(c|G)$$

- Want to find the “best” graph:

$$G^* = \arg\max_{|G| \leq k} F_C(G)$$

The problem is NP-hard: MAX-k-COVER [KDD ’10]
Given a cascade c, what is the most likely propagation tree?

$$\max_{T \in \mathcal{T}_c(G)} P(c|T) = \max_{T \in \mathcal{T}(G)} \sum_{(i,j) \in T} w_c(i,j)$$

A maximum directed spanning tree

- Edge (i,j) in G has weight $w_c(i,j) = \log P_c(i,j)$
- The maximum weight spanning tree on infected nodes: Each node picks an in-edge of max weight:

$$= \sum_{i \in V} \max_{\text{Par}_T(i)} w(\text{Par}_T(i), i)$$

Local greedy selection gives optimal tree!
Theorem:
\(F_c(G) \) is monotonic, and submodular

Proof:
- Single cascade \(c \), some edge \(e = (r,s) \) of weight. \(w_{rs} \)
- Show \(F_c(G \cup \{e\}) - F_c(G) \geq F_c(G' \cup \{e\}) - F_c(G') \)
- Let \(w_s \) be max weight in-edge of \(s \) in \(G \)
- Let \(w'_s \) be max weight in-edge of \(s \) in \(G' \)
- Since \(G \subseteq G' \): \(w_s \leq w'_s \) and \(w_{rs} = w'_{rs} \)
- \[
F_c(G \cup \{(r,s)\}) - F_c(G) = \max(w_s, w_{rs}) - w_s \]
 \[
 \geq \max(w'_s, w_{rs}) - w'_s
 = F_c(G' \cup \{(r,s)\}) - F_c(G')
\]
The algorithm:

Use greedy hill-climbing to maximize $F_C(G)$:

- Start with empty G_0 (G with no edges)
- Add k edges (k is parameter)
- At every step i add an edge to G_i that maximizes the marginal improvement

$$e_i = \arg\max_{e \in G \setminus G_{i-1}} F_C(G_{i-1} \cup \{e\}) - F_C(G_{i-1})$$
Experiments: Synthetic data

- **Synthetic data:**
 - Take a graph G on k edges
 - Simulate info. diffusion
 - Record node infection times
 - Reconstruct G

- **Evaluation:**
 - How many edges of G can NetInf find?
 - Break-even point: 0.95
 - Performance is independent of the structure of G!
How Good is Our Graph?

- We achieve ≈ 90% of the best possible network!
With 2x as many infections as edges, the break-even point is already 0.8 - 0.9!
Memetracker dataset:
- 172m news articles
- Aug ‘08 – Sept ‘09
- 343m textual phrases
- Times $t_c(w)$ when site w mentions phrase c

Given times when sites mention phrases
Infer the network of information diffusion:
- Who tends to copy (repeat after) whom
Example: Diffusion Network

- 5,000 news sites: