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 Imagine you want to track the flow of 
information 
 We would like to  

identify cascades  
like this: 

Obscure  
tech story 

Small tech  
blog 

Wired Slashdot 

Engadget 

CNN NYT BBC 
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 Tracking Hyperlinks on the Blogosphere 
 
 
 
 
 
 
 

 Identify cascades – graphs induced by a time 
ordered propagation of information 

Blogs 

Blog Posts 

Time 
ordered 

hyperlinks 

Information 
cascade 

[SDM ‘07] 
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Cascade 
shapes (ranked 
by frequency) 

The probability of 
observing a cascade 
on n nodes follows: 
 p(n) ~ n-2 

x = Cascade size (number of nodes) 

 C
ou

nt
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 Most of cascades are trees: 
 Number of edges is smaller than the number of 

nodes in a cascade 
 Diameter increases logarithmically 

Cascade size (number of nodes) 
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 Advantages: 
 Unambiguous, precise and explicit 

way to trace information flow 
 We obtain both the times as well as 

the trace (graph) of information flow 
 Caveats: 
 Not all links transmit information: 
 Navigational links, templates, adds 

 Many links are missing: 
 Mainstream media sites do not create links 
 Bloggers “forget” to link the source 
 (We will later see how to identify networks/cascades just  

based on what times sites mentioned information) 
 

Obscure  
tech story 

Small tech blog 

Wired Slashdot 

Engadget 

CNN NYT BBC 
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 Extract textual fragments that travel  
relatively unchanged, through many articles: 
 Look for phrases inside quotes: “…” 
 About 1.25 quotes per document in our data 

 Why it works?  
Quotes… 
 are integral parts of journalistic practices 
 tend to follow iterations of a story as it evolves 
 are attributed to individuals and have time and location 

 

[KDD ‘09] 
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Quote: Our opponent is someone who sees   America, it seems, as being so imperfect, 
imperfect enough that he‘s palling around with terrorists who would target their own country. 

[KDD ‘09] 
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 Goal: Find mutational variants of a quote 
 Form approximate quote inclusion graph 
 Shorter quote is approximate substring of a longer 

one (word edit distance = 1) 
 
 
 

 Objective: In DAG  of approx. quote inclusion,  
delete  min total edge weight s.t. each  
connected component  has a single “sink” 

 

[KDD ‘09] 

BCD 

BDXCY 

ABCD 

ABCDEFGH 
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BCD 

ABC 

CEF 

BDXCY 

ABCD 

ABCEF 

CEFP 

UVCEXF 

ABCDEFGH 

ABCEFG 

CEFPQR 

Nodes are quotes 
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BCD 

ABC 

CEF 

BDXCY 

ABCD 

ABCEF 

CEFP 

UVCEXF 

ABCDEFGH 

ABCEFG 

CEFPQR 

Nodes are quotes 
Edges are inclusion relations 
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BCD 

ABC 

CEF 

BDXCY 

ABCD 

ABCEF 

CEFP 

UVCEXF 

ABCDEFGH 

ABCEFG 

CEFPQR 

Nodes are quotes 
Edges are inclusion relations 
Edges have weights 
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 Objective: In a directed acyclic graph (approx. 
quote inclusion), delete min total edge weight 
s.t. each connected component has a single 
“sink” node 

BCD 

ABC 

CEF 

BDXCYZ 

ABCD 

ABCEF 

CEFP 

UVCEXF 

ABCDEFGH 

ABCEFG 

CEFPQR 
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 DAG-partitioning is NP-hard but heuristics  
are effective: 
 Observation: Enough to know node’s parent to 

reconstruct optimal solution 
 Heuristic:  

Proceed right-to-left 
and assign a node  
(keep a single edge)  
to the strongest  
cluster 
 

CEFP 

Nodes are phrases 
Edges are inclusion relations 
Edges have weights 

[KDD ‘09] 
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Quoted text Volume 
the fundamentals of our economy are strong  3654 
the fundamentals of the economy are strong  988 
fundamentals of our economy are strong  645 
fundamentals of the economy are strong  557 
if john mccain hadn't said that the fundamentals of our economy are strong on the day of one of our nation's worst 
financial crises the claim that he invented the blackberry would have been the most preposterous thing said all week  224 
fundamentals of the economy  172 
the fundamentals of the economy are sound  119 
i promise you we will never put america in this position again we will clean up wall street  83 
the fundamentals of our economy are sound  81 
clean up wall street  78 
our economy i think still the fundamentals of our economy are strong  75 
fundamentals of the economy are sound  72 
the fundamentals of our economy are strong but these are very very difficult times and i promise you we will never put 
america in this position again  68 
the economy is in crisis  66 
these are very very difficult times  63 
the fundamentals of our economy are strong but these are very very difficult times  62 
do you still think the fundamentals of our economy are strong genius  62 
our economy i think still the fundamentals of our economy are strong but these are very very difficult times  60 
mccain's first response to this crisis was to say that the fundamentals of our economy are strong then he admitted it 
was a crisis and then he proposed a commission which is just washington-speak for i'll get back to you later  55 
i still believe the fundamentals of our economy are strong  53 
i think still the fundamentals of our economy are strong  50 
cut taxes for 95 percent of all working families  50 
today of all days john mccain's stubborn insistence that the fundamentals of the economy are strong shows that he is 
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… is periodic, has no trends. 
”Bandwidth” of the online media is constant 

 Can we extract any 
 interesting temporal 
 variations? ? 
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Volume over time of top 50 largest total volume quote clusters 
August October 
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 Media coverage of the current economic crisis 
 Main proponents of the debate: 

Top republican voice ranks only 14th  

60-minutes  interview 

Speech in congress 

Dept. of Labor release 
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 Can study typical quote cluster volume curve 
 Phrases are very short lived: 
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 Using Google News we label: 
 Mainstream media: 20,000 sites (44% vol.) 
 Blog (everything else): 1.6 million sites (56% vol.) 
 

Peak blog 
intensity comes 
about 2.5 hours 
after news peak. 
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 Classify individual sources by their typical 
timing relative to the peak aggregate intensity 
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 The “oscillation” of attention between  
mainstream media and blogs 
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 Queries for different temporal “signatures”:  
e.g., stories catalyzed by blogs: 
[x; y; t]-query: between x and y frac. of total quote volume 

(fb) occurred on blogs at least t days before overall the peak 

In total 3.5% of phrases migrate from blogs to media 
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 How much attention will information get? 
 How many sites mention  

information at particular time? 
 Idea: Predict the future number  

of mentions based on who got  
“infected” in the past 

 Linear Influence Model (LIM) 
 Assume no network 
 Model the global influence of each node  
 Predict future volume from node influences 
 

vo
lu

m
e 

now time 

? 
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 How much attention will information get? 
 Who reports the information and when? 
 1h: Gizmodo, Engadget, Wired 
 2h: Reuters, Associated Press 
 3h: New York Times, CNN 
 How many sites will mention the info at time 4, 5,...? 

 

 Motivating question:  
 If NYT mentions info at time t 
 How many additional mentions does this  

“generate”  (on other sites) at time t+1, t+2, …? 
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 K=1 piece of information: 
 V(t)…volume (number of new infections at time t) 
 A(t)…set of already infected nodes by time t 

 How does LIM predict  the future number  
of infections V(t+1)? 
 Each node u has an influence function: 
 After node u gets infected,  

how many other nodes tend to get infected 
 Estimate the influence function from past data 
 Predict future volume using the influence 

functions of nodes infected in the past 
 

t A(t) V(t) 

1 u, w 2 

2 u, w, v, x, y 3 

3 ? 
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 Each node u has an “influence” function Iu(t): 
 Iu(t): After node u gets mentions,  

how many other nodes tend to  
mention t hours later 
 e.g.: Influence function of NYT:  

How many sites say the info after NYT says it? 
 
 

 How to predict future volume V(t+1)? 
 Predict future volume using the influence  

functions of nodes infected in the past 

[ICDM ‘10] 

Iu 

t 
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 LIM model: 
 Volume V(t) at time t 
 A(t) … a set of nodes that 

mentioned info before time t 
 And let: 
 Iu(t): influence function of u 
 tu: time when u mentioned info 
 u, v, w mentioned at times tu, tv, tw 

 Predict future volume as a sum of  
influences: 

Vo
lu

m
e 

Iv 

Iw 

Iu 

∑ 

tu tv tw 

[ICDM ‘10] 
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 After node u is infected, it will infect Iu(t) 
other nodes over time 

 Influence function Iu(t) of node u:  
 Number of infections caused by u t-time steps 

after it gets infected 
 Iu(t) is unobserved, need to estimate it 

 Influence function ICNN (t) of CNN 
 How many people mention the information over 

time after they see it on CNN? 

Iu 

12/1/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 32 



 Iu(t) is not observable, need to estimate it 
 Discrete non-parametric influence functions: 
 Discrete time units 
 Iu(t) … non-negative vector of length L 
  Iu(t) = [Iu(1), Iu(2), Iu(3),… , Iu(L)] 

 Find Iu(t) by solving a optimization problem: 
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Vk(t)… volume of k-th info 
Ak(t)… infected set with k-th info 



 Input data: 1 contagion, 1 node 
 Write LIM as a matrix equation: 

 
 

 Volume vector: 
 Vk(t) … volume of contagion k at time t 
 Infection indicator matrix: 
 Mu,k(t) = 1  if node u gets infected by contagion k at time t 
 Influence functions: 
 Iu(t) … influence of node u on diffusion 

[ICDM ‘10] 
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 Input data: K contagions, N nodes 
 Write LIM as a matrix equation: 

 
 

 Volume vector: 
 Vk(t) … volume of contagion k at time t 
 Infection indicator matrix: 
 Mu,k(t) = 1  if node u gets infected by contagion k at time t 
 Influence functions: 
 Iu(t) … influence of node u on diffusion 

[ICDM ‘10] 
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 LIM as a matrix equation: V = M * I 
 Estimate influence functions: 

 
 
 Solve using (Non-Negative) Least Squares 
 Well known, can use gradient descent 
 Time ~1 sec when M is 200,000 x 4,000 matrix 

 Predicting future volume: Simple! 
 Given M and I, then 

 V = M * I 

[ICDM ‘10] 
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 Memetracker data 
 Node: website,  
 Contagion: textual phrase 

 Take top 1,000 quotes by the total volume:  
 Total 372,000 mentions on 16,000 websites 

 Build LIM on 100 highest-volume websites 
 Vi(t) … number of mentions across 16,000 websites 
 Ai(t) … which of 100 sites mentioned quote i and 

when 
 Improvement in L2-norm over 1-time lag 

predictor: 
 
 
 
 
 

 
 
 

[ICDM ‘10] 
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 Improvement in L2-norm over 1-time lag 
predictor 
 
 
 
 
 

 
 
 

Bursty phrases Steady phrases Overall 
AR 7.21% 8.30% 7.41% 
ARMA 6.85% 8.71% 7.75% 

LIM (N=100) 20.06% 6.24% 14.31% 

[ICDM ‘10] 
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 Influence functions give insights: 
 Q: NYT writes a post on politics,  

how many people tend to mention it next day? 
 A: Influence function of NYT for political phrases!  

 

 Experimental setup: 
 5 media types: 
 Newspapers, Pro Blogs, TVs, News agencies, Blogs 
 6 topics: 
 Politics, nation, entertainment, business, technology, sports 
 For all phrases in the topic, estimate average  

influence function by media type 

[ICDM ‘10] 
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 Politics is dominated by traditional media 
 Blogs: 
 Influential for Entertainment phrases 
 Influence lasts longer than for other media types 
 

Politics Entertainment 
News Agencies, Personal Blogs (Blog), Newspapers, Professional Blogs, TV 

[ICDM ‘10] 
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