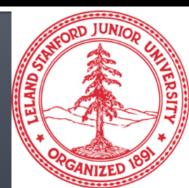
Kronecker graphs and the Structure of Large Networks

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

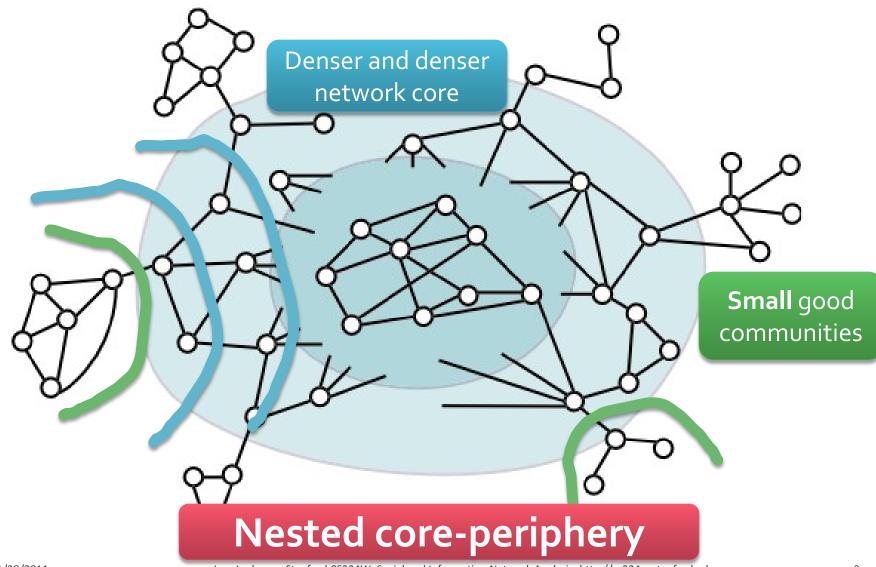


Recap: Network Community Profile



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Explanation: Nested Core-Periphery



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Idea: Recursive Graph Generation

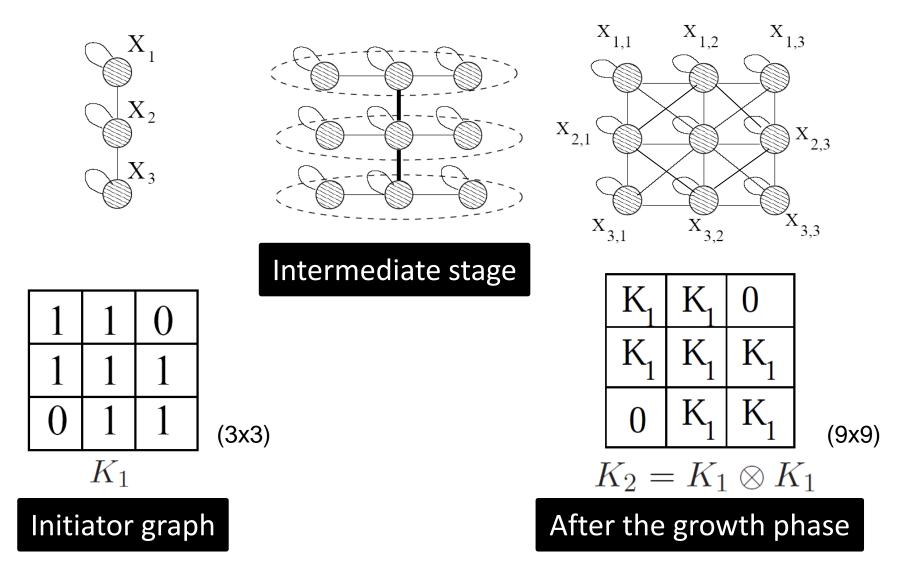
Intuition: Self-similarity

- Object is similar to a part of itself (i.e. the whole has the same shape as one or more of the parts
- Mimic recursive graph / community growth



Kronecker Product is a way of generating self-similar matrices

Kronecker: Graph Growth



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

[PKDD '05]

Kronecker Product: Definition

Kronecker product of matrices A and B is given by

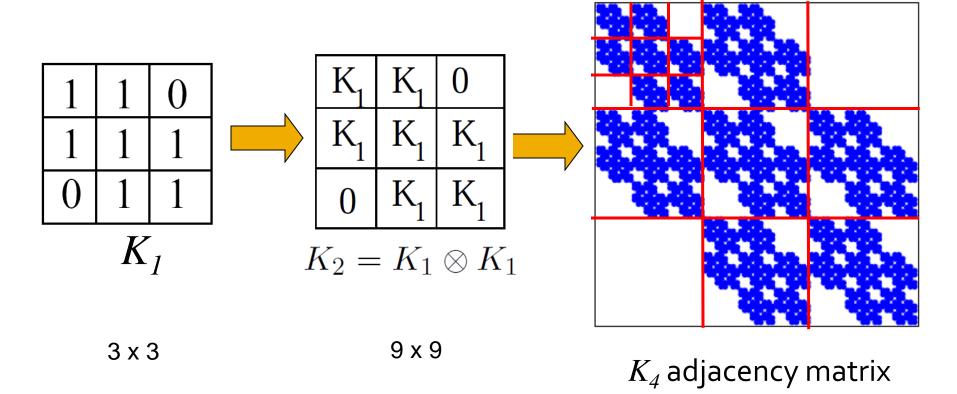
$$\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \doteq \begin{pmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} & \dots & a_{1,m}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \dots & a_{2,m}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}\mathbf{B} & a_{n,2}\mathbf{B} & \dots & a_{n,m}\mathbf{B} \end{pmatrix} \\ N^*K \times M^*L$$

 Define a Kronecker product of two graphs as a Kronecker product of their adjacency matrices

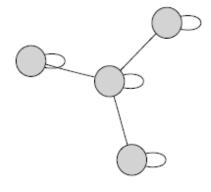
[PKDD '05]

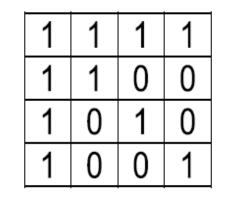
Kronecker Product: Graph

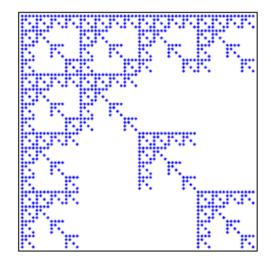
Continuing multypling with K₁ we obtain K₄ and so on ...

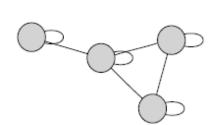


Kronecker Initiator Matrices









Initiator K_1

 K_1 adjacency matrix

 K_3 adjacency matrix

0

Х

 X_{2}

 K_1

()

Kronecker Graphs

 Kronecker graph: a growing sequence of graphs by iterating the Kronecker product

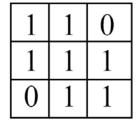
$$K_1^{[k]} = K_k = \underbrace{K_1 \otimes K_1 \otimes \ldots K_1}_{k \text{ times}} = K_{k-1} \otimes K_1$$

Kronecker Graphs

$$K_1^{[k]} = K_k = \underbrace{K_1 \otimes K_1 \otimes \ldots K_1}_{k \text{ times}} = K_{k-1} \otimes K_1$$

- For K₁ on N₁ nodes and E₁ edges
 K_k (kth Kronecker power of K₁) has:
 N₁^k nodes
 - E_1^k edges
- We get densification power-law:
 - $E(t) \propto N(t)^a$, What is a?

•
$$a = \frac{\log(E(t))}{\log(N(t))} = \frac{\log(E_1)}{\log(N_1)}$$



 K_1

Properties of Kronecker graphs

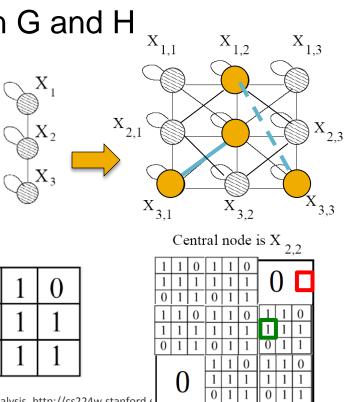
- Kronecker graphs have many properties found in real networks:
 - Properties of static networks
 - Power-Law like Degree Distribution
 - Power-Law eigenvalue and eigenvector distribution
 - Small Diameter
 - Properties of dynamic networks
 - Densification Power Law
 - Shrinking/Stabilizing Diameter

Constant Diameter

• <u>Observation</u>: Edges in Kronecker graphs: $Edge (X_{ij}, X_{kl}) \in G \otimes H$ $iff (X_i, X_k) \in G \text{ and } (X_j, X_l) \in H$ where X are appropriate nodes in G and H

Why?

 An entry in matrix G⊗H is a multiplication of entries in G and H.



[PKDD '05]

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford. (

Constant Diameter

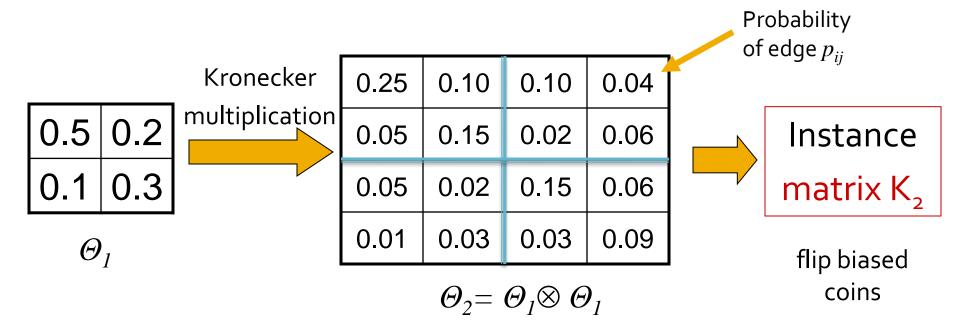
- <u>Theorem:</u> Constant diameter: If G, H have diameter d then $G \otimes H$ has diameter d
- What is distance between nodes u, v in $G \otimes H$?
 - Let u=[a,b], v=[a',b'] (using notation from last slide)
 then edge (u,v) in G⊗H iif (a,a')∈G and (b,b')∈H
 - So, path a to a' in G is less d steps: a_1a_2, a_3, \dots, a_d
 - And path b to b' in H is less d steps: $b_1, b_2, b_3, ..., b_d$
 - Then: edge ($[a_1, b_1]$, $[a_2, b_2]$) is in $G \otimes H$
 - So it takes <d steps to get from u to v in $G \otimes H$

Consequence:

• If K_1 has diameter d then graph K_k also has diameter d

Stochastic Kronecker Graphs

- Create $N_1 \times N_1$ probability matrix Θ_1
- Compute the k^{th} Kronecker power Θ_k
- For each entry p_{uv} of Θ_k include an edge (u,v) in K_k with probability p_{uv}



[PKDD '05]

[Mahdian-Xu, WAW '07]

Stochastic Kronecker Graphs

What is known about Stochastic Kronecker?

- Undirected Kronecker graph model with:
 - Connected, if:

b+c > 1

 $\Theta_1 = \begin{array}{|c|c|} a & b \\ \hline b & c \\ \end{array}$

a>b>c

- Connected component of size Θ(n), if:
 - (a+b)(b+c) > 1
- Constant diameter, if:
 - b+c > 1
- Not searchable by a decentralized algorithm

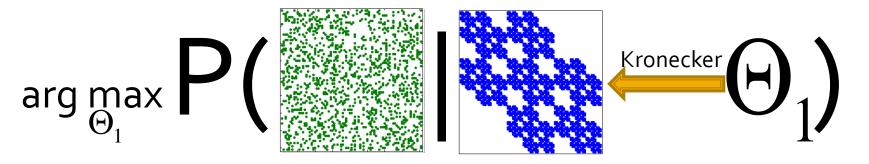
Estimating Kronecker graphs

Given a real network GWant to estimate the initiator matrix: $\Theta_1 = \begin{bmatrix} a \\ b \end{bmatrix}$

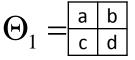
- Method of moments [Gleich&Owen '09]
 - Compare counts of A A A
 and solve the system of equations
 - For every of the 4 subgraphs, we get an equation:
 - 2 E[# •-•] = $(a+2b+c)^{k} (a+c)^{k}$ where $k = \log_2(N)$
 - 2 E[# •••] = ...
 - •
 - Now solve the system of equations by trying all possible values (a,b,c)

Kronecker graphs: Estimation

Maximum Likelihood Estimation



- Naïve estimation takes O(N!N²):
 - N! for different node labelings:



[ICML `07]

- Solution: Metropolis sampling: N! → (big) const
- N² for traversing graph adjacency matrix
 - **Solution:** Kronecker product ($E << N^2$): $N^2 \rightarrow E$
- Do gradient descent

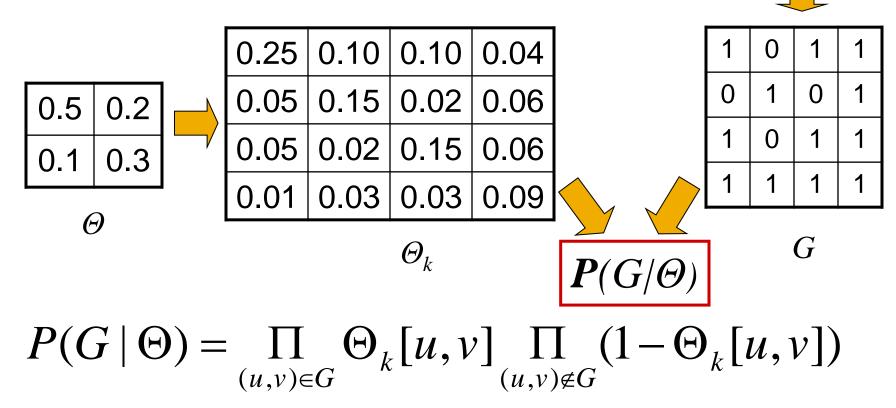
Parameter Estimation: Approach

KronFit: Maximum likelihood estimation

- Given real graph G
- Find Kronecker initiator graph Θ (i.e., $\frac{a \ b}{c \ d}$) which $\arg \max_{\Theta} P(G \mid \Theta)$
- We then need to (efficiently) calculate $P(G \,|\, \Theta)$
- And maximize over Ø
 (e.g., using gradient descent)

KronFit: Likelihood $P(G|\Theta)$

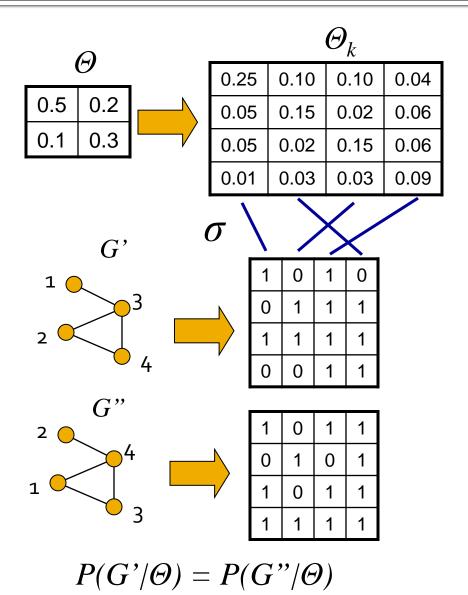
Given a graph G and Kronecker matrix
 Θ we calculate probability that Θ
 generated G P(G/Θ)



[ICML `07]

G

Challenge 1: Node Correspondence



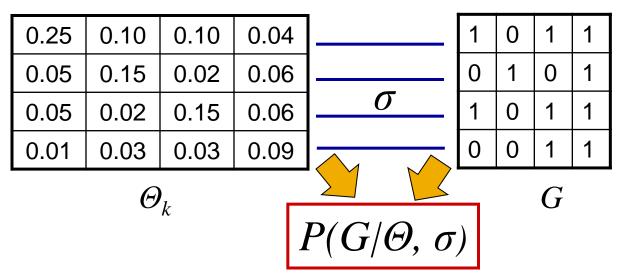
- Nodes are unlabeled
- Graphs G' and G" should have the same probability P(G'|O) = P(G"|O)
- One needs to consider all node correspondences σ

 $P(G \,|\, \Theta) = \sum_{\sigma} P(G \,|\, \Theta, \sigma) P(\sigma)$

All correspondences are a priori equally likely
 There are O(N!) correspondences

Challenge 2: Calculating $P(G|\Theta,\sigma)$

- Assume that we solved the node correspondence problem
- Calculating
- $P(G \mid \Theta) = \prod_{(u,v)\in G} \Theta_k[u,v] \prod_{(u,v)\notin G} (1 \Theta_k[u,v])$
- Takes O(N²) time



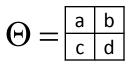
Experiments: real networks

Experimental setup

- Given real graph G
- Gradient descent from random initial point
- Obtain estimated parameters Θ
- Generate synthetic graph K using Θ
- Compare properties of graphs G and K

Note:

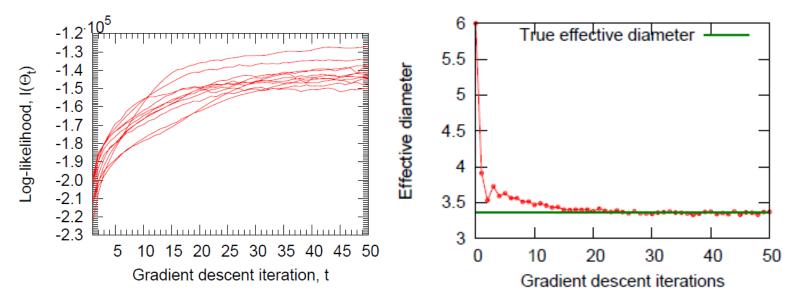
- We do not fit the graph properties themselves
- We fit the likelihood and then compare the properties



Convergence of fitting

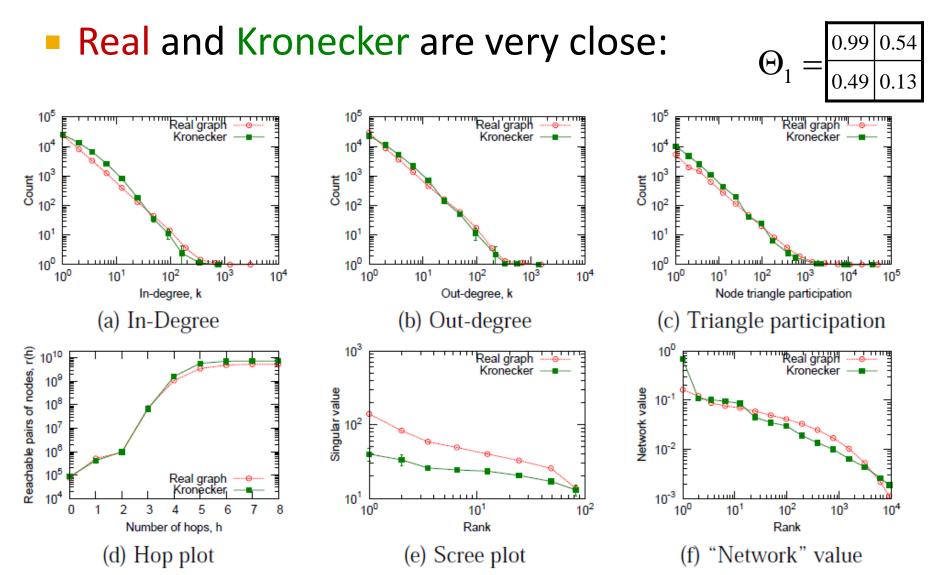
Can gradient descent recover true parameters?

- Generate a graph from random parameters
- Start at random point and use gradient descent
- We recover true parameters 98% of the times



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Estimation: Epinions (n=76k, m=510k)

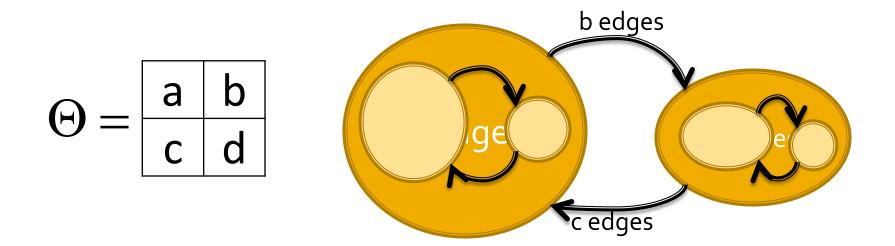


Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

[ICML '07]

Kronecker & Network Structure

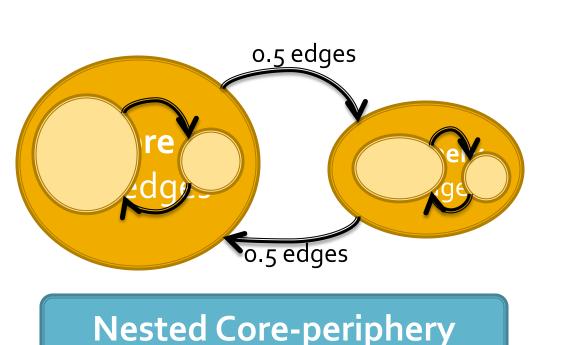
What do estimated parameters tell us about the network structure?

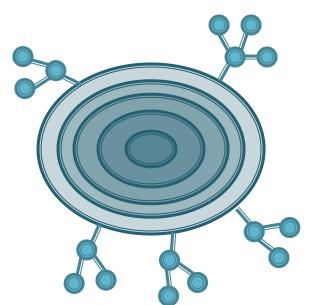


[JMLR `10]

Kronecker & Network structure

What do estimated parameters tell us about the network structure?





[JMLR `10]

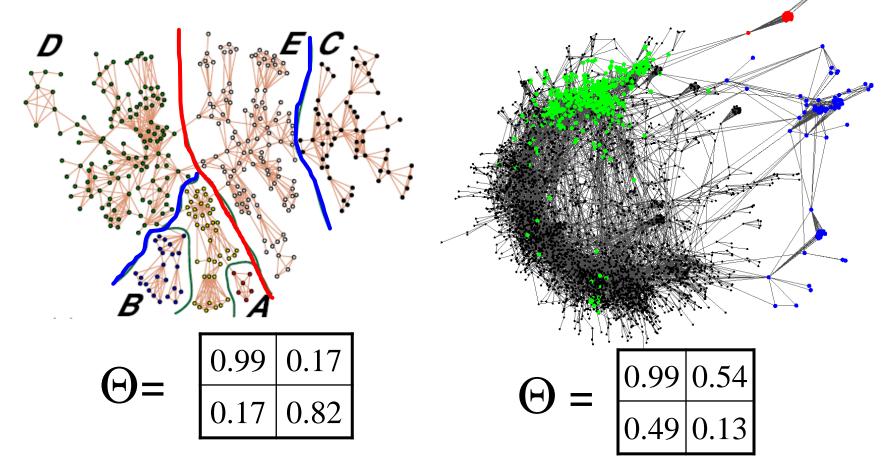
0.5

0.9

0.5

Small vs. Large Networks

Small and large networks are very different:



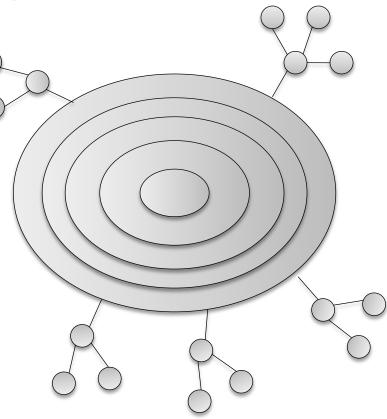
Implications (1)

Large scale network structure:

 Large networks are different from small networks and manifolds

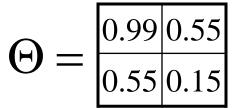
Nested Core-periphery

 Recursive onion-like structure of the network where each layer decomposes into a core and periphery



Implications (2)

- Remember the SKG theorems:
 - Connected, if b+c>1:
 - 0.55+0.15 > 1. No!

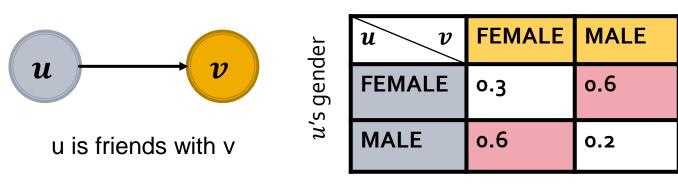


- Giant component, if $(a+b)\cdot(b+c)>1$:
 - (0.99+0.55)·(0.55+0.15) > 1. Yes!
- Real graphs are in the in the parameter region analogous to the giant component of an extremely sparse G_{np}

A Different Model: MAG Model

Nodes with Attributes

- Each node has a set of *categorical attributes*
 - Example:
 - Gender: Male, Female
 - Home country: US, Canada, Russia, etc.
- How do node attributes influence link formation?



Link probability

v's gender

Link-Affinity Matrix

- Let the values of the *i*-th attribute for node u and v be $a_i(u)$ and $a_i(v)$
 - $a_i(u)$ and $a_i(v)$ can take values $\{0, \cdots, d_i 1\}$
- Question: How can we capture the influence of the attributes on link formation?
 - Attribute matrix Θ

$$a_{i}(v) = 0 \quad a_{i}(v) = 1$$

$$a_{i}(u) = 0 \quad \Theta[0, 0] \quad \Theta[0, 1]$$

$$a_{i}(u) = 1 \quad \Theta[1, 0] \quad \Theta[1, 1]$$

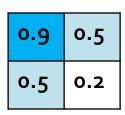
$$P(u,v) = \Theta[a_i(u), a_i(v)]$$

Each entry of the attribute matrix captures the *probability of a link* between two nodes associated with the attributes of them

Approach: Great flexibility

- Flexibility in the network structure:
 - Homophily : love of the same
 e.g., political parties, hobbies
 - Heterophily : love of the opposite
 e.g., genders
 - Core-periphery : love of the core
 e.g. extrovert personalities

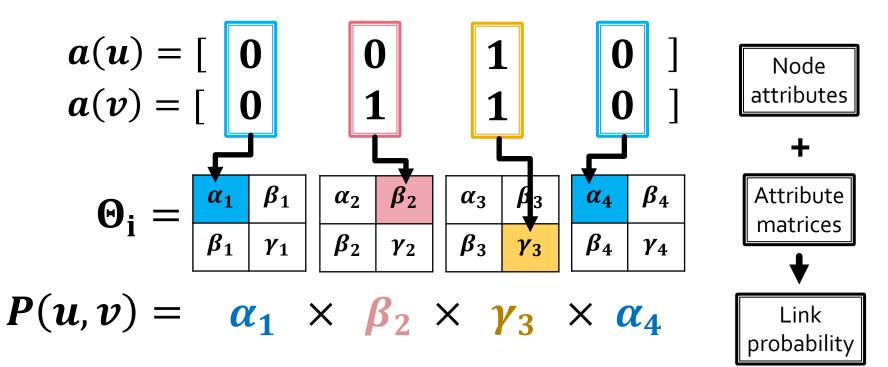
Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



Combining attributes

How do we combine the effects of multiple attributes?

Multiply the probabilities from all attributes



Multiplicative Attribute Graph

• Multiplicative Attribute Graph $M(n, l, \vec{a}, \vec{\Theta})$:

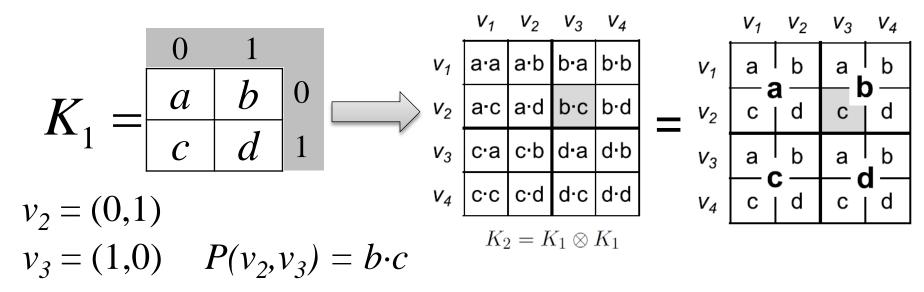
- A network contains *n* nodes
- Each node has *l* categorical attributes
- $a_i(u)$ represents the *i*-th attribute of node u
- Each attribute $a_i(\cdot)$ is linked to a $d_i \times d_i$ attribute link-affinity matrix Θ_i
- Edge probability between nodes u and v

$$P(u,v) = \prod_{i=1}^{l} \Theta_i[a_i(u), a_i(v)]$$

Connection to Kronecker Graphs

Initiator matrix K₁ acts like an affinity matrix
 Probability of a link between nodes u, v:

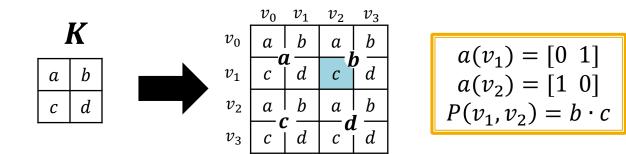
$$P(u,v) = \prod_{i=1}^{k} K_1(A_u(i), A_v(i))$$



[WAW `10]

Connection to Kronecker Graphs

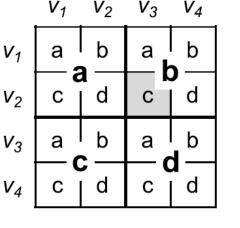
- Each node in a Kronecker graph has a node id (e.g. $0, \dots, 2^l 1$)
- A binary representation of node id is its attribute vector in a MAG model
- Then, the (stochastic) adjacency matrices of two models are equivalent
- Example:



Feature vector view: Question

2 ingredients of Kronecker model:

- (1) Each of 2^k nodes has a unique binary vector of length k
 - Node id expressed binary is the vector
- (2) The initiator matrix K



Question:

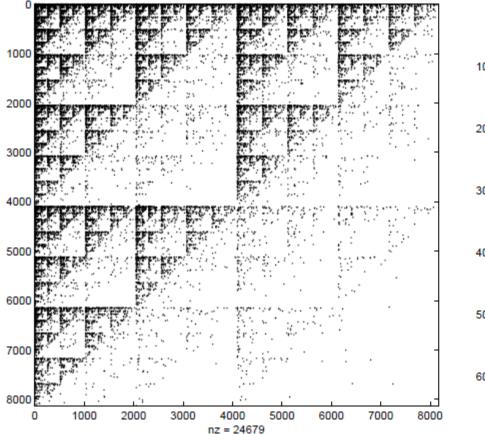
- What if ingredient (1) is dropped?
 - i.e., do we need high variability of feature vectors?

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Comparison: Adjacency matrices

Adjacency matrices:

Kronecker adjacency matrix



Binomial attribute graph adjacency matrix (lexicographic ordering)

O COLOR AND A REAL PROPERTY OF THE AND A REAL PROPERTY OF THE AND A REAL PROPERTY OF THE ADDRESS OF THE ADDRESS

	nz = 23063						
0	1	000	2000	3000	4000	5000	6000
			14				
6000	ч у	· ·			• • • •		
6000	as Kir					· · ·	
		4	:			· · ·	
3.5				·. ·			
5000	de l'anne de la	61 miles		· · · ·	2001/02		
5000		1. ·				٠.	
			2.F 6	· · · · · ·	· · · ·		
3	a nibalita		- CRANN) · ·	· • • ·
4000		÷.		4		1. <u>1</u> .	÷. *
4000	T	Sec. mark	• PIE				· · ·
		10		Ex de			· · · · ·
2				S-TIDE 14. 14.71	E Mar V. Crow	· · · · · · · · · · · · · · · · · · ·	
3000	a Menod	1.10		•			
K E E	- F.			•		č	· ·
	24 24 24 24 24 24	<u>,</u>	1177 1977 - 1977 - 1977	·· .	BUMO BETTY		
	877 ·	e a			FF (S	4	11 J.
2000	r (r	Same of Sur		- 10 A	r •••		
	PD	REU	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		ELEPHONE S	REPORT	ter ne n
			νù		2		
	£2.						
1000	CHARGE C		. Labola de		Series Said	CTT-S	
			5 m				5
	TER .	65	2 PT 2	A	5		