
CS224W: Social and Information Network Analysis 
Jure Leskovec, Stanford University 

http://cs224w.stanford.edu 



 Φ
(k

), 
(s

co
re

) 

k, (cluster size) 
2 

Better and 
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Clusters get worse 
and worse 

 Best cluster has 
~100 nodes 
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Small good 
communities 

Denser and denser 
network core 

Nested core-periphery 



 Intuition: Self-similarity 
 Object is similar to a part of itself (i.e. the whole has 

the same shape as one or more of the parts 
 Mimic recursive graph / community growth  

 
 
 
 
 

 Kronecker Product is a way of generating  
self-similar matrices 
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Initial graph Recursive expansion 
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Intermediate stage 

Initiator graph 

(9x9) (3x3) 

[PKDD ‘05] 

After the growth phase 



 Kronecker product of matrices A and B is given 
by 
 
 
 
 
 

 

 Define a Kronecker product of two graphs as a 
Kronecker product of their adjacency matrices 
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N x M K x L 

N*K x M*L  



 Continuing multypling with K1 we  
obtain K4 and so on … 
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K4 adjacency matrix 

K1 

[PKDD ‘05] 

3 x 3 9 x 9 
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[PKDD ‘05] 



 Kronecker graph: a growing  
sequence of graphs by  
iterating the Kronecker  
product 

 
 
 
 
 
 
 

 Note: One can easily use multiple initiator 
matrices  (K1

’, K1
’’, K1

’’’ ) (even of different 
sizes) 
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K1 

[PKDD ‘05] 



 For K1 on N1 nodes and E1 edges 
Kk  (kth Kronecker power of K1) has: 
 N1

k nodes 
 E1

k edges 
 We get densification power-law: 
 𝑬 𝒕 ∝ 𝑵 𝒕 𝒂,      What is a? 

 𝒂 = 𝐥𝐥𝐥 𝑬 𝒕
𝐥𝐥𝐥 𝑵 𝒕

= 𝐥𝐥𝐥 𝑬𝟏 
 𝐥𝐥𝐥(𝑵𝟏)
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[PKDD ‘05] 

K1 



 Kronecker graphs have many properties  
found in real networks: 
 Properties of static networks 
 Power-Law like Degree Distribution 
 Power-Law eigenvalue and eigenvector distribution 
 Small Diameter 

 Properties of dynamic networks 
 Densification Power Law 
 Shrinking/Stabilizing Diameter 
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[PKDD ’05] 
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[PKDD ’05] 

 Observation: Edges in Kronecker graphs: 
 

 
 

  where X are appropriate nodes in G and H 

 
 Why? 
 An entry in matrix G⊗H is a  

multiplication of entries in 
G and H. 



 Theorem: Constant diameter: If G, H have 
diameter d then G⊗H has diameter d 

 What is distance between nodes u, v in G⊗H? 
 Let u=[a,b], v=[a’,b’] (using notation from last slide)  

then edge (u,v) in G⊗H  iif (a,a’)∈G and (b,b’)∈H 
 So, path a to a’ in G is less d steps:   a1,a2,a3,…,ad 

 And path b to b’ in H is less d steps: b1,b2,b3,…,bd 

 Then: edge ([a1,b1], [a2,b2]) is in G⊗H 
 So it takes <d steps to get from u to v in G⊗H 

 Consequence:  
 If K1 has diameter d then graph Kk also has diameter d 
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[PKDD ’05] 



0.25 0.10 0.10 0.04 

0.05 0.15 0.02 0.06 

0.05 0.02 0.15 0.06 

0.01 0.03 0.03 0.09 

 Create N1×N1 probability matrix Θ1 
 Compute the kth Kronecker power Θk 
 For each entry puv of Θk include an  

edge (u,v) in Kk with probability puv 
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0.5 0.2 
0.1 0.3 
Θ1 

Instance  
matrix K2 

Θ2= Θ1⊗ Θ1 

flip biased 
coins 

Kronecker 
multiplication 

Probability 
of edge pij 

[PKDD ’05] 



What is known about Stochastic Kronecker? 
 Undirected Kronecker graph model with:  
 Connected, if: 
 b+c > 1 
 Connected component of size Θ(n), if: 
 (a+b)(b+c) > 1 
 Constant diameter, if: 
 b+c > 1 
 Not searchable by a decentralized algorithm 
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[Mahdian-Xu, WAW ’07] 

a b 
b c =Θ1

a>b>c 



 Given a real network G 
 Want to estimate the initiator matrix: 
 Method of moments [Gleich&Owen ‘09] 

 Compare counts of                           
and solve the system of equations 
 For every of the 4 subgraphs, we get an equation: 
 2 E[#          ]  = (a+2b+c)k - (a+c)k                 where k = log2(N) 
 2 E[#           ] = … 
 … 

 Now solve the system of equations by trying all 
possible values (a,b,c) 
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=Θ1
a b 
b d 

11/28/2011 



 Maximum Likelihood Estimation 
 

 

 Naïve estimation takes O(N!N2): 
 N! for different node labelings: 
 Solution: Metropolis sampling: N!   (big) const 

 N2 for traversing graph adjacency matrix 
 Solution: Kronecker product (E << N2): N2 E 

 Do gradient descent 
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=Θ1
a b 
c d 

 

1ΘP( |  )  Kronecker 

arg max 
1Θ

[ICML ‘07] 



KronFit: Maximum likelihood estimation 
 Given real graph G 
 Find Kronecker initiator graph Θ (i.e.,        ) 

which 
 

 We then need to (efficiently) calculate 
 
 

 And maximize over Θ  
(e.g., using gradient descent) 
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)|( ΘGP

)|(maxarg Θ
Θ

GP

a b 
c d 



 Given a graph G and Kronecker matrix 
Θ we calculate probability that Θ 
generated G  P(G|Θ) 

0.25 0.10 0.10 0.04 
0.05 0.15 0.02 0.06 
0.05 0.02 0.15 0.06 
0.01 0.03 0.03 0.09 

0.5 0.2 
0.1 0.3 

Θ 
Θk 

1 0 1 1 

0 1 0 1 

1 0 1 1 

1 1 1 1 

G P(G|Θ) 

]),[1(],[)|(
),(),(

vuvuGP kGvukGvu
Θ−ΠΘΠ=Θ

∉∈

G 

[ICML ‘07] 
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 Nodes are unlabeled 
 Graphs G’ and G” should 

have the same probability 
 P(G’|Θ) = P(G”|Θ) 
 One needs to consider all 

node correspondences  σ 
 
 

 All correspondences are a 
priori equally likely 

 There are O(N!) 
correspondences 

0.25 0.10 0.10 0.04 

0.05 0.15 0.02 0.06 

0.05 0.02 0.15 0.06 

0.01 0.03 0.03 0.09 

1 0 1 0 

0 1 1 1 

1 1 1 1 

0 0 1 1 

0.5 0.2 
0.1 0.3 

1 

2 

3 

4 

2 

1 

4 

3 

)(),|()|( σσ
σ

PGPGP ∑ Θ=Θ

1 0 1 1 

0 1 0 1 

1 0 1 1 

1 1 1 1 

G’ 

G” 

P(G’|Θ) = P(G”|Θ) 

Θ 
Θk 

σ 

[ICML ‘07] 
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 Assume that we solved the node 
correspondence problem 

 Calculating 
 
 

 Takes O(N2) time 

]),[1(],[)|(
),(),(

vuvuGP kGvukGvu
Θ−ΠΘΠ=Θ

∉∈

0.25 0.10 0.10 0.04 
0.05 0.15 0.02 0.06 
0.05 0.02 0.15 0.06 
0.01 0.03 0.03 0.09 

1 0 1 1 
0 1 0 1 
1 0 1 1 
0 0 1 1 

G 
P(G|Θ, σ) 

Θk 

σ 

[ICML ‘07] 



 Experimental setup 
 Given real graph G 
 Gradient descent from random initial point 
 Obtain estimated parameters Θ 
 Generate synthetic graph K using Θ 
 Compare properties of graphs G and K 

 

 Note: 
 We do not fit the graph properties themselves  
 We fit the likelihood and then compare the 

properties 
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=Θ a b 
c d 



 Can gradient descent recover true 
parameters? 
 Generate a graph from random parameters 
 Start at random point and use gradient descent 
 We recover true parameters 98% of the times 
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 Real and Kronecker are very close: 
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=Θ1
0.99 0.54 

0.49 0.13 

[ICML ‘07] 



 What do estimated parameters tell us 
about the network structure? 
 

31 

=Θ a b 
c d a edges d edges 

b edges 

c edges 
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[JMLR ‘10] 
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 What do estimated parameters tell us 
about the network structure? 
 

32 

Core 
0.9 edges 

Periphery
0.1 edges 

0.5 edges 

0.5 edges 

Nested Core-periphery 

=Θ
0.9 0.5 
0.5 0.1 
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 Small and large networks are very different: 

33 

0.99 0.54 
0.49 0.13 

0.99 0.17 
0.17 0.82 Θ= Θ = 

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 11/28/2011 

[JMLR ‘10] 



Large scale network structure: 
 Large networks are  

different from small  
networks and manifolds 

 Nested Core-periphery 
 Recursive onion-like  

structure of the network  
where each layer  
decomposes into a core  
and periphery 
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 Remember the SKG theorems: 
 Connected, if b+c>1:  
 0.55+0.15 > 1. No! 

 Giant component, if (a+b)·(b+c)>1:  
 (0.99+0.55)∙(0.55+0.15) > 1. Yes! 

 Real graphs are in the in the parameter region 
analogous to the giant component of an 
extremely sparse Gnp 
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=Θ
0.99 0.55 
0.55 0.15 

1/n Gnp log(n)/n real-networks 





 Each node has a set of categorical attributes 
 Example: 
 Gender: Male, Female 
 Home country: US, Canada, Russia, etc. 

 How do node attributes influence link 
formation?  

 
 
 

𝒖            𝒗 FEMALE MALE 

FEMALE 0.3 0.6 

MALE 0.6 0.2 

𝒖 𝒗 

u is friends with v 

Link probability 

𝑢’
s 

ge
nd

er
 

𝑣’s gender 
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 Let the values of the 𝒊-th attribute for node  
𝑢 and 𝑣 be 𝒂𝒊 𝒖  and 𝒂𝒊(𝒗) 
 𝑎𝑖 𝑢  and 𝑎𝑖(𝑣) can take values {0,⋯ ,𝑑𝑖 − 1} 

 Question: How can we capture the influence 
of the attributes on link formation? 
 Attribute matrix 𝚯 
 
 
 

𝑎𝑖 𝑢 = 0 𝚯[𝟎,𝟎] 𝚯[𝟎,𝟏] 

𝚯[𝟏,𝟎] 𝚯[𝟏,𝟏] 

𝑎𝑖 𝑣 = 0     𝑎𝑖 𝑣 = 1 

𝑷 𝒖,𝒗 = 𝚯[𝒂𝒊 𝒖 ,𝒂𝒊(𝒗)]  
𝑎𝑖 𝑢 = 1 

Each entry of the attribute matrix captures the probability of a 
link  between two nodes associated with the attributes of them 
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 Flexibility in the network structure: 
 

 Homophily :  love of the same 
e.g., political parties, hobbies 

 

 Heterophily :  love of the opposite 
e.g., genders 

 

 Core-periphery :  love of the core 
e.g. extrovert personalities 

 

0.9 0.1 

0.1 0.8 

0.2 0.9 

0.9 0.1 

0.9 0.5 

0.5 0.2 
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 How do we combine the effects of multiple 
attributes? 
 Multiply the probabilities from all attributes 

Node 
attributes 

Attribute 
matrices 

Link 
probability 

𝜶𝟏 𝜷𝟏 

𝜷𝟏 𝜸𝟏 

𝜶𝟐 𝜷𝟐 

𝜷𝟐 𝜸𝟐 

𝜶𝟑 𝜷𝟑 

𝜷𝟑 𝜸𝟑 

𝜶𝟒 𝜷𝟒 

𝜷𝟒 𝜸𝟒 
𝚯𝐢 = 

𝒂 𝒖 = [ 
𝒂 𝒗 = [ 

𝟎 
𝟎 

𝟎 
𝟏 

𝟏 
𝟏 

𝟎 
𝟎 

] 
] 

𝑷 𝒖,𝒗 = 𝜶𝟏   ×   𝜷𝟐  ×   𝜸𝟑   ×  𝜶𝟒 

+ 
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 Multiplicative Attribute Graph 𝑴(𝒏, 𝒍,𝒂,𝜣) : 
 A network contains 𝒏 nodes 
 Each node has 𝒍 categorical attributes 
 𝑎𝑖(𝑢) represents the 𝒊-th attribute of node 𝒖 
 Each attribute 𝑎𝑖(∙) is linked to a 𝒅𝒊 × 𝒅𝒊 attribute 

link-affinity matrix  𝜣𝒊 
 Edge probability between nodes 𝑢 and 𝑣 

 
  
  
  

𝑷(𝒖,𝒗) =  �𝚯𝒊[𝒂𝒊 𝒖 ,𝒂𝒊 𝒗 ]
𝒍

𝒊=𝟏
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 Initiator matrix K1 acts like an affinity matrix 
 Probability of a link between nodes u, v: 
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=1K a  b 
c d 

v2 = (0,1) 
P(v2,v3) = b·c 

  0       1 
0 
 

1 

v3 = (1,0) 

[WAW ‘10] 
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 Each node in a Kronecker graph has a  
node id (e.g. 0,⋯ , 2𝑙 − 1 ) 

 A binary representation of node id is its 
attribute vector in a MAG model 

 Then, the (stochastic) adjacency matrices of 
two models are equivalent 

 Example: 
 

 
𝑲 

𝑎(𝑣1) = [0  1] 
𝑎(𝑣2) = [1  0] 
𝑃 𝑣1, 𝑣2 = 𝑏 ∙ 𝑐 

𝑎 𝑏 

𝑐 𝑑 

𝑎 𝑏 𝑎 𝑏 

𝑐 𝑑 𝑐 𝑑 

𝑎 𝑏 𝑎 𝑏 

𝑐 𝑑 𝑐 𝑑 

𝒂 𝒃 

𝒄 𝒅 

𝑣0 𝑣1 𝑣2 𝑣3 
𝑣0 

𝑣1 

𝑣2 

𝑣3 
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 2 ingredients of Kronecker model: 
 (1) Each of 2k nodes has a unique  

binary vector of length k 
 Node id expressed binary is the vector 

 (2) The initiator matrix K 
 

 Question: 
 What if ingredient (1) is dropped? 
 i.e., do we need high variability of feature vectors? 
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 Adjacency matrices: 
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