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Better and 
better clusters 

Clusters get worse 
and worse 

 Best cluster has 
~100 nodes 
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Small good 
communities 

Denser and denser 
network core 

Nested core-periphery 



 Intuition: Self-similarity 
 Object is similar to a part of itself (i.e. the whole has 

the same shape as one or more of the parts 
 Mimic recursive graph / community growth  

 
 
 
 
 

 Kronecker Product is a way of generating  
self-similar matrices 
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Initial graph Recursive expansion 
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Intermediate stage 

Initiator graph 

(9x9) (3x3) 

[PKDD ‘05] 

After the growth phase 



 Kronecker product of matrices A and B is given 
by 
 
 
 
 
 

 

 Define a Kronecker product of two graphs as a 
Kronecker product of their adjacency matrices 
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N x M K x L 

N*K x M*L  



 Continuing multypling with K1 we  
obtain K4 and so on … 
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K4 adjacency matrix 

K1 

[PKDD ‘05] 

3 x 3 9 x 9 
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[PKDD ‘05] 



 Kronecker graph: a growing  
sequence of graphs by  
iterating the Kronecker  
product 

 
 
 
 
 
 
 

 Note: One can easily use multiple initiator 
matrices  (K1

’, K1
’’, K1

’’’ ) (even of different 
sizes) 
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K1 

[PKDD ‘05] 



 For K1 on N1 nodes and E1 edges 
Kk  (kth Kronecker power of K1) has: 
 N1

k nodes 
 E1

k edges 
 We get densification power-law: 
 𝑬 𝒕 ∝ 𝑵 𝒕 𝒂,      What is a? 

 𝒂 = 𝐥𝐥𝐥 𝑬 𝒕
𝐥𝐥𝐥 𝑵 𝒕

= 𝐥𝐥𝐥 𝑬𝟏 
 𝐥𝐥𝐥(𝑵𝟏)
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[PKDD ‘05] 

K1 



 Kronecker graphs have many properties  
found in real networks: 
 Properties of static networks 
 Power-Law like Degree Distribution 
 Power-Law eigenvalue and eigenvector distribution 
 Small Diameter 

 Properties of dynamic networks 
 Densification Power Law 
 Shrinking/Stabilizing Diameter 
 

11/28/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 11 

[PKDD ’05] 



11/28/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 12 

[PKDD ’05] 

 Observation: Edges in Kronecker graphs: 
 

 
 

  where X are appropriate nodes in G and H 

 
 Why? 
 An entry in matrix G⊗H is a  

multiplication of entries in 
G and H. 



 Theorem: Constant diameter: If G, H have 
diameter d then G⊗H has diameter d 

 What is distance between nodes u, v in G⊗H? 
 Let u=[a,b], v=[a’,b’] (using notation from last slide)  

then edge (u,v) in G⊗H  iif (a,a’)∈G and (b,b’)∈H 
 So, path a to a’ in G is less d steps:   a1,a2,a3,…,ad 

 And path b to b’ in H is less d steps: b1,b2,b3,…,bd 

 Then: edge ([a1,b1], [a2,b2]) is in G⊗H 
 So it takes <d steps to get from u to v in G⊗H 

 Consequence:  
 If K1 has diameter d then graph Kk also has diameter d 
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[PKDD ’05] 



0.25 0.10 0.10 0.04 

0.05 0.15 0.02 0.06 

0.05 0.02 0.15 0.06 

0.01 0.03 0.03 0.09 

 Create N1×N1 probability matrix Θ1 
 Compute the kth Kronecker power Θk 
 For each entry puv of Θk include an  

edge (u,v) in Kk with probability puv 
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0.5 0.2 
0.1 0.3 
Θ1 

Instance  
matrix K2 

Θ2= Θ1⊗ Θ1 

flip biased 
coins 

Kronecker 
multiplication 

Probability 
of edge pij 

[PKDD ’05] 



What is known about Stochastic Kronecker? 
 Undirected Kronecker graph model with:  
 Connected, if: 
 b+c > 1 
 Connected component of size Θ(n), if: 
 (a+b)(b+c) > 1 
 Constant diameter, if: 
 b+c > 1 
 Not searchable by a decentralized algorithm 
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[Mahdian-Xu, WAW ’07] 

a b 
b c =Θ1

a>b>c 



 Given a real network G 
 Want to estimate the initiator matrix: 
 Method of moments [Gleich&Owen ‘09] 

 Compare counts of                           
and solve the system of equations 
 For every of the 4 subgraphs, we get an equation: 
 2 E[#          ]  = (a+2b+c)k - (a+c)k                 where k = log2(N) 
 2 E[#           ] = … 
 … 

 Now solve the system of equations by trying all 
possible values (a,b,c) 
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=Θ1
a b 
b d 

11/28/2011 



 Maximum Likelihood Estimation 
 

 

 Naïve estimation takes O(N!N2): 
 N! for different node labelings: 
 Solution: Metropolis sampling: N!   (big) const 

 N2 for traversing graph adjacency matrix 
 Solution: Kronecker product (E << N2): N2 E 

 Do gradient descent 
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=Θ1
a b 
c d 

 

1ΘP( |  )  Kronecker 

arg max 
1Θ

[ICML ‘07] 



KronFit: Maximum likelihood estimation 
 Given real graph G 
 Find Kronecker initiator graph Θ (i.e.,        ) 

which 
 

 We then need to (efficiently) calculate 
 
 

 And maximize over Θ  
(e.g., using gradient descent) 
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)|( ΘGP

)|(maxarg Θ
Θ

GP

a b 
c d 



 Given a graph G and Kronecker matrix 
Θ we calculate probability that Θ 
generated G  P(G|Θ) 

0.25 0.10 0.10 0.04 
0.05 0.15 0.02 0.06 
0.05 0.02 0.15 0.06 
0.01 0.03 0.03 0.09 

0.5 0.2 
0.1 0.3 

Θ 
Θk 

1 0 1 1 

0 1 0 1 

1 0 1 1 

1 1 1 1 

G P(G|Θ) 

]),[1(],[)|(
),(),(

vuvuGP kGvukGvu
Θ−ΠΘΠ=Θ

∉∈

G 

[ICML ‘07] 
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 Nodes are unlabeled 
 Graphs G’ and G” should 

have the same probability 
 P(G’|Θ) = P(G”|Θ) 
 One needs to consider all 

node correspondences  σ 
 
 

 All correspondences are a 
priori equally likely 

 There are O(N!) 
correspondences 

0.25 0.10 0.10 0.04 

0.05 0.15 0.02 0.06 

0.05 0.02 0.15 0.06 

0.01 0.03 0.03 0.09 

1 0 1 0 

0 1 1 1 

1 1 1 1 

0 0 1 1 

0.5 0.2 
0.1 0.3 

1 

2 

3 

4 

2 

1 

4 

3 

)(),|()|( σσ
σ

PGPGP ∑ Θ=Θ

1 0 1 1 

0 1 0 1 

1 0 1 1 

1 1 1 1 

G’ 

G” 

P(G’|Θ) = P(G”|Θ) 

Θ 
Θk 

σ 

[ICML ‘07] 
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 Assume that we solved the node 
correspondence problem 

 Calculating 
 
 

 Takes O(N2) time 

]),[1(],[)|(
),(),(

vuvuGP kGvukGvu
Θ−ΠΘΠ=Θ

∉∈

0.25 0.10 0.10 0.04 
0.05 0.15 0.02 0.06 
0.05 0.02 0.15 0.06 
0.01 0.03 0.03 0.09 

1 0 1 1 
0 1 0 1 
1 0 1 1 
0 0 1 1 

G 
P(G|Θ, σ) 

Θk 

σ 

[ICML ‘07] 



 Experimental setup 
 Given real graph G 
 Gradient descent from random initial point 
 Obtain estimated parameters Θ 
 Generate synthetic graph K using Θ 
 Compare properties of graphs G and K 

 

 Note: 
 We do not fit the graph properties themselves  
 We fit the likelihood and then compare the 

properties 
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=Θ a b 
c d 



 Can gradient descent recover true 
parameters? 
 Generate a graph from random parameters 
 Start at random point and use gradient descent 
 We recover true parameters 98% of the times 
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 Real and Kronecker are very close: 
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=Θ1
0.99 0.54 

0.49 0.13 

[ICML ‘07] 



 What do estimated parameters tell us 
about the network structure? 
 

31 

=Θ a b 
c d a edges d edges 

b edges 

c edges 
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[JMLR ‘10] 
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 What do estimated parameters tell us 
about the network structure? 
 

32 

Core 
0.9 edges 

Periphery
0.1 edges 

0.5 edges 

0.5 edges 

Nested Core-periphery 

=Θ
0.9 0.5 
0.5 0.1 
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[JMLR ‘10] 



 Small and large networks are very different: 

33 

0.99 0.54 
0.49 0.13 

0.99 0.17 
0.17 0.82 Θ= Θ = 

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 11/28/2011 

[JMLR ‘10] 



Large scale network structure: 
 Large networks are  

different from small  
networks and manifolds 

 Nested Core-periphery 
 Recursive onion-like  

structure of the network  
where each layer  
decomposes into a core  
and periphery 
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 Remember the SKG theorems: 
 Connected, if b+c>1:  
 0.55+0.15 > 1. No! 

 Giant component, if (a+b)·(b+c)>1:  
 (0.99+0.55)∙(0.55+0.15) > 1. Yes! 

 Real graphs are in the in the parameter region 
analogous to the giant component of an 
extremely sparse Gnp 
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=Θ
0.99 0.55 
0.55 0.15 

1/n Gnp log(n)/n real-networks 





 Each node has a set of categorical attributes 
 Example: 
 Gender: Male, Female 
 Home country: US, Canada, Russia, etc. 

 How do node attributes influence link 
formation?  

 
 
 

𝒖            𝒗 FEMALE MALE 

FEMALE 0.3 0.6 

MALE 0.6 0.2 

𝒖 𝒗 

u is friends with v 

Link probability 

𝑢’
s 

ge
nd

er
 

𝑣’s gender 
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 Let the values of the 𝒊-th attribute for node  
𝑢 and 𝑣 be 𝒂𝒊 𝒖  and 𝒂𝒊(𝒗) 
 𝑎𝑖 𝑢  and 𝑎𝑖(𝑣) can take values {0,⋯ ,𝑑𝑖 − 1} 

 Question: How can we capture the influence 
of the attributes on link formation? 
 Attribute matrix 𝚯 
 
 
 

𝑎𝑖 𝑢 = 0 𝚯[𝟎,𝟎] 𝚯[𝟎,𝟏] 

𝚯[𝟏,𝟎] 𝚯[𝟏,𝟏] 

𝑎𝑖 𝑣 = 0     𝑎𝑖 𝑣 = 1 

𝑷 𝒖,𝒗 = 𝚯[𝒂𝒊 𝒖 ,𝒂𝒊(𝒗)]  
𝑎𝑖 𝑢 = 1 

Each entry of the attribute matrix captures the probability of a 
link  between two nodes associated with the attributes of them 
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 Flexibility in the network structure: 
 

 Homophily :  love of the same 
e.g., political parties, hobbies 

 

 Heterophily :  love of the opposite 
e.g., genders 

 

 Core-periphery :  love of the core 
e.g. extrovert personalities 

 

0.9 0.1 

0.1 0.8 

0.2 0.9 

0.9 0.1 

0.9 0.5 

0.5 0.2 
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 How do we combine the effects of multiple 
attributes? 
 Multiply the probabilities from all attributes 

Node 
attributes 

Attribute 
matrices 

Link 
probability 

𝜶𝟏 𝜷𝟏 

𝜷𝟏 𝜸𝟏 

𝜶𝟐 𝜷𝟐 

𝜷𝟐 𝜸𝟐 

𝜶𝟑 𝜷𝟑 

𝜷𝟑 𝜸𝟑 

𝜶𝟒 𝜷𝟒 

𝜷𝟒 𝜸𝟒 
𝚯𝐢 = 

𝒂 𝒖 = [ 
𝒂 𝒗 = [ 

𝟎 
𝟎 

𝟎 
𝟏 

𝟏 
𝟏 

𝟎 
𝟎 

] 
] 

𝑷 𝒖,𝒗 = 𝜶𝟏   ×   𝜷𝟐  ×   𝜸𝟑   ×  𝜶𝟒 

+ 
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 Multiplicative Attribute Graph 𝑴(𝒏, 𝒍,𝒂,𝜣) : 
 A network contains 𝒏 nodes 
 Each node has 𝒍 categorical attributes 
 𝑎𝑖(𝑢) represents the 𝒊-th attribute of node 𝒖 
 Each attribute 𝑎𝑖(∙) is linked to a 𝒅𝒊 × 𝒅𝒊 attribute 

link-affinity matrix  𝜣𝒊 
 Edge probability between nodes 𝑢 and 𝑣 

 
  
  
  

𝑷(𝒖,𝒗) =  �𝚯𝒊[𝒂𝒊 𝒖 ,𝒂𝒊 𝒗 ]
𝒍

𝒊=𝟏
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 Initiator matrix K1 acts like an affinity matrix 
 Probability of a link between nodes u, v: 
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=1K a  b 
c d 

v2 = (0,1) 
P(v2,v3) = b·c 

  0       1 
0 
 

1 

v3 = (1,0) 

[WAW ‘10] 
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 Each node in a Kronecker graph has a  
node id (e.g. 0,⋯ , 2𝑙 − 1 ) 

 A binary representation of node id is its 
attribute vector in a MAG model 

 Then, the (stochastic) adjacency matrices of 
two models are equivalent 

 Example: 
 

 
𝑲 

𝑎(𝑣1) = [0  1] 
𝑎(𝑣2) = [1  0] 
𝑃 𝑣1, 𝑣2 = 𝑏 ∙ 𝑐 

𝑎 𝑏 

𝑐 𝑑 

𝑎 𝑏 𝑎 𝑏 

𝑐 𝑑 𝑐 𝑑 

𝑎 𝑏 𝑎 𝑏 

𝑐 𝑑 𝑐 𝑑 

𝒂 𝒃 

𝒄 𝒅 

𝑣0 𝑣1 𝑣2 𝑣3 
𝑣0 

𝑣1 

𝑣2 

𝑣3 
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 2 ingredients of Kronecker model: 
 (1) Each of 2k nodes has a unique  

binary vector of length k 
 Node id expressed binary is the vector 

 (2) The initiator matrix K 
 

 Question: 
 What if ingredient (1) is dropped? 
 i.e., do we need high variability of feature vectors? 

11/28/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 44 



 Adjacency matrices: 

11/28/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 45 


	Kronecker graphs and the Structure of Large Networks
	Recap: Network Community Profile
	Explanation: Nested Core-Periphery
	Idea: Recursive Graph Generation
	Kronecker: Graph Growth
	Kronecker Product: Definition
	Kronecker Product: Graph
	Kronecker Initiator Matrices
	Kronecker Graphs
	Kronecker Graphs
	Properties of Kronecker graphs
	Constant Diameter
	Constant Diameter
	Stochastic Kronecker Graphs
	Stochastic Kronecker Graphs
	Estimating Kronecker graphs
	Kronecker graphs: Estimation
	Parameter Estimation: Approach
	KronFit: Likelihood P(G|Θ)
	Challenge 1: Node Correspondence
	Challenge 2: Calculating P(G|Θ,σ)
	Experiments: real networks
	Convergence of fitting
	Estimation: Epinions (n=76k, m=510k)
	Kronecker & Network Structure
	Kronecker & Network structure
	Small vs. Large Networks
	Implications (1)
	Implications (2)
	A Different Model: �MAG Model
	Nodes with Attributes
	Link-Affinity Matrix
	Approach: Great flexibility
	Combining attributes
	Multiplicative Attribute Graph
	Connection to Kronecker Graphs
	Connection to Kronecker Graphs
	Feature vector view: Question
	Comparison: Adjacency matrices

