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 Non-overlapping vs. overlapping  communities 
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 A node belongs to many social circles 
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[Palla et al., ‘05] 
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 Two nodes belong to the same community if they 
can be connected through adjacent k-cliques: 
 k-clique: 
 Fully connected  

graph on k nodes 

 Adjacent k-cliques: 
 overlap in k-1 nodes 

 k-clique community 
 Set of nodes that can  

be reached through a  
sequence of adjacent  
k-cliques 
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3-clique adjacent 
3-cliques 

[Palla et al., ‘05] 



 Two nodes belong to the same community if 
they can be connected through adjacent k-
cliques: 

11/10/2010 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 6 

4-clique 



 Clique Percolation Method: 
 Find maximal-cliques  

(not k-cliques!) 
 Clique overlap graph: 
 Each clique is a node 
 Connect two cliques if they  

overlap in at least k-1 nodes 
 Communities: 
 Connected components of  

the clique overlap matrix 
 How to set k? 
 Set k so that we get the “richest” (most widely 

distributed cluster sizes) community structure 
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 Start with graph 
 Find maximal 

cliques  
 Create clique 

overlap matrix 
 Threshold the 

matrix at value k-1 
 If aij<k-1 set 0 

 Communities are 
the connected 
components of the 
thresholded matrix 
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(1) Graph (2) Clique overlap  
matrix 

(3) Thresholded 
matrix at 3 

(4) Communities 
(connected components) 
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Communities in a 
“tiny” part of a phone 
call network of 4 
million users  
[Palla et al., ‘07] 

[Palla et al., ‘07] 
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[Farkas et. al. 07] 



 No nice way, NP-hard combinatorial problem 
 Maximal clique: clique that can’t be extended 
 {a,b,c} is a clique but not maximal clique 
 {a,b,c,d} is maximal clique 

 Algorithm: Sketch 
 Start with a seed node 
 Expand the clique around the seed 
 Once the clique cannot be further  

expanded we found the maximal clique 
 Note:  
 This will generate the same clique multiple times 

11/10/2010 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 11 



 Start with a seed vertex “a” 
 Goal: Find the maximal clique Q “a” belongs to 
 Observation:  
 If some “x” belongs to Q then it is a member of “a” 
Why? If a,x ∈ Q but not a–x, then Q is not a clique! 

 Recursive algorithm: 
 Q … current clique 
 R … candidate vertices to expand the clique to 

 Example: Start with “a” and expand around it 
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Q= {a} {a,b}  {a,b,c} bktrack  {a,b,d} 
R= {b,c,d} {b,c,d}  {d}∩Γ(c)={} {c}∩Γ(d)={} 
  ∩Γ(b)={c,d} 
Steps of the recursive algorithm Γ(u)…neighbor set of u 



 Q … current clique 
 R … candidate vertices 

 Expand(R,Q) 
 while R ≠ {} 
 p = vertex in R 

 Qp = Q ∪  {p}  
 Rp = R ∩ Γ(p) 
 if Rp ≠ {}: Expand(Rp,Qp) 
else: output Qp  
 R = R – {p} 
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Start: Expand(V, {}) 
  R={a,…f}, Q={} 
  p = {a} 
  Qp = {a} 
  Rp = {b,d} 
  Expand(Rp, Q): 
     R = {b,d}, Q={a} 
     p = {b} 
     Qp = {a,b} 
     Rp = {d} 
     Expand(Rp, Q): 
        R = {d}, Q={a,b} 
        p = {d} 
        Qp = {a,b,d} 
        Rp = {} : output {a,b,d} 
     p = {d} 
     Qp = {a,d} 
     Rp = {b} 
     Expand(Rp, Q): 
        R = {b}, Q={a,d} 
        p = {b} 
        Qp = {a,d} 
        Rp = {} : output {a,d,b} 



 Q … current clique 
 R … candidate vertices 

 Expand(R,Q) 
 while R ≠ {} 
 p = vertex in R 

 Qp = Q ∪  {p}  
 Rp = R ∩ Γ(p) 
 if Rp ≠ {}: Expand(Rp,Qp) 
else: output Qp  
 R = R – {p} 
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Start: Expand(V, {}) 
  R={a,…f}, Q={} 
  p = {b} 
  Qp = {b} 
  Rp = {a,c,d} 
  Expand(Rp, Q): 
     R = {a,c,d}, Q={b} 
     p = {a} 
     Qp = {b,a} 
     Rp = {d} 
     Expand(Rp, Q): 
        R = {d}, Q={b,a} 
        p = {d} 
        Qp = {b,a,d} 
        Rp = {} : output {b,a,d} 
     p = {c} 
     Qp = {b,c} 
     Rp = {d} 
     Expand(Rp, Q): 
        R = {d}, Q={b,c} 
        p = {d} 
        Qp = {b,c,d} 
        Rp = {} : output {b,c,d} 



 How to prevent maximal 
cliques to be generated 
multiple times? 
 Only output cliques that are 

lexicographically minimum 
 {a,b,c} < {b,a,c} 

 Even better: Only expand to  
the nodes higher in the 
lexicographical order 
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Start: Expand(V, {}) 
  R={a,…f}, Q={} 
  p = {a} 
  Qp = {a} 
  Rp = {b,d} 
  Expand(Rp, Q): 
     R = {b,d}, Q={a} 
     p = {b} 
     Qp = {a,b} 
     Rp = {d} 
     Expand(Rp, Q): 
        R = {d}, Q={a,b} 
        p = {d} 
        Qp = {a,b,d} 
        Rp = {} : output {a,b,d} 
     p = {d} 
     Qp = {a,d} 
     Rp = {b} 

Don’t expand  
b < d 
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 Let’s rethink what we 
are doing… 
 Given a network 
 Want to find communities! 

 Need to: 
 Formalize the notion  

of a community 
 Need an algorithm that will find  

sets of nodes that are “good” communities 
 More generally: 
 How to think about clusters in large networks? 
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What is a good cluster? 
 Many edges internally 
 Few pointing outside 

 

Formally, conductance: 
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 Where: A(S)….volume 
 

 Small Φ(S) corresponds to good clusters 

S 

S’ 



 How community like is a set of nodes? 
 A good cluster S has 
 Many edges internally 
 Few edges pointing outside 

 Simplest objective function: 
 Conductance 
 
 
 
Small conductance corresponds to good clusters 
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 Define: 
 Network community profile (NCP) plot 

 Plot the score of best community of size k 
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Community size, log k 

log Φ(k) 

k=5 k=7 

[WWW ‘08] 

k=10 
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• Run the favorite clustering method 
• Each dot represents a cluster 
• For each size find “best” cluster 

Cluster size, log k 
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Spectral 
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Metis 



 Meshes, grids, dense random graphs: 
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d-dimensional meshes California road network 

11/10/2010 

[WWW ‘08] 



 Collaborations between scientists in networks 
[Newman, 2005] 
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Community size, log k 
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[WWW ‘08] 



Natural hypothesis about NCP: 
 NCP of real networks slopes 

downward 
 Slope of the NCP corresponds 

to the “dimensionality“ of the 
network 
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What about 
large networks? 

[Internet Mathematics ‘09] 



Typical example: General Relativity collaborations 
(n=4,158, m=13,422) 
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[Internet Mathematics ‘09] 
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[Internet Mathematics ‘09] 
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Better and 
better clusters 

Clusters get worse 
and worse 

 Best cluster has 
~100 nodes 



 As clusters grow the number of edges 
inside grows slower that the number crossing 
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Φ=2/10 = 0.2 

Each node has twice 
as many children 

Φ=1/7=0.14 

Φ=8/20 = 0.4 

Φ=64/92 = 0.69 



 Empirically we note that best clusters are 
barely connected to the network 
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NCP plot 

⇒ Core-periphery structure 
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Nothing happens! 
 ⇒ Nestedness of the 

core-periphery structure 



Nested Core-Periphery 
(jellyfish, octopus) 

Whiskers are 
responsible for 

good communities 

Denser and 
denser core 

of the 
network 

Core contains 
60% node and 

80% edges 
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 Some issues with community detection: 
 Many different formalizations of clustering 

objective functions  
 Objectives are NP-hard to optimize exactly 
 Methods can find clusters that are  

systematically “biased” 
 Questions: 
 How well do algorithms optimize objectives? 
 What clusters do different methods find? 
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 Single-criterion: 
 Modularity: m-E(m) 
 Edges cut: c 

 Multi-criterion: 
 Conductance: c/(2m+c) 
 Expansion: c/n 
 Density: 1-m/n2 

 CutRatio: c/n(N-n) 

 Normalized Cut: c/(2m+c) + c/2(M-m)+c 
 Flake-ODF: frac. of nodes with more than ½ edges  

        pointing outside S 
 11/10/2010 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 34 

S 

n: nodes in S 
m: edges in S 
c: edges pointing    
     outside S 

[WWW ‘09] 



Many algorithms to that implicitly or explicitly 
optimize objectives and extract communities: 

 Heuristics: 
 Girvan-Newman, Modularity optimization:  

popular heuristics 
 Metis: multi-resolution heuristic [Karypis-Kumar ‘98] 

 

 Theoretical approximation algorithms: 
 Spectral partitioning 
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[WWW ‘09] 



LiveJournal 

Spectral 

Metis 
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[WWW ‘09] 



500 node communities from Spectral:  

500 node communities from Metis:  
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[WWW ‘09] 



 Metis (red) gives sets with 
better conductance 

 

 Spectral (blue) gives tighter 
and more well-rounded 
sets 
 38 

Conductance of  bounding cut 

Spectral 

Disconnected Metis 

Connected Metis 
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[WWW ‘09] 

Diameter of the cluster 

External/Internal conductance 

Low
er is good 
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 All qualitatively 
similar 

 Observations: 
 Conductance, 

Expansion, Norm-
cut, Cut-ratio are 
similar 
 Flake-ODF prefers 

larger clusters 
 Density is bad 
 Cut-ratio has high 

variance 
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[WWW ‘09] 
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Observations: 
 All measures are 

monotonic 
 Modularity  
 prefers large 

clusters 
 Ignores small 

clusters 
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[WWW ‘09] 
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