Community Detection: Overlapping Communities

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

Overlapping Communities

Non-overlapping vs. overlapping communities

Overlaps of Social Circles

A node belongs to many social circles

Clique Percolation Method (CPM)

- Two nodes belong to the same community if they can be connected through adjacent k-cliques:
 - k-clique:
 - Fully connected graph on k nodes
 - Adjacent k-cliques:
 - overlap in k-1 nodes
- k-clique community
 - Set of nodes that can be reached through a sequence of adjacent k-cliques

[Palla et al., '05]

Clique Percolation Method (CPM)

Two nodes belong to the same community if they can be connected through adjacent kcliques:

4-clique

CPM: Steps

Clique Percolation Method:

Find maximal-cliques (not k-cliques!)

Clique overlap graph:

- Each clique is a node
- Connect two cliques if they overlap in at least k-1 nodes

Communities:

- Connected components of the clique overlap matrix
- How to set *k*?

CPM method: Example

- Start with graph
- Find maximal cliques
- Create clique overlap matrix
- Threshold the matrix at value k-1
 - If a_{ij}<k-1 set 0</p>
- Communities are the connected components of the thresholded matrix

[Palla et al., '07]

Example: Phone-Call Network

Communities in a "tiny" part of a phone call network of 4 million users [Palla et al., '07]

Example: Website

- No nice way, NP-hard combinatorial problem
- Maximal clique: clique that can't be extended
 - {a,b,c} is a clique but not maximal clique
 - {a,b,c,d} is maximal clique
- Algorithm: Sketch
 - Start with a seed node
 - Expand the clique around the seed
 - Once the clique cannot be further expanded we found the maximal clique

• Note:

This will generate the same clique multiple times

- Start with a seed vertex "a"
- Goal: Find the maximal clique Q "a" belongs to
 - Observation:
 - If some "x" belongs to Q then it is a member of "a"
 - Why? If $a, x \in Q$ but not a-x, then Q is not a clique!

Recursive algorithm:

- Q ... current clique
- R ... candidate vertices to expand the clique to
- Example: Start with "a" and expand around it
 - $Q = \{a\} \{a,b\}$ $R = \{\underline{b},c,d\} \{b,c,d\}$ $\cap \Gamma(b) = \{\underline{c},d\}$

Steps of the recursive algorithm

{a,b,c} bktrack {a,b,d} {d} $\cap \Gamma(c)$ ={} {c} $\cap \Gamma(d)$ ={}

$\Gamma(u)$...neighbor set of u

Q ... current clique R ... candidate vertices $\mathbf{Expand}(\mathbf{R},\mathbf{Q})$ • while $R \neq \{\}$ p = vertex in R $Q_p = Q \cup \{p\}$ $R_{p} = R \cap \Gamma(p)$ • if $R_p \neq \{\}$: Expand (R_p, Q_p) else: output Q_p $R = R - \{p\}$

Start: Expand(V, {}) $R=\{a,...,f\}, Q=\{\}$ $p = \{a\}$ $Q_{p} = \{a\}$ $R_{p} = \{b,d\}$ Expand(R_p , Q): $R = \{b,d\}, Q = \{a\}$ $p = \{b\}$ $Q_{p} = \{a, b\}$ $R_{p} = \{d\}$ Expand(R_p, Q): $R = \{d\}, Q = \{a, b\}$ $p = \{d\}$ $Q_{p} = \{a, b, d\}$ $R_p = \{\}$: output {a,b,d} $p = \{d\}$ $Q_{p} = \{a,d\}$ $R_{p} = \{b\}$ Expand(R_p, Q): $R = \{b\}, Q = \{a, d\}$ $p = \{b\}$ $Q_{D} = \{a, d\}$ $R_{p} = \{\}: output \{a,d,b\}$ Jure Leskovec, Stanford CS224W: Social and Information Network Analysis. http://cs224w.stanford.edu

Q ... current clique R ... candidate vertices $\mathbf{Expand}(\mathbf{R},\mathbf{Q})$ • while $R \neq \{\}$ p = vertex in R $Q_p = Q \cup \{p\}$ $R_{p} = R \cap \Gamma(p)$ • if $R_p \neq \{\}$: Expand (R_p, Q_p) else: output Q_p $R = R - \{p\}$

Start: Expand(V, {}) $R=\{a,...,f\}, Q=\{\}$ $p = \{b\}$ $Q_{p} = \{b\}$ $R_{p} = \{a, c, d\}$ Expand(R_p , Q): $R = \{a,c,d\}, Q = \{b\}$ $p = \{a\}$ $Q_{p} = \{b,a\}$ $R_{p} = \{d\}$ Expand(R_p, Q): $R = \{d\}, Q = \{b,a\}$ $p = \{d\}$ $Q_{p} = \{b, a, d\}$ $R_p = \{\}$: output {b,a,d} $p = \{c\}$ $Q_{p} = \{b, c\}$ $R_{p} = \{d\}$ Expand(R_n, Q): $R = \{d\}, Q = \{b, c\}$ $p = \{d\}$ $Q_{p} = \{b, c, d\}$ $R_p = \{\}$: output {b,c,d}

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

- How to prevent maximal cliques to be generated multiple times?
 - Only output cliques that are lexicographically minimum
 - {a,b,c} < {b,a,c}</pre>
 - Even better: Only expand to the nodes higher in the lexicographical order

Start: Expand(V, {}) $R=\{a,...,f\}, Q=\{\}$ $p = \{a\}$ $Q_{p} = \{a\}$ $R_{p} = \{b,d\}$ Expand(R_p, Q): $R = \{b,d\}, Q = \{a\}$ $p = \{b\}$ $Q_{p} = \{a, b\}$ $R_{p} = \{d\}$ Expand(R_p, Q): $R = \{d\}, \dot{Q} = \{a, b\}$ $p = \{d\}$ $Q_{p} = \{a, b, d\}$ $R_p = \{\}$: output {a,b,d} $p = \{d\}$ $Q_{D} = \{a,d\}$ Don't expand $R_{p} = \{b\}$ **b** < **d**

How to Model Networks with Communities?

Reflections: Finding Communities

- Let's rethink what we are doing...
 - Given a network
 - Want to find communities!

Need to:

- Formalize the notion of a community
- Need an algorithm that will find sets of nodes that are "good" communities

More generally:

How to think about clusters in large networks?

Clustering Objective Functions

What is a good cluster?

Many edges internallyFew pointing outside

Formally, conductance:

$$\phi(S) = \frac{\sum_{i \in S, j \notin S} A_{ij}}{\min\{A(S), A(\overline{S})\}}$$

Where: A(S)....volume $A(S) = \sum_{i \in S} \sum_{j \in V} A_{ij}$ Small $\Phi(S)$ corresponds to good clusters

Community Score

- How community like is a set of nodes?
- A good cluster S has
 - Many edges internally
 - Few edges pointing outside
- Simplest objective function:
 Conductance

$$\phi(S) = \frac{|\{(i, j) \in E; i \in S, j \notin S\}|}{\sum_{s \in S} d_s}$$

S S'

Small conductance corresponds to good clusters

Network Community Profile Plot

Define:

How to (Really) Compute NCP?

NCP Plot: Meshes

Meshes, grids, dense random graphs:

NCP plot: Network Science

Collaborations between scientists in networks [Newman, 2005]

Natural Hypothesis

Natural hypothesis about NCP:

- NCP of real networks slopes downward
- Slope of the NCP corresponds to the "dimensionality" of the network

What about large networks?

\bullet Social nets	Nodes	Edges	Description
LiveJournal Epinions CA-DBLP	4,843,953 75,877 317,080	$42,845,684 \\ 405,739 \\ 1,049,866$	Blog friendships [5] Trust network [28] Co-authorship [5]
• Information (citation) networks			
Cit-hep-th AmazonProd	$27,400 \\ 524,371$	$352,021 \\ 1,491,793$	Arxiv hep-th [14] Amazon products [8]
• Web graphs			
Web-google Web-wt10g	$855,802 \\ 1,458,316$	$\substack{4,291,352\\6,225,033}$	Google web graph TREC WT10G
• Bipartite affiliation (authors-to-papers) networks			
ATP-DBLP	015 050	0.1.1.450	DDLD 01
ATP-DBLP ATM-Imdb	$615,678 \\ 2,076,978$	$944,456 \\ 5,847,693$	DBLP [21] Actors-to-movies
	2,076,978		L J

Large Networks: Very Different

Typical example: General Relativity collaborations (n=4,158, m=13,422)

More NCP Plots of Networks

NCP: LiveJournal (n=5m, m=42m)

Explanation: The Upward Part

As clusters grow the number of edges inside grows slower that the number crossing

Explanation: Downward Part

Empirically we note that best clusters are barely connected to the network

NCP plot

⇒ Core-periphery structure

What If We Remove Good Clusters?

Suggested Network Structure

Communities: Issues and Questions

Communities: Issues and Questions

Some issues with community detection:

- Many different formalizations of clustering objective functions
- Objectives are NP-hard to optimize exactly
- Methods can find clusters that are systematically "biased"

Questions:

- How well do algorithms optimize objectives?
- What clusters do different methods find?

Many Different Objective Functions

Single-criterion:

- Modularity: *m*-*E*(*m*)
- Edges cut: cMulti-criterion:
 - Conductance: c/(2m+c)
 - Expansion: c/n
 - Density: 1-m/n²
 - CutRatio: c/n(N-n)
 - Normalized Cut: c/(2m+c) + c/2(M-m)+c
 - Flake-ODF: frac. of nodes with more than ¹/₂ edges pointing outside S

n: nodes in Sm: edges in Sc: edges pointing outside S

[WWW `09]

Many Classes of Algorithms

Many algorithms to that implicitly or explicitly optimize objectives and extract communities:
Heuristics:

- Girvan-Newman, Modularity optimization: popular heuristics
- Metis: multi-resolution heuristic [Karypis-Kumar '98]

Theoretical approximation algorithms:

Spectral partitioning

NCP: Live Journal

Properties of Clusters (1)

500 node communities from Spectral:

500 node communities from Metis:

[WWW `09]

Properties of Clusters (2)

- Metis (red) gives sets with better conductance
- Spectral (blue) gives tighter and more well-rounded sets

k (number of nodes in the cluster)

Multi-criterion Objectives

Single-criterion Objectives

Observations:

- All measures are monotonic
- Modularity
 - prefers large clusters
 - Ignores small clusters

Edges cut