Community Detection: Modularity and Trawling

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

Network Communities

- Communities: sets of tightly connected nodes
 Define: Modularity Q
 - A measure of how well a network is partitioned into communities
 - Given a partitioning of the network into groups s ∈ S:

 $Q \propto \sum_{s \in S} [$ (# edges within group s) – (expected # edges within group s)]

Need a null model!

Null Model: Configuration Model

Given real G, construct rewired network G'

- Same degree distribution but random connections
- Consider G' as multigraph

- The expected number of edge between nodes *i* and *j* of degrees k_i and $k_j = k_i \cdot \frac{k_j}{2m} = \frac{k_i k_j}{2m}$
 - The expected number of edges in (multigraph) G':

$$= \frac{1}{2} \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} \frac{k_i k_j}{2m} = \frac{1}{2} \cdot \frac{1}{2m} \sum_{i \in \mathbb{N}} k_i \left(\sum_{j \in \mathbb{N}} k_j \right) =$$
$$= \frac{1}{4m} 2m \cdot 2m = m$$

Note:

 $u \in N$

 $\sum k_u = 2m$

Modularity

Modularity of partitioning C of graph G:

• $Q \propto \sum_{s \in S} [$ (# edges within group *s*) – (expected # edges within group *s*)]

•
$$Q(G,S) = \frac{1}{2m} \sum_{s \in S} \sum_{i \in S} \sum_{j \in S} \left(A_{ij} - \frac{k_i k_j}{2m} \right)$$

Normalizing cost.: -1A_{ij} = 1 \text{ if } i \rightarrow j, 0 \text{ else}

Modularity lies in the range [-1,1]

- It is positive if the number of edges within groups exceeds the expected number
- 0.3<Q<0.7 means significant community structure</p>

Modularity: Number of clusters

Modularity is useful for selecting the number of clusters:

Why not optimize modularity directly?

modularity

Method 2: Modularity Optimization

- Let's split the graph into 2 communities
- What to directly optimize modularity!

$$\max_{S} Q(G,S) = \frac{1}{2m} \sum_{s \in S} \sum_{i,j \in S} \left(A_{ij} - \frac{k_i k_j}{2m} \right)$$

Community membership vector s:

•
$$s_i = 1$$
 if node i is in community 1
-1 if node i is in community -1
$$\frac{s_i s_j + 1}{2} = \lim_{0 \dots \text{ else}} \sup_{0 \dots \text{ else}} \left(Q(G, s) = \frac{1}{4m} \sum_{i,j \in N} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \left(s_i s_j + 1 \right) \\
= \frac{1}{4m} \sum_{i,j \in N} \left(A_{ij} - \frac{k_i k_j}{2m} \right) s_i s_j$$

Modularity Matrix

Define:

• Modularity matrix: $B_{ij} = A_{ij} - \frac{k_i k_j}{2m}$

Note: each row /column of B sums to 0

- Membership: s={-1, +1} • Then: $Q(G, s) = \frac{1}{4m} \sum_{i,j \in N} B_{ij} S_i S_j$ $= \frac{1}{4m} \sum_i S_i \sum_j B_{ij} S_j = \frac{1}{4m} s^T B s$
- Task: Find s∈{-1,+1}ⁿ that maximizes Q(G,s)
- Rewrite Q in terms of eigenvalues β_i and eigenvectors u_i of modularity matrix B

Modularity Optimization

• Rewrite:
$$Q(G, s) = \frac{1}{4m} s^{T} B s$$

$$= s^{T} \left[\sum_{i=1}^{n} u_{i} \beta_{i} u_{i}^{T} \right] s = \sum_{i=1}^{n} s^{T} u_{i} \beta_{i} u_{i}^{T} s$$

$$= \sum_{i=1}^{n} (s^{T} u_{i})^{2} \beta_{i}$$
Note: $\beta_{1} > \beta_{2} > \cdots$

If there would be no constraints on *s* then to maximize Q, the easiest way is to make $s = \lambda u_1$

- Assigns all weight in the sum to β₁ (largest eigval)
 - All other s^Tu_i terms zero because of orthonormality
- But, elements of s must be ∈{-1,+1}, NP-hard in general

Finding Vector s

$$\max_{s} \mathbf{Q}(G,s) = \sum_{i=1}^{n} (s^{T}u_{i})^{2} \beta_{i} \approx \left[\sum_{i=1}^{n} s_{i} \cdot u_{1,i}\right]^{2} \beta_{1}$$

Let's maximize: $\sum_{i=1}^{n} s_i \cdot u_{1,i}$ where $s_i \in \{-1,+1\}$ To do this, we set:

$$s_i = \begin{cases} +1 & \text{if } i \text{th element of } \mathbf{u}_1 \ge 0, \\ -1 & \text{if } i \text{th element of } \mathbf{u}_1 < 0. \end{cases}$$

Similar in spirit to the spectral partitioning algorithm (we will explore this next time)
Continue the bisection hierarchically

11/14/2011

Summary: Modularity Optimization

Fast Modularity Optimization Algorithm:

- Find leading eigenvector u₁ of modularity matrix B
- Divide the nodes by the signs of the elements of u₁
- Repeat hierarchically until:
 - If a proposed split does not cause modularity to increase, declare community indivisible and do not split it
 - If all communities are indivisible, stop
- How to find u₁? Power method!
 - Start with random v⁽¹⁾, repeat :
 - When converged $(v^{(t)} \approx v^{(t+1)})$, set $u_1 = v^{(t)}$

 $v^{(t+1)} = \frac{Bv^{(t)}}{\|Bv^{(t)}\|}$

Additional Heuristic Approaches

(1) Greedy post-processing:

- Start with nodes in two groups, s
- Repeat t = 1..n until all nodes have been moved:
 - For *i* = 1...n
 - Consider moving node i, compute new Q_t(s_i)
 - Move node j that hasn't yet been moved and that maximizes Q_t(s_j)
 - Note that Q_t can decrease with time t
- Once iteration is complete, find intermediate state t with highest Q_t
- Start from this state and repeat until Q stops increasing

Additional Heuristic Approaches

(2) Clauset-Newman-Moore Algorithm:

- Agglomerative clustering: start with each node as a separate community, join communities into bigger ones
- (1) Put each node in its own community x
- (2) Compute ΔQ_{xy} for all community pairs
- (3) Merge the pair with largest increase in ΔQ_{xy}
- Repeat (2)&(3) until only one community remains

■ How to compute ∆Q(x,y)?

• Matrix
$$\Delta Q_{xy} = \frac{1}{2m} \left(1 - \frac{k_i k_j}{2m} \right)$$
 if node x links y, else $\Delta Q_{xy} = 0$

- If we join communities x and y into a new y, update ΔQ :
 - Remove row/column x of ΔQ
 - For every *k* update: $\Delta Q_{yk} = \Delta Q_{xk} + \Delta Q_{yk}$

Modularity Optimization Methods

		modularity Q			
network	size n	GN	CNM	DA	Fast modularity
karate	34	0.401	0.381	0.419	0.419
jazz musicians	198	0.405	0.439	0.445	0.442
metabolic	453	0.403	0.402	0.434	0.435
$\mathbf{e}\mathbf{m}\mathbf{a}\mathbf{i}\mathbf{l}$	1133	0.532	0.494	0.574	0.572
key signing	10680	0.816	0.733	0.846	0.855
physicists	27519	_	0.668	0.679	0.723

 $GN = Betweenness centrality, O(n^3)$ CNM = Clauset-Newman-Moore (n log²n)DA = External pptimization O(n² log² n)

Issues with modularity:

- May not find communities with less than \sqrt{m} links
- NP-hard to optimize exactly [Brandes et al. '07]

<u>Summary:</u> Modularity

Girvan-Newman (previous lecture):

- Based on the "strength of weak ties"
- Remove edge of highest betweenness

Modularity:

- Overall quality of the partitioning of a graph
- Use to determine the number of communities
- Fast modularity optimization:
 - Transform the modularity optimization to a eigenvalue problem
- Clauset-Newman-Moore:
 - Agglomerative clustering based on Modularity

Trawling for Web Communities

<u>Method3:</u> Trawling

- Searching for small communities in the Web graph
- What is the signature of a community / discussion in a Web graph?

Use this to define "topics": What the same people on the left talk about on the right Remember HITS!

Intuition: Many people all talking about the same things

Dense 2-layer graph

Searching for Small Communities

A more well-defined problem:

Enumerate complete bipartite subgraphs K_{s.t}

Where K_{s,t} : s nodes on the "left" where each links to the same t other nodes on the "right"

|X| = s = 3|Y| = t = 4

Fully connected

The Plan: (1), (2) and (3)

Two points:

- (1) Dense bipartite graph: the signature of a community/discussion
- (2) Complete bipartite subgraph K_{s,t}
- *K_{s,t}* = graph on *s* nodes, each links to the same *t* other nodes
 Plan:
 - (A) From (2) get back to (1):
 - Via: Any dense enough graph contains a smaller K_{s,t} as a subgraph
 - B) How do we solve (2) in a giant graph?
 - What similar problems were solved on big non-graph data?
 - (3) Frequent itemset enumeration [Agrawal-Srikant '99]

[Agrawal-Srikant '99]

Frequent Itemset Enumeration

- Marketbasket analysis:
 - What items are bought together in a store?
- Setting:
 - Market: Universe U of n items
 - Baskets: *m* subsets of $U: S_1, S_2, ..., S_m \subseteq U$ (S_i is a set of items one person bought)
 - **Support:** Frequency threshold f
- Goal:
 - Find all subsets T s.t. $T \subseteq S_i$ of $\ge f$ sets S_i (items in T were bought together at least f times)

Products sold in a store

Frequent Itemsets: Example

Given:

Universe of items:

• U={1,2,3,4,5}

Market baskets:

• $S_1 = \{1,3,5\}, S_2 = \{2,3,4\}, S_3 = \{2,4,5\}, S_4 = \{3,4,5\}, S_5 = \{1,3,4,5\}, S_6 = \{2,3,4,5\}$

Support of T= $\{2,3\}$ is 2 (T appears in S₂ and S₆)

- Minimum support: f = 3
- Goal: Find all sets T that appear in at least f S_i's
 - Call such itemsets T frequent itemsets (they have support ≥f)
- Algorithm: Build the lists bottom-up
 - Insight: For a frequent set of size k, all its subsets are also frequent

If T={3,4,5} is frequent, then {3,4}, {3,5}, {4,5} must also be frequent!

[Agrawal-Srikant '99] Example: the Apriori Algorithm

Setting:

The Apriori Algorithm

- Generate all sets of size *i* by composing sets of size *i*-1 that differ in 1 element
- Prune the sets of size *i* with support < f</p>

Open question:

Efficiently find only maximal frequent sets

What's the connection between itemsets and complete bipartite graphs?

From Itemsets to Bipartite K_{s,t}

Itemsets finds Complete bipartite graphs

How?

- View each node *i* as a set S_i of nodes *i* points to
- K_{s,t} = a set Y of size t that occurs in s sets S_i
- Looking for K_{s,t} → set of frequency threshold to s and look at layer t – all frequent sets of size t

s ... minimum support (|X|=s) t ... itemset size

From K_{s,t} to Communities

From K_{s,t} to Communities: Informally, every dense enough graph *G* contains a bipartite subgraph K_{s,t} where *s* and *t* depend on size (# of nodes) and density (avg. degree) of *G* [Kovan-Sos-Turan '53]

Theorem:

Let G=(X,Y,E), |X|=|Y|=nwith avg. degree $\overline{k} = s^{\frac{1}{t}} n^{1-\frac{1}{t}} + t$ **then** G contains $K_{s,t}$ as a subgraph.

Proof: K_{s,t} and Communities

For the proof we will need the following fact

• Recall:
$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{a(a-1)\dots(a-b+1)}{b!}$$

• Let f(x) = x(x-1)(x-2)...(x-k)

Once $x \ge k$, f(x) curves upward (convex)

Suppose a setting:

- g(y) is convex
- Want to minimize $\sum_{i=1}^{n} g(x_i)$

• where
$$\sum_{i=1}^{n} x_i = x$$

• To minimize $\sum_{i=1}^{n} g(x_i)$ make each $x_i = \frac{x}{n}$

Nodes and Buckets

Consider node *i* of degree *k_i* and neighbor set *S_i*

<u>i</u><u>i</u><u>i</u><u>i</u><u>i</u><u>i</u><u>i</u>.... (a,b) (a,c) (a,d) (b,c)</u>

 Put node *i* in buckets for all size *t* subsets of *i*'s neighbors Potential right-hand sides of $K_{s,t}$ (*i.e.*, all size *t* subsets of S_i) As soon as *s* nodes appear in a bucket we have a $K_{s,t}$

Nodes and Buckets

- Note: As soon as s nodes appear in a bucket we found a K_{s,t}
- How many buckets does node i contribute to?
 - $\begin{pmatrix} k_i \\ t \end{pmatrix} = \# \text{ of ways to select t elements out of } k_i \\ k_i \dots \text{ degree of node } i$
- What is the total size of all buckets?

$$\sum_{i=1}^{n} \binom{k_i}{t} \ge \sum_{i=1}^{n} \binom{\overline{k}}{t} = n \binom{\overline{k}}{t}$$

By convexity
(k_i > t)

$$\bar{k} = \frac{1}{n} \sum_{i \in N} k_i$$

Nodes and Buckets

• So, the total height of all buckets is... $n\left(\frac{\overline{k}}{t}\right) \ge n \frac{\left(\overline{k}-t\right)^{t}}{t!} = n \frac{\left(s^{\frac{1}{t}} n^{1-\frac{1}{t}} + t - t\right)^{t}}{t!}}{t!}$ $= \frac{n s n^{t-1}}{t!} = \frac{n^{t} s}{t!}$

Plug in:

$$\overline{k} = s^{\frac{1}{t}} n^{1 - \frac{1}{t}} + t$$

And We are Done!

- We have: Total height of all buckets: $\geq \frac{n^{t}s}{1}$
- How many buckets are there? $\binom{n}{t} \leq \frac{n^t}{t!}$
- What is the average height of buckets?
 - $\geq \frac{n^{t}s}{t!} \frac{t!}{n^{t}} = s$ So, avg. bucket
 height $\geq s$

⇒ By pigeonhole principle, there must be at least one bucket with more than *s* nodes in it.
 ⇒ We found a K_{s,t}

<u>Method3:</u> Trawling — Summary

Analytical result:

- Complete bipartite subgraphs K_{s,t} are embedded in larger dense enough graphs (*i.e.*, the communities)
 - Biparite subgraphs act as "signatures" of communities

Algorithmic result:

- Frequent itemset extraction and dynamic programming finds graphs K_{s,t}
- Method is super scalable

Spectral Graph Partitioning

<u>Method4:</u> Graph Partitioning

Undirected graph G(V,E):

B

- Bi-partitioning task:
 - Divide vertices into two disjoint groups (A,B)

Questions:

- How can we define a "good" partition of G?
- How can we efficiently identify such a partition?

Graph Partitioning

What makes a good partition?

- Maximize the number of within-group connections
- Minimize the number of between-group connections

Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition
- Cut: Set of edges with only one vertex in a group: $cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$

Graph Cut Criterion

Criterion: Minimum-cut

- Minimise weight of connections between groups
- min_{A,B} cut(A,B) Degenerate case: "Optimal cut" Minimum cut

Problem:

- Only considers external cluster connections
- Does not consider internal cluster connectivity

Graph Cut Criteria

- Criterion: Normalized-cut [Shi-Malik, '97]
 - Connectivity between groups relative to the density of each group

$$ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

vol(A): total weight of the edges with at least one endpoint in A: $vol(A) = \sum_{i \in A} k_i$

Why use this criterion?

Produces more balanced partitions

How do we efficiently find a good partition?

Problem: Computing optimal cut is NP-hard

Competition Results: Graph Alignment

Wikipedia Graph Alignment

 Given the German and French Wikipedia graph
 And a few example corresponding articles

- **Goal:** Find the remaining correspondences:
 - Link "Paris" in German to "Paris" in French
 - Intuition: Paris in both languages links to "similar" pages (pages that also link to each other)

Approach 1: Square Maximization

Winning solution:

- Start from some pairing S
 - Start from random pairing
- Goodness of pairing S:
 - Number of "squares"
- Consider transforming
 (u_F, u_G), (v_F, v_G) to (v_F, u_G), (u_F, v_G)
- Accept the swap if the number of squares increases

Improvements:

- Bound on swap improvement:
 - No need to swap nodes that don't give good improvement
- Computing swap change efficiently

Approach 1: Square Maximization

Approach 2: Machine Learning

- For a pair of nodes (u_F,u_G) construct a feature vector
 - Matches from the training set (M.txt) are "positive" examples

- Pairs not in M.txt are "negative" examples
- Use Random Forests to label pairs (AUC=0.87)
 - Each pair gets a probability that they match
- Now greedily fill-in the remaining pairings by considering correspondence probabilities

Results and Extra Credit

ID	# Correct	Fraction
krish (10%)	3,308	0.83
pmk (8%)	2,941	0.74
lussier1 (6%)	2,191	0.55
prgao (4%)	2,107	0.53
jieyang (4%)	1,706	0.43
carmenv	978	0.24
anmittal	861	0.22
adotey	828	0.21
billyue	805	0.20
gibbons4	507	0.13
leonlin	145	0.04
cktan	65	0.02