
CS224W: Social and Information Network Analysis 
Jure Leskovec, Stanford University 

http://cs224w.stanford.edu 



 Communities: sets of  
tightly connected nodes 

 Define: Modularity Q 
 A measure of how well  

a network is partitioned  
into communities 
 Given a partitioning of the  

network into groups s ∈ S: 
 Q  ∝  ∑s∈ S [ (# edges within group s) –   
                      (expected # edges within group s) ] 

 
11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 2 

Need a null model! 



 Given real G, construct rewired network G’ 
 Same degree distribution but  

random connections 
 Consider G’ as multigraph 

 

 The expected number of edge between nodes  
𝒊 and 𝒋 of degrees 𝑘𝑖  and 𝑘𝑗  = 𝑘𝑖 ⋅

𝑘𝑗
2𝑚

= 𝑘𝑖𝑘𝑗
2𝑚

 
 The expected number of edges in (multigraph) G’: 

 = 1
2
∑ ∑ 𝑘𝑖𝑘𝑗

2𝑚𝑗∈𝑁𝑖∈𝑁 = 1
2
⋅ 1
2𝑚

∑ 𝑘𝑖 ∑ 𝑘𝑗𝑗∈𝑁𝑖∈𝑁 = 

  = 1
4𝑚

2𝑚 ⋅ 2𝑚 = 𝑚 

 

 
11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 3 

j 

i 

�𝑘𝑢
𝑢∈𝑁

= 2𝑚 

Note: 



 Modularity of partitioning C of graph G: 
 Q ∝ ∑s∈ S [ (# edges within group s) –   

                   (expected # edges within group s) ] 

 𝑄 𝐺, 𝑆 = 1
2𝑚

∑ ∑ ∑ 𝐴𝑖𝑖 −
𝑘𝑖𝑘𝑗
2𝑚𝑗∈𝑠𝑖∈𝑠𝑠∈𝑆  

 
 

 Modularity lies in the range [−1,1] 
 It is positive if the number of edges within  

groups exceeds the expected number 
 0.3<Q<0.7 means significant community structure 
 
 11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 4 

Aij = 1 if i→j,  
        0 else Normalizing cost.: -1<Q<1 



 Modularity is useful for selecting the  
number of clusters: 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 5 

Why not optimize modularity directly? 

Q 



 Let’s split the graph into 2 communities 
 What to directly optimize modularity! 

 max
𝑆 

𝑄 𝐺, 𝑆 = 1
2𝑚

∑ ∑ 𝐴𝑖𝑖 −
𝑘𝑖𝑘𝑗
2𝑚𝑖,𝑗∈𝑠𝑠∈𝑆  

 

 Community membership vector s:  
 si = 1 if node i is in community 1 

     -1 if node i is in community -1 

 𝑄 𝐺, 𝑠 = 1
4𝑚

∑ 𝐴𝑖𝑖 −
𝑘𝑖𝑘𝑗
2𝑚

(𝑠𝑖𝑠𝑗𝑖,𝑗∈𝑁 + 1)  

 = 1
4𝑚

∑ 𝐴𝑖𝑖 −
𝑘𝑖𝑘𝑗
2𝑚

𝑠𝑖𝑠𝑗𝑖,𝑗∈𝑁  
 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 6 

𝑠𝑖𝑠𝑗 + 1
2

= 1.. if si=sj 
0.. else 



 Define: 

 Modularity matrix: 𝐵𝑖𝑖 = 𝐴𝑖𝑖 −
𝑘𝑖𝑘𝑗
2𝑚

 
 Membership: s={-1, +1} 

 Then: 𝑄 𝐺, 𝑠 = 1
4𝑚

∑ 𝐵𝑖𝑖𝑠𝑖𝑠𝑗𝑖,𝑗∈𝑁  
               = 1

4𝑚
∑ 𝑠𝑖𝑖 ∑ 𝐵𝑖𝑖𝑠𝑗𝑗 = 1

4𝑚
𝑠𝑇𝐵𝐵 

 

 Task: Find s∈{-1,+1}n that maximizes Q(G,s) 
 

 Rewrite Q in terms of eigenvalues βi and 
eigenvectors ui of modularity matrix B 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 7 

Note: each row 
/column of  

B sums to 0 



 Rewrite: 𝑄 𝐺, 𝑠 = 1
4𝑚

𝑠T𝐵𝑠 

= sT �𝑢𝑖𝛽𝑖𝑢𝑖𝑇
𝑛

𝑖=1

𝑠 = �𝑠𝑇𝑢𝑖𝛽𝑖𝑢𝑖𝑇𝑠
𝑛

𝑖=1

= � 𝑠𝑇𝑢𝑖 2𝛽𝑖

𝑛

𝑖=1

 

 If there would be no constraints on s then to  
maximize Q, the easiest way is to make s = λ u1  
 Assigns all weight in the sum to β1 (largest eigval) 
 All other sTui terms zero because of orthonormality 

 But, elements of s must be ∈{-1,+1}, NP-hard in general 
11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 8 

Note: 𝛽1 > 𝛽2 > ⋯ 



max
𝑠

Q(𝐺, 𝑠) = � 𝑠𝑇𝑢𝑖 2𝛽𝑖

𝑛

𝑖=1

≈ �𝑠𝑖 ⋅ 𝑢1,𝑖

𝑛

𝑖=1

2

𝛽1 

 

 Let’s maximize:∑ 𝑠𝑖 ⋅ 𝑢1,𝑖
𝑛
𝑖=1  where si∈{-1,+1}  

 To do this, we set: 
 
 

 Similar in spirit to the spectral partitioning 
algorithm (we will explore this next time) 

 Continue the bisection hierarchically 
11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 9 



 Fast Modularity Optimization Algorithm: 
 Find leading eigenvector u1 of modularity matrix B 
 Divide the nodes by the signs of the elements of u1 

 Repeat hierarchically until: 
 If a proposed split does not cause modularity to increase, 

declare community indivisible and do not split it 
 If all communities are indivisible, stop 

 How to find u1? Power method! 
 Start with random v(1), repeat : 
 When converged (v(t) ≈ v(t+1)), set u1 = v(t) 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 10 

)(

)(
)1(

t

t
t

Bv
Bvv =+



 (1) Greedy post-processing: 
 Start with nodes in two groups, s 
 Repeat t = 1..n until all nodes have 

been moved: 
 For i = 1..n 
 Consider moving node i, compute new Qt(si) 

 Move node j that hasn’t yet been moved 
and that maximizes Qt(sj) 
 Note that Qt can decrease with time t 

 Once iteration is complete, find 
intermediate state t with highest Qt 

 Start from this state and repeat  
until Q stops increasing 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 11 

1 

2 

3 

5 

6 

7 

Start: 

1 

2 

3 

5 

6 

7 

Move best not-yet-moved 
node (3), store Q1 

1 

2 

3 

5 

6 

7 

Move best not-yet-moved 
node (5), store Q2 

Dot this for every not-yet-moved 
node, pick state x that max Qt 



 (2) Clauset-Newman-Moore Algorithm: 
 Agglomerative clustering: start with each node as a 

separate community, join communities into bigger ones 
 (1) Put each node in its own community x 
 (2) Compute ∆Qxy for all community pairs 
 (3) Merge the pair with largest increase in ∆Qxy 
 Repeat (2)&(3) until only one community remains 
 How to compute ∆Q(x,y)? 
 Matrix Δ𝑄𝑥𝑥 = 1

2𝑚
1 − 𝑘𝑖𝑘𝑗

2𝑚
 if node x links y, else ∆Qxy=0 

 If we join communities x and y into a new y, update ∆Q: 
 Remove row/column x of ∆Q 
 For every k update: ∆Qyk = ∆Qxk + ∆Qyk 

 
11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 12 



 Issues with modularity: 
 May not find communities with less than 𝑚 links 
 NP-hard to optimize exactly [Brandes et al. ‘07] 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 13 

GN = Betweenness centrality, O(n3) 
CNM = Clauset-Newman-Moore (n log2n) 
DA = External pptimization O(n2 log2 n) 

Fast modularity 



 Girvan-Newman (previous lecture): 
 Based on the “strength of weak ties” 
 Remove edge of highest betweenness 

 Modularity: 
 Overall quality of the partitioning of a graph 
 Use to determine the number of communities 

 Fast modularity optimization: 
 Transform the modularity optimization to a 

eigenvalue problem 
 Clauset-Newman-Moore:  
 Agglomerative clustering based on Modularity 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 14 





 Searching for small communities in  
the Web graph 

 What is the signature of a community / 
discussion in a Web graph? 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 16 

[Kumar et al. ‘99] 

Dense 2-layer graph 

Intuition: Many people all talking about the same things 

…
 

…
 

Use this to define “topics”: 
What the same people on  
the left talk about on the right 
Remember HITS! 



 A more well-defined problem: 
Enumerate complete bipartite subgraphs Ks,t  
 Where Ks,t  : s nodes on the “left” where each links 

to the same t other nodes on the “right” 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 17 

K3,4 

|X| = s = 3 
|Y| = t = 4 X Y 

Fully connected 



 Two points: 
 (1) Dense bipartite graph: the signature of a 

community/discussion 
 (2) Complete bipartite subgraph Ks,t  
 Ks,t  = graph on s nodes, each links to the same t other nodes 

 Plan: 
 (A) From (2) get back to (1): 
 Via: Any dense enough graph contains a  

 smaller Ks,t as a subgraph 
 (B) How do we solve (2) in a giant graph? 
 What similar problems were solved on big non-graph data? 
 (3) Frequent itemset enumeration [Agrawal-Srikant ‘99] 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 18 

[Kumar et al. ‘99] 



 Marketbasket analysis: 
 What items are bought together in a store? 

 Setting: 
 Market: Universe U of n items 
 Baskets: m subsets of U: S1, S2, …, Sm ⊆ U 

(Si is a set of items one person bought) 
 Support: Frequency threshold f 

 Goal: 
 Find all subsets T s.t. T ⊆ Si of ≥ f  sets Si  

(items in T were bought together at least f  times) 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 19 

[Agrawal-Srikant ‘99] 

Products sold  
in a store 



 Given: 
 Universe of items:  
 U={1,2,3,4,5} 

 Market baskets:  
 S1={1,3,5}, S2={2,3,4}, S3={2,4,5},  

S4={3,4,5}, S5={1,3,4,5}, S6={2,3,4,5} 
 Minimum support:  f = 3 
 Goal: Find all sets T that appear in at least f  Si’s 
 Call such itemsets T frequent itemsets (they have support ≥f) 

 Algorithm: Build the lists bottom-up 
 Insight: For a frequent set of size k, all  

its subsets are also frequent  
11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 20 

Support of 
T={2,3} is 2 
(T appears in 
S2 and S6) 

If T={3,4,5} is 
frequent, then 
{3,4}, {3,5}, {4,5} 
must also be 
frequent! 



 Setting: 
 U={1,2,3,4,5},    f=3 
 S1={1,3,5},  S2={2,3,4},  S3={2,4,5},   

S4={3,4,5}, S5={1,3,4,5},  S6={2,3,4,5} 
 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 21 

[Agrawal-Srikant ‘99] 

2 steps: 
1) Candidate 

generation 
2) Pruning 

Itemset 
size 

1 

2 

3 

4 

{1} {2} {3} {4} {5} 

{2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5} 

{2, 3, 4} {3, 4, 5} 

{} 

Itemsets 



 For i = 1,…, k 
 Generate all sets of size i by  

composing sets of size i-1 that 
differ in 1 element 
 Prune the sets of size i with support < f 

 

 Open question:  
 Efficiently find only maximal frequent sets 

 

 What’s the connection between itemsets and 
complete bipartite graphs? 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 22 

[Agrawal-Srikant ‘99] 



 Itemsets finds Complete bipartite graphs 
 

 How? 
 View each node i as a  

set Si of nodes i points to 
 Ks,t = a set Y of size t  

that occurs in s sets Si 
 

 Looking for Ks,t  set of  
frequency threshold to s  
and look at layer t – all  
frequent sets of size t 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 23 

[Kumar et al. ‘99] 

i 
b 

c 

d 

a 

Si={a,b,c,d} 

j 

i 

k 

b 

c 

d 

a 

X Y 

s … minimum support (|X|=s) 
t … itemset size 



 From Ks,t to Communities: Informally, every 
dense enough graph G contains a bipartite 
subgraph Ks,t where s and t depend on size  
(# of nodes) and density (avg. degree) of G  
[Kovan-Sos-Turan ‘53] 

 

 Theorem:  
Let G=(X,Y,E), |X|=|Y|= n  

with avg. degree 𝑘� = 𝑠
1
𝑡  𝑛1−

1
𝑡 + 𝑡 

then G contains Ks,t as a subgraph. 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 24 



For the proof we will need the following fact 
 Recall: 

 

 Let f(x) = x(x-1)(x-2)…(x-k) 
Once x ≥ k,  f(x) curves upward (convex) 

 Suppose a setting:  
 g(y) is convex  
 Want to minimize ∑ 𝑔 𝑥𝑖𝑛

𝑖=1  
 where ∑ 𝑥𝑖𝑛

𝑖=1 = 𝑥 
 To minimize ∑ 𝑔 𝑥𝑖𝑛

𝑖=1  make each 𝑥𝑖 = 𝑥
𝑛
 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 

!
)1)...(1(

b
baaa

b
a +−−

=








25 

x 

f(x
) 

𝑥
𝑛 𝑥

𝑛 + ε 

𝑥
𝑛 − 𝜀 



 Consider node i of degree 
ki and neighbor set Si 
 
 
 
 
 

 Put node i in buckets for 
all size t subsets of i’s 
neighbors 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 26 

Potential right-hand 
sides of Ks,t (i.e., all 
size t subsets of Si) 
As soon as s nodes 
appear in a bucket 

we have a Ks,t 

i 
b 

c 

d 

a 

(a,b) 

i 

(a,c) 

i 

(a,d) 

i 

(b,c) 

i …. 

…
. 



 Note: As soon as s nodes appear in a  
bucket we found a Ks,t 

 How many buckets does node i contribute to? 
 
 

 What is the total size of all buckets?  

  ∑ 𝑘𝑖
𝑡 ≥ 𝑛

𝑖=1  ∑ 𝑘
𝑡

𝑛
𝑖=1 = 𝑛 𝑘

𝑡
 

 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 27 









t
ki = # of ways to select t elements out of ki 

ki … degree of node i 

By convexity 
(ki > t) 𝑘� =

1
𝑛�𝑘𝑖
𝑖∈𝑁

 



 So, the total height of  
all buckets is… 

𝑛 𝑘
𝑡

≥ 𝑛
𝑘 − 𝑡

𝑡

𝑡!
= 𝑛

𝑠
1
𝑡  𝑛1−

1
𝑡 + 𝑡 − 𝑡

𝑡

𝑡!
 

=
𝑛 𝑠 𝑛𝑡−1

𝑡!
=
𝑛𝑡 𝑠
𝑡!

 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 28 

!
)1)...(1(

b
baaa

b
a +−−

=








Plug in: 

𝑘� = 𝑠
1
𝑡  𝑛1−

1
𝑡 + 𝑡 



 We have: Total height of all buckets: 
 
 

 How many buckets are there? 
 

 What is the average height of buckets? 
 
 
 

 ⇒ By pigeonhole principle, there must be at 
least one bucket with more than s nodes in it. 

 ⇒ We found a Ks,t 
 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 29 

!t
snt

≥

!t
n

t
n t

≤








s
n
t

t
sn

t

t

=≥
!

!
So, avg. bucket 
height  ≥ s 



 Analytical result: 
 Complete bipartite subgraphs Ks,t are embedded in 

larger dense enough graphs (i.e., the communities) 
 Biparite subgraphs act as “signatures” of communities 

 

 Algorithmic result: 
 Frequent itemset extraction and dynamic 

programming finds graphs Ks,t  
 Method is super scalable 

 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 30 

[Kumar et al. ‘99] 





 Undirected graph G(V,E): 
 

 Bi-partitioning task: 
 Divide vertices into two disjoint groups (A,B) 
 
 

 
 

 Questions: 
 How can we define a “good” partition of G? 
 How can we efficiently identify such a partition? 
 11/8/2010 32 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 

1 

3 
2 

5 

4 6 

A B 

1 

3 

2 

5 

4 6 



 What makes a good partition? 
 Maximize the number of within-group  

connections 
 Minimize the number of between-group 

connections 

11/8/2010 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 33 

1 

3 

2 

5 

4 6 

A B 



A B 

 Express partitioning objectives as a function 
of the “edge cut” of the partition 

 Cut: Set of edges with only one vertex in a 
group: 
 

11/8/2010 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 34 

cut(A,B) = 2 
1 

3 

2 

5 

4 6 



 Criterion: Minimum-cut 
 Minimise weight of connections between groups 

 
 Degenerate case: 

 
 
 
 

 Problem: 
 Only considers external cluster connections 
 Does not consider internal cluster connectivity 

11/8/2010 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 35 

minA,B cut(A,B) 
“Optimal cut” 

Minimum cut 



 Criterion: Normalized-cut [Shi-Malik, ’97] 
 Connectivity between groups relative to the 

density of each group 
 

 

 vol(A): total weight of the edges with at least  
one endpoint in A: vol 𝐴 = ∑ 𝑘𝑖𝑖∈𝐴  

Why use this criterion? 
 Produces more balanced partitions 

 How do we efficiently find a good partition? 
 Problem: Computing optimal cut is NP-hard 

11/8/2010 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 36 

[Shi-Malik] 



11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 37 



 Given the German and  
French Wikipedia graph 

 And a few example  
corresponding articles 

 

 Goal: Find the remaining correspondences: 
 Link “Paris” in German  

 to “Paris” in French 
 Intuition: Paris in both languages links to “similar” pages 

(pages that also link to each other) 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 38 



Winning solution: 
 Start from some pairing S 
 Start from random pairing 

 Goodness of pairing S: 
 Number of “squares” 

 Consider transforming 
(uF, uG), (vF, vG) to (vF, uG), (uF, vG) 

 Accept the swap if the number of squares increases 
 Improvements: 
 Bound on swap improvement:  
 No need to swap nodes that don’t give good improvement 

 Computing swap change efficiently 
 
 

 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 39 



11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 40 



 For a pair of nodes (uF,uG)  
construct a feature vector 
 Matches from the training set  

(M.txt) are “positive” examples 
 Pairs not in M.txt are “negative” examples 

 Use Random Forests to label pairs (AUC=0.87) 
 Each pair gets a probability that they match 

 Now greedily fill-in the remaining pairings by 
considering correspondence probabilities 

 
 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 41 



11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 42 

ID # Correct Fraction 
 krish (10%) 3,308 0.83 
 pmk (8%) 2,941 0.74 
 lussier1 (6%) 2,191 0.55 
 prgao (4%) 2,107 0.53 
 jieyang (4%) 1,706 0.43 
 carmenv 978 0.24 
 anmittal 861 0.22 
 adotey 828 0.21 
 billyue 805 0.20 
 gibbons4 507 0.13 
 leonlin 145 0.04 
 cktan 65 0.02 


	Community Detection:�Modularity and Trawling
	Network Communities
	Null Model: Configuration Model
	Modularity
	Modularity: Number of clusters
	Method 2: Modularity Optimization
	Modularity Matrix
	Modularity Optimization
	Finding Vector s
	Summary: Modularity Optimization
	Additional Heuristic Approaches
	Additional Heuristic Approaches
	Modularity Optimization Methods
	Summary: Modularity
	�Trawling for Web Communities
	Method3: Trawling
	Searching for Small Communities
	The Plan: (1), (2) and (3)
	Frequent Itemset Enumeration
	Frequent Itemsets: Example
	Example: the Apriori Algorithm
	The Apriori Algorithm
	From Itemsets to Bipartite Ks,t
	From Ks,t to Communities
	Proof: Ks,t and Communities
	Nodes and Buckets
	Nodes and Buckets
	Nodes and Buckets
	And We are Done!
	Method3: Trawling — Summary 
	�Spectral Graph Partitioning
	Method4: Graph Partitioning
	Graph Partitioning
	Graph Cuts
	Graph Cut Criterion
	Graph Cut Criteria
	Competition Results: �Graph Alignment
	Wikipedia Graph Alignment
	Approach 1: Square Maximization
	Approach 1: Square Maximization
	Approach 2: Machine Learning
	Results and Extra Credit

