Community Detection:
Modularity and Trawling



Network Communities

Communities:

Define: Modularity Q

11/14/2011

A measure of how well
a network is partitioned
iInto communities

Given a partitioning of the
network into groups s € S:

Q o« Y. o[ (#edges within group s) —
(expected # edges within group s) |

Need a null model!
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Null Model: Configuration Model

11/14/2011

Same degree distribution but /( -
random connections

Consider G’ as multigraph — N

The expected number of edge between nodes

i and j of degrees k; and k; = k; - 2' Kk

m 2m
The expected number of edges in (multigraph) G’:

1 kikj 11
— EZiENZjEN ij ki (Z]eNk ) =

2 zm lEN
1 ;
—RZm-Zm—m Zku=2m
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Modularity

Modularity of partitioning C of graph G:
Q o« > [ (# edges within group s) —
(expected # edges within group s) ]

kik
0(G,S) ziZsESZiES Zjes (Aif - ])

2m L
Aij =1if I>],

Normalizing cost.: -1<Q<1 0 else

It is positive if the number of edges within
groups exceeds the expected number

0.3<Q<0.7 means significant community structure
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Modularity: Number of clusters

o © o © ©
0 e N e Dn

Why not optimize modularity directly?
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Method 2: Modularity Optimization

. kik;
mSaX Q(G,S) = %Zseszi,jes (Aij N ])

2m

Community membership vector s:

s;=1lif nodeiisin community 1 sisi+1 _1.ifs=s,
-1 if node i is in community -1 2 0.. else
1 kik;
Q(G,s) = —Xijen (Aij Zm) (s;s; +1)

1 kik;
— i, jeN (Aij » )SiSj

 4m m
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Modularity Matrix

Define:
Modularity matrix: B;; = A;j — I;‘g Note/:cz?jrr:];o(\)/\]/c
Membership: s= {1 +1} B sums to 0
Then: Q(G s) = —mz-]-EN B;jsis;
Z s; 2j Bijsj = iSTBS

Find se{-1,+1}" that maximizes Q(G,s)
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Modularity Optimization

o _ 1 T
Rewrite: Q(G,s) = S Bs

- n 7 n

=sT Z w; Bul | s = Z sTu; Bu s
li=3 =1

n

_ T, \2p.
_ Z(S ul) bi Note: By > B, > -
___i=1

Assigns all weight in the sum to B, (largest eigval)
All other sTu; terms zero because of orthonormality

But, elements of s must be €{-1,+1}, NP-hard in general
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Finding Vector s

n
Z Si~Uq b1

i=1S;i - uy; where s;e{-1,+1}
To do this, we set:

+1 if ith element of u; > 0,
S — e .
—1 if ith element of u; < 0.

max Q(G,s) = ) (sTu)?f; ~
=1

Similar in spirit to the spectral partitioning
algorithm (we will explore this next time)
Continue the bisection hierarchically

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 9



Summary: Modularity Optimization

Find leading eigenvector u, of modularity matrix B
Divide the nodes by the signs of the elements of u,
Repeat hierarchically until:

If a proposed split does not cause modularity to increase,
declare community indivisible and do not split it

If all communities are indivisible, stop

Start with random v, repeat : vt —
When converged (v = v(t*1)), set u, = v(¥
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Additional Heuristic Approaches

11/14/2011

Start:
® ©6
Start with nodes in two groups, s ® O
Repeat t = 1..n until all nodes have © ©0
been moved: Move best not-yet-moved
, node (3), store Q,
Fori=1..n
. . . ® ©6
Consider moving node i, compute new Q,(s;) e 6
Move node j that hasn’t yet been moved
and that maximizes Q,(s) 906
Note that Q, can decrease with time t Move best not-yet-moved

node (5), store Q,

©0
® O
006

Dot this for every not-yet-moved
node, pick state x that max Q;
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Once iteration is complete, find
intermediate state t with highest Q,

Start from this state and repeat
until Q stops increasing



Additional Heuristic Approaches

11/14/2011

Agglomerative clustering: start with each node as a
separate community, join communities into bigger ones

(1) Put each node in its own community x

(2) Compute AQ,, for all community pairs

(3) Merge the pair with largest increase in AQ,,
Repeat (2)&(3) until only one community remains

How to compute AQ(x,y)?
Matrix AQy, = - (1 — ﬂ) if node x links y, else AQ,,=0

2m

If we join communltles X and y into a new y, update AQ:
Remove row/column x of AQ
For every k update: AQ, = AQ,, + AQ,
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Modularity Optimization Methods

modularity @)
network sizen | GN  CNM DA odul
karate 34 10.401 0.381 0.419 0.419
jazz musicians 1958 | 0.405 0.439 0.445 0.442
metabolic 453 1 0.403 0.402 0.434 0.435
email 1133 | 0.532 0.494 0.574 0.572
key signing 10680 | 0.816 0.733 0.846 0.855
physicists 27519 0.668 0.679 0.723

GN = Betweenness centrality, O(n3)
CNM = Clauset-Newman-Moore (n log?n)
DA = External pptimization O(n? log? n)

May not find communities with less than /m links
NP-hard to optimize exactly [Brandes et al. ‘07]
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Summary: Modularity

11/14/2011

Based on the “strength of weak ties”
Remove edge of highest betweenness

Overall quality of the partitioning of a graph
Use to determine the number of communities

Transform the modularity optimization to a
eigenvalue problem

Agglomerative clustering based on Modularity
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Trawling for Web Communities



[Kumar et al. ‘99]

Method3: Trawling

Use this to define “topics”:
What the same people on

- the left talk about on the right
O o Remember HITS!

Dense 2-layer graph

Intuition: Many people all talking about the same things
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Searching for Small Communities

Enumerate complete bipartite subgraphs K. ,

Where K, . : S nodes on the “left” where each links
to the same t other nodes on the “right”

IX|=s=3
Y[=t=4

Fully connected
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[Kumar et al. ‘99]

The Plan: (1), (2) and (3)

the signature of a
community/discussion

Complete bipartite subgraph K ,
K, . = graph on s nodes, each links to the same t other nodes

(A)

Any dense enough graph contains a
smaller K; . as a subgraph

(B)

What similar problems were solved on big non-graph data?
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[Agrawal-Srikant ‘99]

Frequent Itemset Enumeration

_ . Products sold
Market: Universe U of n items in a store

Baskets: m subsets of U: 5, S,, ..., S, c U
(S; is a set of items one person bought)

Support: Frequency threshold f

Find all subsets Ts.t. T < S;of >f sets S,
(items in T were bought together at least f times)
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Frequent Itemsets: Example

Universe of items:

U={1,2,3,4,5}
Market baskets: Support of
_ B B T={2,3}is 2
S,={1,3,5}, S,={2,3,4}, S,={2,4,5}, T aopenrs in
S,={3.4,5}, S:={1,3,4,5}, S;={2,3,4,5} S, and S)

Minimum support: f=3
Goal: Find all sets T that appear in at least f S/’s
Call such itemsets T frequent itemsets (they have support >f)

Build the lists bottom-up If T={3,4,5} is
. frequent, then
For a frequent set of size k, all {3,4}, {3,5}, {4,5}

. must also be
its subsets are also frequent frequent
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[Agrawal-Srikant ‘99]

Example: the Apriori Algorithm

Setting:
U={1,2,3,4,5}, f=3

S,={1,3,5}, S,={2,3,4}, S,={2,4,5},
S,={3,4,5}, S:={1,3,4,5}, S;={2,3,4,5}

ltemset
sjze ltemsets
1 B2 {3} {4 ({5
M 2 steps:
2 231 {2, 4} 2] {3,4} {3,5} {4,5} 1 Candidate
3 \_—— ) B
2752} {3, 4, 5}
4 {}
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[Agrawal-Srikant ‘99]

The Apriori Algorithm

Fori=1,....k

Generate all sets of size I by
composing sets of size 1-1 that
differ in 1 element

Prune the sets of size I with support < f

Efficiently find only maximal frequent sets
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[Kumar et al. ‘99]

From Itemsets to Bipartite K ,

finds
o

. : b
View each node I as a P Si={a,b,c,d}
set S; of nodes I points to o
K,,=asetY of sizet o\
that occurs in S sets S, g@
Looking for K, , = set of -0
frequency threshold to s « 9,

Y

and look at layer t — all
frequent sets of size t s ... minimum support (|X|=s)

t ... itemset size
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From K, , to Communities

Informally, every
dense enough graph G contains a bipartite
subgraph K, ,where s and t depend on size
(# of nodes) and density (avg. degree) of G

Let G=(X,Y,E), |X|=|Y|=n
1 1

with avg. degree k = st n' t+t
then G contains K, , as a subgraph.
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Proof: K, . and Communities

Recall: [a) _a(@-1)..(a-b+1)

11/14/2011

b o}

Let f(X) = X(x-1)(X-2)...(x-k)
Once X >k, f(X) curves upward (convex)

f(x)

g(y) is convex
Want to minimize Y1~ ; g(x;)
where ) x; = x

?=1 g(x;)
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Nodes and Buckets

3
b L
i o |:> (ab) (ac) (ad) (b,c)
o
: Potential right-hand
_ sides of K., (i.e., all
Put node I in buckets for size t subsets of S))
all size t subsets of I's
neighbors
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Nodes and Buckets

How many buckets does node I contribute to?

ki = # of ways to select t elements out of k.
K ... degree of node i

)2 3 () ()

By convexity

(ki> 1) -1 |
k_nzkl
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Nodes and Buckets

a| a(a-1)..(a-b+1)
b) b!

1 1 t
tnl T+t — t)

. (E) - (k —' t)t (s

=N
t C!
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And We are Done!

t
L n's
t!

t
> n's t — g So, avg. bucket
t! n' height >
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[Kumar et al. ‘99]

Method3: Trawling — Summary

Complete bipartite subgraphs K, are embedded in
larger dense enough graphs (i.e., the communities)

Biparite subgraphs act as “signatures” of communities

Frequent itemset extraction and dynamic
programming finds graphs K. ,

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 30



Spectral Graph Partitioning



Methodg: Graph Partitioning

Undirected graph G(V,E):

Divide vertices into two disjoint groups (A,B)

A (5 ) B
o) (o

How can we define a “good” partition of G?
How can we efficiently identify such a partition?
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Graph Partitioning

Maximize the number of within-group

connections
Minimize the number of between-group
connections
|
A I B
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Graph Cuts

Express partitioning objectives as a function
of the “edge cut” of the partition

Set of edges with only one vertex in a
sroup: cut(A,B) = Zwij

icA,jeB

A B
‘ CUt(A,B) = 2
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Graph Cut Criterion

Minimum-cut
Minimise weight of connections between groups
ming, g CUt(A,B)

“Optimal cut”
/ Minimum cut

Only considers external cluster connections
Does not consider internal cluster connectivity
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[Shi-Malik]

Graph Cut Criteria

Criterion:

Connectivity between groups relative to the
density of each group
cut(A,B) N cut(A,B)

vol (A) vol (B)
vol(A): total weight of the edges with at least
one endpoint in A: vol(A) = Y.;ex k;

ncut (A,B) =

Produces more balanced partitions

Computing optimal cut is NP-hard
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Competition Results:
Graph Alignment



Wikipedia Graph Alignment

F

Given the German and
French Wikipedia graph
And a few example
corresponding articles

Goal: Find the remaining correspondences:

Link “Paris” in German
to “Paris” in French

Intuition: Paris in both languages links to “similar” pages
(pages that also link to each other)
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Approach 1: Square Maximization

Start from some pairing S

Start from random pairing
Goodness of pairing S:

Number of “squares”
Consider transforming
(Ug, ug), (Vg vg) to
Accept the swap if the number of squares increases
Improvements:

Bound on swap improvement:

No need to swap nodes that don’t give good improvement

Computing swap change efficiently
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Approach 1: Square Maximization

Alignment for 20% holdout
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Approach 2: Machine Learning

F p—
For a pair of nodes (ugug)
construct a feature vector
Matches from the training set
(M.txt) are “positive” examples

Pairs not in M.txt are “negative” examples
Use Random Forests to label pairs (AUC=0.87)

Each pair gets a probability that they match
Now greedily fill-in the remaining pairings by
considering correspondence probabilities
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Results and Extra Credit

D | #Correct | Fraction _
krish (10%) 3,308 0.83
pmk (8%) 2,941 0.74
lussierl (6%) 2,191 0.55
prgao (4%) 2,107 0.53
jieyang (4%) 1,706 0.43
carmenv 978 0.24
anmittal 861 0.22
adotey 828 0.21
billyue 805 0.20
gibbons4 507 0.13
leonlin 145 0.04

cktan 65 0.02
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