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 Communities: sets of  
tightly connected nodes 

 Define: Modularity Q 
 A measure of how well  

a network is partitioned  
into communities 
 Given a partitioning of the  

network into groups s ∈ S: 
 Q  ∝  ∑s∈ S [ (# edges within group s) –   
                      (expected # edges within group s) ] 
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Need a null model! 



 Given real G, construct rewired network G’ 
 Same degree distribution but  

random connections 
 Consider G’ as multigraph 

 

 The expected number of edge between nodes  
𝒊 and 𝒋 of degrees 𝑘𝑖  and 𝑘𝑗  = 𝑘𝑖 ⋅

𝑘𝑗
2𝑚

= 𝑘𝑖𝑘𝑗
2𝑚

 
 The expected number of edges in (multigraph) G’: 

 = 1
2
∑ ∑ 𝑘𝑖𝑘𝑗

2𝑚𝑗∈𝑁𝑖∈𝑁 = 1
2
⋅ 1
2𝑚

∑ 𝑘𝑖 ∑ 𝑘𝑗𝑗∈𝑁𝑖∈𝑁 = 

  = 1
4𝑚

2𝑚 ⋅ 2𝑚 = 𝑚 
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j 

i 

�𝑘𝑢
𝑢∈𝑁

= 2𝑚 

Note: 



 Modularity of partitioning C of graph G: 
 Q ∝ ∑s∈ S [ (# edges within group s) –   

                   (expected # edges within group s) ] 

 𝑄 𝐺, 𝑆 = 1
2𝑚

∑ ∑ ∑ 𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚𝑗∈𝑠𝑖∈𝑠𝑠∈𝑆  

 
 

 Modularity lies in the range [−1,1] 
 It is positive if the number of edges within  

groups exceeds the expected number 
 0.3<Q<0.7 means significant community structure 
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Aij = 1 if i→j,  
        0 else Normalizing cost.: -1<Q<1 



 Modularity is useful for selecting the  
number of clusters: 
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Why not optimize modularity directly? 

Q 



 Let’s split the graph into 2 communities 
 What to directly optimize modularity! 

 max
𝑆 

𝑄 𝐺, 𝑆 = 1
2𝑚

∑ ∑ 𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚𝑖,𝑗∈𝑠𝑠∈𝑆  

 

 Community membership vector s:  
 si = 1 if node i is in community 1 

     -1 if node i is in community -1 

 𝑄 𝐺, 𝑠 = 1
4𝑚

∑ 𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚

(𝑠𝑖𝑠𝑗𝑖,𝑗∈𝑁 + 1)  

 = 1
4𝑚

∑ 𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚

𝑠𝑖𝑠𝑗𝑖,𝑗∈𝑁  
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𝑠𝑖𝑠𝑗 + 1
2

= 1.. if si=sj 
0.. else 



 Define: 

 Modularity matrix: 𝐵𝑖𝑗 = 𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚

 
 Membership: s={-1, +1} 

 Then: 𝑄 𝐺, 𝑠 = 1
4𝑚

∑ 𝐵𝑖𝑗𝑠𝑖𝑠𝑗𝑖,𝑗∈𝑁  
               = 1

4𝑚
∑ 𝑠𝑖𝑖 ∑ 𝐵𝑖𝑗𝑠𝑗𝑗 = 1

4𝑚
𝑠𝑇𝐵𝑠 

 

 Task: Find s∈{-1,+1}n that maximizes Q(G,s) 
 

 Rewrite Q in terms of eigenvalues βi and 
eigenvectors ui of modularity matrix B 
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Note: each row 
/column of  

B sums to 0 



 Rewrite: 𝑄 𝐺, 𝑠 = 1
4𝑚

𝑠T𝐵𝑠 

= sT �𝑢𝑖𝛽𝑖𝑢𝑖𝑇
𝑛

𝑖=1

𝑠 = �𝑠𝑇𝑢𝑖𝛽𝑖𝑢𝑖𝑇𝑠
𝑛

𝑖=1

= � 𝑠𝑇𝑢𝑖 2𝛽𝑖

𝑛

𝑖=1

 

 If there would be no constraints on s then to  
maximize Q, the easiest way is to make s = λ u1  
 Assigns all weight in the sum to β1 (largest eigval) 
 All other sTui terms zero because of orthonormality 

 But, elements of s must be ∈{-1,+1}, NP-hard in general 
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Note: 𝛽1 > 𝛽2 > ⋯ 



max
𝑠

Q(𝐺, 𝑠) = � 𝑠𝑇𝑢𝑖 2𝛽𝑖

𝑛

𝑖=1

≈ �𝑠𝑖 ⋅ 𝑢1,𝑖

𝑛

𝑖=1

2

𝛽1 

 

 Let’s maximize:∑ 𝑠𝑖 ⋅ 𝑢1,𝑖
𝑛
𝑖=1  where si∈{-1,+1}  

 To do this, we set: 
 
 

 Similar in spirit to the spectral partitioning 
algorithm (we will explore this next time) 

 Continue the bisection hierarchically 
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 Fast Modularity Optimization Algorithm: 
 Find leading eigenvector u1 of modularity matrix B 
 Divide the nodes by the signs of the elements of u1 

 Repeat hierarchically until: 
 If a proposed split does not cause modularity to increase, 

declare community indivisible and do not split it 
 If all communities are indivisible, stop 

 How to find u1? Power method! 
 Start with random v(1), repeat : 
 When converged (v(t) ≈ v(t+1)), set u1 = v(t) 
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 (1) Greedy post-processing: 
 Start with nodes in two groups, s 
 Repeat t = 1..n until all nodes have 

been moved: 
 For i = 1..n 
 Consider moving node i, compute new Qt(si) 

 Move node j that hasn’t yet been moved 
and that maximizes Qt(sj) 
 Note that Qt can decrease with time t 

 Once iteration is complete, find 
intermediate state t with highest Qt 

 Start from this state and repeat  
until Q stops increasing 
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3 

5 
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7 

Start: 

1 

2 

3 

5 

6 

7 

Move best not-yet-moved 
node (3), store Q1 

1 

2 

3 

5 

6 

7 

Move best not-yet-moved 
node (5), store Q2 

Dot this for every not-yet-moved 
node, pick state x that max Qt 



 (2) Clauset-Newman-Moore Algorithm: 
 Agglomerative clustering: start with each node as a 

separate community, join communities into bigger ones 
 (1) Put each node in its own community x 
 (2) Compute ∆Qxy for all community pairs 
 (3) Merge the pair with largest increase in ∆Qxy 
 Repeat (2)&(3) until only one community remains 
 How to compute ∆Q(x,y)? 
 Matrix Δ𝑄𝑥𝑥 = 1

2𝑚
1 − 𝑘𝑖𝑘𝑗

2𝑚
 if node x links y, else ∆Qxy=0 

 If we join communities x and y into a new y, update ∆Q: 
 Remove row/column x of ∆Q 
 For every k update: ∆Qyk = ∆Qxk + ∆Qyk 
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 Issues with modularity: 
 May not find communities with less than 𝑚 links 
 NP-hard to optimize exactly [Brandes et al. ‘07] 
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GN = Betweenness centrality, O(n3) 
CNM = Clauset-Newman-Moore (n log2n) 
DA = External pptimization O(n2 log2 n) 

Fast modularity 



 Girvan-Newman (previous lecture): 
 Based on the “strength of weak ties” 
 Remove edge of highest betweenness 

 Modularity: 
 Overall quality of the partitioning of a graph 
 Use to determine the number of communities 

 Fast modularity optimization: 
 Transform the modularity optimization to a 

eigenvalue problem 
 Clauset-Newman-Moore:  
 Agglomerative clustering based on Modularity 
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 Searching for small communities in  
the Web graph 

 What is the signature of a community / 
discussion in a Web graph? 

11/14/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 16 

[Kumar et al. ‘99] 

Dense 2-layer graph 

Intuition: Many people all talking about the same things 

…
 

…
 

Use this to define “topics”: 
What the same people on  
the left talk about on the right 
Remember HITS! 



 A more well-defined problem: 
Enumerate complete bipartite subgraphs Ks,t  
 Where Ks,t  : s nodes on the “left” where each links 

to the same t other nodes on the “right” 
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K3,4 

|X| = s = 3 
|Y| = t = 4 X Y 

Fully connected 



 Two points: 
 (1) Dense bipartite graph: the signature of a 

community/discussion 
 (2) Complete bipartite subgraph Ks,t  
 Ks,t  = graph on s nodes, each links to the same t other nodes 

 Plan: 
 (A) From (2) get back to (1): 
 Via: Any dense enough graph contains a  

 smaller Ks,t as a subgraph 
 (B) How do we solve (2) in a giant graph? 
 What similar problems were solved on big non-graph data? 
 (3) Frequent itemset enumeration [Agrawal-Srikant ‘99] 
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[Kumar et al. ‘99] 



 Marketbasket analysis: 
 What items are bought together in a store? 

 Setting: 
 Market: Universe U of n items 
 Baskets: m subsets of U: S1, S2, …, Sm ⊆ U 

(Si is a set of items one person bought) 
 Support: Frequency threshold f 

 Goal: 
 Find all subsets T s.t. T ⊆ Si of ≥ f  sets Si  

(items in T were bought together at least f  times) 
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[Agrawal-Srikant ‘99] 

Products sold  
in a store 



 Given: 
 Universe of items:  
 U={1,2,3,4,5} 

 Market baskets:  
 S1={1,3,5}, S2={2,3,4}, S3={2,4,5},  

S4={3,4,5}, S5={1,3,4,5}, S6={2,3,4,5} 
 Minimum support:  f = 3 
 Goal: Find all sets T that appear in at least f  Si’s 
 Call such itemsets T frequent itemsets (they have support ≥f) 

 Algorithm: Build the lists bottom-up 
 Insight: For a frequent set of size k, all  

its subsets are also frequent  
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Support of 
T={2,3} is 2 
(T appears in 
S2 and S6) 

If T={3,4,5} is 
frequent, then 
{3,4}, {3,5}, {4,5} 
must also be 
frequent! 



 Setting: 
 U={1,2,3,4,5},    f=3 
 S1={1,3,5},  S2={2,3,4},  S3={2,4,5},   

S4={3,4,5}, S5={1,3,4,5},  S6={2,3,4,5} 
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[Agrawal-Srikant ‘99] 

2 steps: 
1) Candidate 

generation 
2) Pruning 

Itemset 
size 

1 

2 

3 

4 

{1} {2} {3} {4} {5} 

{2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5} 

{2, 3, 4} {3, 4, 5} 

{} 

Itemsets 



 For i = 1,…, k 
 Generate all sets of size i by  

composing sets of size i-1 that 
differ in 1 element 
 Prune the sets of size i with support < f 

 

 Open question:  
 Efficiently find only maximal frequent sets 

 

 What’s the connection between itemsets and 
complete bipartite graphs? 
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[Agrawal-Srikant ‘99] 



 Itemsets finds Complete bipartite graphs 
 

 How? 
 View each node i as a  

set Si of nodes i points to 
 Ks,t = a set Y of size t  

that occurs in s sets Si 
 

 Looking for Ks,t  set of  
frequency threshold to s  
and look at layer t – all  
frequent sets of size t 
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[Kumar et al. ‘99] 

i 
b 

c 

d 

a 

Si={a,b,c,d} 

j 

i 

k 

b 

c 

d 

a 

X Y 

s … minimum support (|X|=s) 
t … itemset size 



 From Ks,t to Communities: Informally, every 
dense enough graph G contains a bipartite 
subgraph Ks,t where s and t depend on size  
(# of nodes) and density (avg. degree) of G  
[Kovan-Sos-Turan ‘53] 

 

 Theorem:  
Let G=(X,Y,E), |X|=|Y|= n  

with avg. degree 𝑘� = 𝑠
1
𝑡  𝑛1−

1
𝑡 + 𝑡 

then G contains Ks,t as a subgraph. 
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For the proof we will need the following fact 
 Recall: 

 

 Let f(x) = x(x-1)(x-2)…(x-k) 
Once x ≥ k,  f(x) curves upward (convex) 

 Suppose a setting:  
 g(y) is convex  
 Want to minimize ∑ 𝑔 𝑥𝑖𝑛

𝑖=1  
 where ∑ 𝑥𝑖𝑛

𝑖=1 = 𝑥 
 To minimize ∑ 𝑔 𝑥𝑖𝑛

𝑖=1  make each 𝑥𝑖 = 𝑥
𝑛
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25 

x 

f(x
) 

𝑥
𝑛 𝑥

𝑛 + ε 

𝑥
𝑛 − 𝜀 



 Consider node i of degree 
ki and neighbor set Si 
 
 
 
 
 

 Put node i in buckets for 
all size t subsets of i’s 
neighbors 
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Potential right-hand 
sides of Ks,t (i.e., all 
size t subsets of Si) 
As soon as s nodes 
appear in a bucket 

we have a Ks,t 

i 
b 

c 

d 

a 

(a,b) 

i 

(a,c) 

i 

(a,d) 

i 

(b,c) 

i …. 

…
. 



 Note: As soon as s nodes appear in a  
bucket we found a Ks,t 

 How many buckets does node i contribute to? 
 
 

 What is the total size of all buckets?  

  ∑ 𝑘𝑖
𝑡 ≥ 𝑛

𝑖=1  ∑ 𝑘
𝑡

𝑛
𝑖=1 = 𝑛 𝑘

𝑡
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t
ki = # of ways to select t elements out of ki 

ki … degree of node i 

By convexity 
(ki > t) 𝑘� =

1
𝑛�𝑘𝑖
𝑖∈𝑁

 



 So, the total height of  
all buckets is… 

𝑛 𝑘
𝑡

≥ 𝑛
𝑘 − 𝑡

𝑡

𝑡!
= 𝑛

𝑠
1
𝑡  𝑛1−

1
𝑡 + 𝑡 − 𝑡

𝑡

𝑡!
 

=
𝑛 𝑠 𝑛𝑡−1

𝑡!
=
𝑛𝑡 𝑠
𝑡!
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!
)1)...(1(

b
baaa

b
a +−−

=








Plug in: 

𝑘� = 𝑠
1
𝑡  𝑛1−

1
𝑡 + 𝑡 



 We have: Total height of all buckets: 
 
 

 How many buckets are there? 
 

 What is the average height of buckets? 
 
 
 

 ⇒ By pigeonhole principle, there must be at 
least one bucket with more than s nodes in it. 

 ⇒ We found a Ks,t 
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!t
snt

≥

!t
n

t
n t

≤








s
n
t

t
sn

t

t

=≥
!

!
So, avg. bucket 
height  ≥ s 



 Analytical result: 
 Complete bipartite subgraphs Ks,t are embedded in 

larger dense enough graphs (i.e., the communities) 
 Biparite subgraphs act as “signatures” of communities 

 

 Algorithmic result: 
 Frequent itemset extraction and dynamic 

programming finds graphs Ks,t  
 Method is super scalable 
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[Kumar et al. ‘99] 





 Undirected graph G(V,E): 
 

 Bi-partitioning task: 
 Divide vertices into two disjoint groups (A,B) 
 
 

 
 

 Questions: 
 How can we define a “good” partition of G? 
 How can we efficiently identify such a partition? 
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1 

3 
2 

5 

4 6 

A B 

1 

3 

2 

5 

4 6 



 What makes a good partition? 
 Maximize the number of within-group  

connections 
 Minimize the number of between-group 

connections 
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1 

3 

2 

5 

4 6 

A B 



A B 

 Express partitioning objectives as a function 
of the “edge cut” of the partition 

 Cut: Set of edges with only one vertex in a 
group: 
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cut(A,B) = 2 
1 

3 

2 

5 

4 6 



 Criterion: Minimum-cut 
 Minimise weight of connections between groups 

 
 Degenerate case: 

 
 
 
 

 Problem: 
 Only considers external cluster connections 
 Does not consider internal cluster connectivity 
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minA,B cut(A,B) 
“Optimal cut” 

Minimum cut 



 Criterion: Normalized-cut [Shi-Malik, ’97] 
 Connectivity between groups relative to the 

density of each group 
 

 

 vol(A): total weight of the edges with at least  
one endpoint in A: vol 𝐴 = ∑ 𝑘𝑖𝑖∈𝐴  

Why use this criterion? 
 Produces more balanced partitions 

 How do we efficiently find a good partition? 
 Problem: Computing optimal cut is NP-hard 
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[Shi-Malik] 
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 Given the German and  
French Wikipedia graph 

 And a few example  
corresponding articles 

 

 Goal: Find the remaining correspondences: 
 Link “Paris” in German  

 to “Paris” in French 
 Intuition: Paris in both languages links to “similar” pages 

(pages that also link to each other) 
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Winning solution: 
 Start from some pairing S 
 Start from random pairing 

 Goodness of pairing S: 
 Number of “squares” 

 Consider transforming 
(uF, uG), (vF, vG) to (vF, uG), (uF, vG) 

 Accept the swap if the number of squares increases 
 Improvements: 
 Bound on swap improvement:  
 No need to swap nodes that don’t give good improvement 

 Computing swap change efficiently 
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 For a pair of nodes (uF,uG)  
construct a feature vector 
 Matches from the training set  

(M.txt) are “positive” examples 
 Pairs not in M.txt are “negative” examples 

 Use Random Forests to label pairs (AUC=0.87) 
 Each pair gets a probability that they match 

 Now greedily fill-in the remaining pairings by 
considering correspondence probabilities 
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ID # Correct Fraction 
 krish (10%) 3,308 0.83 
 pmk (8%) 2,941 0.74 
 lussier1 (6%) 2,191 0.55 
 prgao (4%) 2,107 0.53 
 jieyang (4%) 1,706 0.43 
 carmenv 978 0.24 
 anmittal 861 0.22 
 adotey 828 0.21 
 billyue 805 0.20 
 gibbons4 507 0.13 
 leonlin 145 0.04 
 cktan 65 0.02 
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