Preferential Attachment and Network Evolution

CS224W: Social and Information Network Analysis
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
Task: (HW3 is optional)
- Find node correspondences between two graphs

Incentives:
- European chocolates!
- Fame!
- Up to 10% extra credit

Due:
- Monday Nov 14
- No late days!
Random network
(Erdos-Renyi random graph)
Degree distribution is Binomial

Scale-free (power-law) network
Degree distribution is Power-law
We will analyze the following model:

- Nodes arrive in order $1, 2, 3, \ldots, n$
- When node i is created it makes a single link to an earlier node i chosen:
 - 1) With prob. p, i links to j chosen uniformly at random (from among all earlier nodes)
 - 2) With prob. $1-p$, node i chooses node j uniformly at random and links to a node j points to.

[Mitzenmacher, ‘03]
Claim: The described model generates networks where the fraction of nodes with degree k scales as:

$$P(d_i = k) \propto k^{-(1 + \frac{1}{q})}$$

where $q = 1 - p$

Consider deterministic and continuous approximation to the in-degree of node i as a function of time t

- t is the number of nodes that have arrived so far
- In-degree $d_i(t)$ of node i ($i=1,2,\ldots,n$) is a continuous quantity and it grows deterministically with time t
Initial condition:
- \(d_i(t) = 0 \), when \(t = i \) (node \(i \) just arrived)

Expected change of \(d_i(t) \) over time:
- Node \(i \) gains an in-link at step \(t+1 \) only if a link from a newly created node \(t+1 \) points to it.

What’s the probability of this event?
- With prob. \(p \) node \(t+1 \) links randomly:
 - Links to our node \(i \) with prob. \(1/t \)
- With prob. \(1-p \) node \(t+1 \) links preferentially:
 - Links to our node \(i \) with prob. \(d_i(t)/t \)

So: Prob. node \(t+1 \) links to \(i \) is:
\[
p \frac{1}{t} + (1 - p) \frac{d_i(t)}{t}
\]
What is the rate of growth of d_i?

- Expected change of $d_i(t)$ over time

\[
\frac{dd_i(t)}{dt} = p \frac{1}{t} + (1 - p) \frac{d_i(t)}{t} = \frac{p+q d_i(t)}{t}
\]

\[
\frac{1}{p+q d_i(t)} \frac{dd_i(t)}{dt} = \frac{1}{t} dt
\]

\[
\int \frac{1}{p+q d_i(t)} dd_i(t) = \int \frac{1}{t} dt
\]

\[
\frac{1}{q} \ln(p + q d_i(t)) = \ln t + c
\]

\[
q d_i(t) + p = A t^q \Rightarrow d_i(t) = \frac{1}{q} (A t^q - p)
\]
What is the constant A?

- We know: \(d_i(i) = 0 \)

- So: \(d_i(i) = \frac{1}{q} (A_i^q - p) = 0 \)

- \(\Rightarrow A = \frac{p}{iq} \)

- \(\Rightarrow d_i(t) = \frac{p}{q} \left(\left(\frac{t}{i} \right)^q - 1 \right) \)
What is $F(d)$ the fraction of nodes that has degree at least d at time t?

- How many nodes i have degree $> t$?

 \[d_i(t) = \frac{p}{q} \left(\left(\frac{t}{i} \right)^q - 1 \right) > d \]

 - then: $i < t \left(\frac{q}{p} d - 1 \right)^{-\frac{1}{q}}$

- There are t nodes total at time t so $F(d)$:

 \[F(d) = \left[\frac{q}{p} d + 1 \right]^{-\frac{1}{q}} \]
What is the fraction of nodes with degree exactly d?

Take derivative of $F(d)$:

- $F(d)$ is CDF, so $F'(d)$ is the PDF

$$F'(d) = \frac{1}{p} \left[\frac{q}{p} d + 1 \right]^{-1 - \frac{1}{q}} \quad \Rightarrow \quad \alpha = 1 + \frac{1}{q}$$
Two changes from the G_{np}
- Groth + Preferential attachment
- Do we need both? Yes!
- Add growth to G_{np} (assume 1 edge is added at each step)
 - $X_j = \text{degree of node } j \text{ at the end}$
 - $X_j(u) = 1$ if node u links to j, else 0
 - $X_j = X_j(j + 1) + X_j(j + 2) + \cdots + X_j(n)$
 - $E[X_j(u)] = P[u \text{ links to } j] = \frac{1}{u-1}$
 - $E[X_j] = \sum_{u=j}^{n} \frac{1}{u-1} = H_{n-1} - H_j$
 - $E[X_j] = \log(n-1) - \log(j) = \log \left(\frac{n-1}{j} \right) \neq \left(\frac{n}{j} \right)^{\alpha}$
Preferential attachment gives power-law degrees

Intuitively reasonable process

Can tune p to get the observed exponent

- On the web, $P[\text{node has degree } d] \sim d^{-2.1}$
- $2.1 = 1 + 1/(1-p) \Rightarrow p \sim 0.1$

There are also other network formation mechanisms that generate scale-free networks:

- Random surfer model
- Forest Fire model
PA-like Link Formation

- **Copying mechanism** (directed network)
 - select a node and an edge of this node
 - attach to the endpoint of this edge

- **Walking on a network** (directed network)
 - the new node connects to a node, then to every first, second, ... neighbor of this node

- **Attaching to edges**
 - select an edge
 - attach to both endpoints of this edge

- **Node duplication**
 - duplicate a node with all its edges
 - randomly prune edges of new node
Preferential attachment is not so good at predicting network structure

- Age-degree correlation
- Links among high degree nodes
 - On the web nodes sometime avoid linking to each other

Further questions:

- What is a reasonable probabilistic model for how people sample through web-pages and link to them?
 - Short+Random walks
 - Effect of search engines – reaching pages based on number of links to them
Network resilience

- How does the connectivity of the network change as the vertices get removed? [Albert et al. 00; Palmer et al. 01]

- **Vertices can be removed:**
 - Uniformly at random
 - In order of decreasing degree

- It is important for **epidemiology**
 - Removal of vertices corresponds to vaccination
Real-world networks are resilient to random attacks

- You need to remove all web-pages of degree > 5 to disconnect the web
- But this is a very small fraction of all web pages

Random network has better resilience to targeted attacks
Evolution of Social Networks
Preferential attachment is a model of a growing network

What governs network growth and evolution?

- P1) Node arrival process:
 - When nodes enter the network

- P2) Edge initiation process:
 - Each node decides when to initiate an edge

- P3) Edge destination process:
 - The node determines destination of the edge
Let’s Look at the Data

- **4 online social networks with exact edge arrival sequence**
 - For every edge \((u, v)\) we know exact time of the appearance \(t_{uv}\)

- **Directly observe mechanisms leading to global network properties**

<table>
<thead>
<tr>
<th>Network</th>
<th>(T)</th>
<th>(N)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flickr (03/2003–09/2005)</td>
<td>621</td>
<td>584,207</td>
<td>3,554,130</td>
</tr>
<tr>
<td>Delicious (05/2006–02/2007)</td>
<td>292</td>
<td>203,234</td>
<td>430,707</td>
</tr>
<tr>
<td>Answers (03/2007–06/2007)</td>
<td>121</td>
<td>598,314</td>
<td>1,834,217</td>
</tr>
<tr>
<td>LinkedIn (05/2003–10/2006)</td>
<td>1294</td>
<td>7,550,955</td>
<td>30,682,028</td>
</tr>
</tbody>
</table>

[Leskovec et al., KDD ’08]

and so on for millions…
P1) When are New Nodes Arriving?

Flickr: Exponential

\[N(t) \approx e^{0.25t} \]

Delicious: Linear

\[N(t) = 16t^2 + 3 \times 10^3 t + 4 \times 10^4 \]

Answers: Sub-linear

\[N(t) = -284t^2 + 4 \times 10^4 t - 2.5 \times 10^3 \]

LinkedIn: Quadratic

\[N(t) = 3900t^3 + 7600t - 1.3 \times 10^5 \]
How long do nodes live?

Node life-time is the time between the 1st and the last edge of a node.

How do nodes “wake up” to create links?

Edge creation events
P2) What is Node Lifetime?

Node lifetime is exponentially distributed:

\[p_l(\alpha) = \lambda e^{-\lambda \alpha} \]

- **Lifetime \(\alpha \):** time between node’s first and last edge
How do nodes “wake up” to create edges?

Edge gap $\delta_i(d)$: time between d^{th} and $(d+1)^{st}$ edge of node i:
- Let $t_i(d)$ be the creation time of d-th edge of node i
- $\delta_i(d) = t_i(d + 1) - t_i(d)$

$\delta(d)$ is a distribution (histogram) of $\delta_i(d)$ over all nodes i.
P2) When Do Nodes Create Edges?

Edge gap $\delta(d)$: inter-arrival time between d^{th} and $d+1^{st}$ edge

For every d we get a separate histogram

$$p_g(\delta(1)) \propto \delta(1)^{-\alpha} e^{-\beta}$$
How do α and β change as a function of d?

Fit to each plot of $\delta(d)$: $p_g(\delta(d)) \propto \delta(d)^{-\alpha(d)} e^{-\beta(d)}$
P2) Evolution of Edge Gaps

- \(\alpha \) is const, \(\beta \) linear in \(d \) – gaps get smaller with \(d \)

\[
p_g(\delta(d)) \propto \delta(d)^{-\alpha} e^{-\beta \cdot d}
\]
P3) How to Select Destination?

- Source node i wakes up and creates an edge
- How does i select a target node j?
 - What is the degree of the target j?
 - Do preferential attachment really hold?
 - How many hops away is the target j?
 - Are edges attaching locally?
Are edges more likely to connect to higher degree nodes?

\[p_e(k) \propto k^\tau \]

<table>
<thead>
<tr>
<th>Network</th>
<th>(\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnp</td>
<td>0</td>
</tr>
<tr>
<td>PA</td>
<td>1</td>
</tr>
<tr>
<td>Flickr</td>
<td>1</td>
</tr>
<tr>
<td>Delicious</td>
<td>1</td>
</tr>
<tr>
<td>Answers</td>
<td>0.9</td>
</tr>
<tr>
<td>LinkedIn</td>
<td>0.6</td>
</tr>
</tbody>
</table>
How “far” is the Target Node?

- Just before the edge \((u,w)\) is placed how many hops are between \(u\) and \(w\)?

![Graph showing edge probability against hops]

<table>
<thead>
<tr>
<th>Network</th>
<th>% Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flickr</td>
<td>66%</td>
</tr>
<tr>
<td>Delicious</td>
<td>28%</td>
</tr>
<tr>
<td>Answers</td>
<td>23%</td>
</tr>
<tr>
<td>LinkedIn</td>
<td>50%</td>
</tr>
</tbody>
</table>

Real edges are local! Most of them close triangles!
Focus only on triad-closing edges

New triad-closing edge \((u,w)\) appears next

Model this as 2 independent choices:

1. \(u\) chooses neighbor \(v\)
2. \(v\) chooses neighbor \(w\) and connect \(u\) to \(w\)

E.g.: Under Random-Random:

\[
p(u, w) = \frac{1}{5} \cdot \frac{1}{2} + \frac{1}{5} \cdot 1 = \frac{3}{10}
\]

Under a particular pair of “strategies”: Likelihood of the graph = \(\prod_{(u,w) \in E} p(u, w)\)
Triad Closing Strategies

- **Improvement over the baseline:**
 - Baseline: Pick a random node 2 hops away

- **Strategy to select v (1st node):**

<table>
<thead>
<tr>
<th>Flickr</th>
<th>Strategy</th>
<th>random</th>
<th>deg^{0.2}</th>
<th>com</th>
<th>last^{-0.4}</th>
<th>comlast^{-0.4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>random</td>
<td>random</td>
<td>13.6</td>
<td>13.9</td>
<td>14.3</td>
<td>16.1</td>
<td>15.7</td>
</tr>
<tr>
<td>deg^{0.1}</td>
<td>deg</td>
<td>13.5</td>
<td>14.2</td>
<td>13.7</td>
<td>16.0</td>
<td>15.6</td>
</tr>
<tr>
<td>last^{0.2}</td>
<td>last</td>
<td>14.7</td>
<td>15.6</td>
<td>15.0</td>
<td>17.2</td>
<td>16.9</td>
</tr>
<tr>
<td>com</td>
<td>com</td>
<td>11.2</td>
<td>11.6</td>
<td>11.9</td>
<td>13.9</td>
<td>13.4</td>
</tr>
<tr>
<td>comlast^{0.1}</td>
<td>comlast</td>
<td>11.0</td>
<td>11.4</td>
<td>11.7</td>
<td>13.6</td>
<td>13.2</td>
</tr>
</tbody>
</table>

- **Strategies to pick a neighbor:**
 - random: uniformly at random
 - deg: proportional to its degree
 - com: prop. to the number of common friends
 - last: prop. to time since last activity
 - comlast: prop. to com*last
Summary of the Model

The model of network evolution

<table>
<thead>
<tr>
<th>Process</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1) Node arrival</td>
<td>• Node arrival function is given</td>
</tr>
<tr>
<td>P2) Edge initiation</td>
<td>• Node lifetime is exponential</td>
</tr>
<tr>
<td></td>
<td>• Edge gaps get smaller as the degree increases</td>
</tr>
<tr>
<td>P3) Edge destination</td>
<td>Pick edge destination using random-random</td>
</tr>
</tbody>
</table>
Analysis of the Model

- **Theorem**: Exponential node lifetimes and power-law with exponential cutoff edge gaps lead to power-law degree distributions.

- Interesting as temporal behavior predicts structural network property.

[Leskovec et al., KDD '08]
Proof sketch

- Node lifetime: $p_l(a) =$
- Node of life-time a, what is its final degree D?

- What is distribution of D as a func. of λ, α, β?

- The 2 exp. funcs. “cancel”. Power-law survives
Evolving the Networks

- Given the model one can take an existing network continue its evolution

- Compare true and predicted (based on the theorem) degree exponent:

<table>
<thead>
<tr>
<th></th>
<th>Flickr</th>
<th>Delicious</th>
<th>Answers</th>
<th>LinkedIn</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0.0092</td>
<td>0.0052</td>
<td>0.019</td>
<td>0.0018</td>
</tr>
<tr>
<td>α</td>
<td>0.84</td>
<td>0.92</td>
<td>0.85</td>
<td>0.78</td>
</tr>
<tr>
<td>β</td>
<td>0.0020</td>
<td>0.00032</td>
<td>0.0038</td>
<td>0.00036</td>
</tr>
<tr>
<td>true</td>
<td>1.73</td>
<td>2.38</td>
<td>1.90</td>
<td>2.11</td>
</tr>
<tr>
<td>predicted</td>
<td>1.74</td>
<td>2.30</td>
<td>1.75</td>
<td>2.08</td>
</tr>
</tbody>
</table>
How do networks evolve at the macro level?

What are global phenomena of network growth?

Questions:

What is the relation between the number of nodes $n(t)$ and number of edges $e(t)$ over time t?

How does diameter change as the network grows?

How does degree distribution evolve as the network grows?
Network Evolution

- $N(t)$... nodes at time t
- $E(t)$... edges at time t
- Suppose that
 \[N(t+1) = 2 \times N(t) \]
- Q: what is
 \[E(t+1) = 2 \times E(t) \]
- A: over-doubled!
 - But obeying the Densification Power Law
Q1) Network Evolution

- What is the relation between the number of nodes and the edges over time?
- First guess: constant average degree over time
- Networks are denser over time
- Densification Power Law:

\[E(t) \propto N(t)^a \]

\(a \) ... densification exponent \((1 \leq a \leq 2)\)
Densification Power Law

- the number of edges grows faster than the number of nodes – average degree is increasing

$E(t) \propto N(t)^a$

or equivalently

$$\frac{\log(E(t))}{\log(N(t))} = \text{const}$$

- densification exponent: $1 \leq a \leq 2$:
 - $a=1$: linear growth – constant out-degree (traditionally assumed)
 - $a=2$: quadratic growth – clique

[Leskovec et al. KDD 05]
Prior models and intuition say that the network diameter slowly grows (like $\log N$, $\log \log N$)

- Diameter shrinks over time
 - as the network grows the distances between the nodes slowly decrease
Diameter of a Densifying G_{np}

Densifying random graph has increasing diameter \Rightarrow There is more to shrinking diameter than just densification.

Is shrinking diameter just a consequence of densification?

[Diamantov et al. TKDD 07]
Is it the degree sequence?

Compare diameter of a:

- True network (red)
- Random network with the same degree distribution (blue)

Densification + degree sequence give shrinking diameter
How does degree distribution evolve to allow for densification?

Option 1) Degree exponent γ_n is constant:

- **Fact 1:** For degree exponent $1 < \gamma < 2$: $a = \frac{2}{\gamma}$

A consequence of what we learned in last class:

- Power-laws with exponents <2 have infinite expectations.
- So, to maintain constant degree exponent γ distribution with the average degree needs to grow.
How does degree distribution evolve to allow for densification?

Option 2) Exponent γ_n evolves with graph size n:

- Fact 2:
 \[
 \gamma_n = \frac{4n^{a-1} - 1}{2n^{a-1} - 1}
 \]

Remember, expected degree is:

\[
E[x] = \frac{\gamma - 1}{\gamma - 2} x_{\text{min}}
\]

So γ has to decay as a function of graph size for the avg. degree to go up.
Want to model graphs that density and have shrinking diameters

Intuition:
- How do we meet friends at a party?
- How do we identify references when writing papers?
The Forest Fire model has 2 parameters:
- p ... forward burning probability
- r ... backward burning probability

The model:
- Each turn a new node v arrives
- Uniformly at random chooses an “ambassador” w
- Flip 2 geometric coins to determine the number of in- and out-links of w to follow
- “Fire” spreads recursively until it dies
- New node v links to all burned nodes
Forest Fire Model

- Forest Fire generates graphs that **densify** and have **shrinking diameter**

\[
E(t) = 10^{1.32} N(t)
\]

\[
\text{diameter} = 5.2 \times 10^{-1} t^{1.32}, \quad R^2 = 1.00
\]
Forest Fire Model

- Forest Fire also generates graphs with power-law degree distribution

log count vs. log in-degree
log count vs. log out-degree

11/2/2011
Fix backward probability r and vary forward burning prob. p

Notice a sharp transition between sparse and clique-like graphs

Sweet spot is very narrow