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What do we observe that  
needs explaining 
 Small-world model? 
 Diameter 
 Clustering coefficient 

 Preferential Attachment: 
 Node degree distribution 
 What fraction of all nodes have degree k (as a function of k)? 
 Prediction from simple random graph models:  
𝑃(𝑘) = exponential function of –k 
 Observation: Power-law: 𝑃(𝑘) = 𝑘−𝛼 
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Expected based on Gnp Found in data 

𝑷 𝒌 ∝ 𝒌−𝜶 



 Take a network, plot a histogram of P(k) vs. k 
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Flickr social 
network 

n= 584,207, 
m=3,555,115 

[Leskovec et al. KDD ‘08] 

Plot: fraction of nodes 
with degree  k: 

𝑝(𝑘) =
| 𝑢|𝑑𝑢 = 𝑘 |

𝑁  
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 Plot the same data on log-log axis: 
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Flickr social 
network 

n= 584,207, 
m=3,555,115 

[Leskovec et al. KDD ‘08] 

How to distinguish: 
𝑃(𝑘) ∝ exp (𝑘) vs.   
𝑃(𝑘) ∝ 𝑘−𝛼 ? 
 
Take logarithms:  
if 𝑦 = 𝑓(𝑥) = 𝑒−𝑥 then  
    log 𝑦 = −𝑥 
If 𝑦 = 𝑥−𝛼 then  
    log 𝑦 = −𝛼 log (𝑥) 
So, on log-log axis  
power-law looks like  
a straight line of slope −𝛼 
 
 
 

Slope  = −𝛼 = 1.75 
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𝑃 𝑘 ∝ 𝑘−1.75 



 [Faloutsos, Faloutsos and Faloutsos, 1999] 
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Internet domain topology 



 [Broder et al., 2000] 
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 [Barabasi-Albert, 1999] 
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Power-grid Web graph Actor collaborations 



 Above a certain x value, the power law is 
always higher than the exponential.  
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 Power-law vs. exponential on log-log  
and log-lin scales 
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 [Clauset-Shalizi-Newman 2007] 

semi-log 
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 Power-law degree exponent is 
typically 2 < α < 3 
 Web graph: 
 αin = 2.1, αout = 2.4 [Broder et al. 00] 

 Autonomous systems: 
 α = 2.4 [Faloutsos3, 99] 

 Actor-collaborations:  
 α = 2.3 [Barabasi-Albert 00] 

 Citations to papers: 
 α ≈ 3 [Redner 98] 

 Online social networks: 
 α ≈ 2 [Leskovec et al. 07] 
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 Definition: 
Networks with a power law tail in  
their degree distribution are called  
“scale-free networks” 
 

 Where does the name come from? 
 Scale invariance: there is no characteristic scale 
 Scale-free function: 𝒇 𝒂𝒂 = 𝒂𝝀𝒇(𝒂) 
 Power-law function: 𝑓 𝑎𝑥 = 𝑎𝜆𝑥𝜆 = 𝑎𝜆𝑓(𝑥) 
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 In social systems – lots of power-laws: 
 Pareto, 1897 – Wealth distribution 
 Lotka 1926 – Scientific output 
 Yule 1920s – Biological taxa and subtaxa 
 Zipf 1940s – Word frequency 
 Simon 1950s – City populations 
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Many other quantities follow heavy-tailed distributions 

 [Clauset-Shalizi-Newman 2007] 
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[Chris Anderson, Wired, 2004] 
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CMU grad-students at 
the G20 meeting in 

Pittsburgh  in Sept 2009 





 Degrees are heavily skewed:  
  Distribution P(X>x) is heavy tailed if: 

𝐥𝐥𝐥
𝒂→∞

𝑷 𝑿 > 𝒂
𝒆−𝝀𝒂

= ∞ 

 Note: 

 Normal PDF: 𝑓 𝑥 = 1
2𝜋𝜋

𝑒
𝑥−𝜇 2

2𝜎2  

 Exponential PDF:  𝑓 𝑥 = 𝜆𝑒−𝜆𝑥  
 then 𝑃 𝑋 > 𝑥 = 1 − 𝑃(𝑋 ≤ 𝑥) = 𝑒−𝜆𝑥 

    are not heavy tailed! 
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 Various names, kinds and forms: 
 Long tail, Heavy tail, Zipf’s law, Pareto’s law 

 Heavy tailed distributions: 
 P(x) is proportional to: 
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 [Clauset-Shalizi-Newman 2007] 



 What is the normalizing constant? 
  P(x) = z x-α  z=? 
 𝑃(𝑥) is a distribution: ∫𝑃 𝑥 𝑑𝑥 = 1 

       Continuous approximation 

 1 = ∫ 𝑃 𝑥 𝑑𝑥∞
𝑥𝑚𝑖𝑖

= 𝑧 ∫ 𝑥−𝛼𝑑𝑥∞
𝑥𝑚

 

 = 𝑧
𝛼−1

𝑥−𝛼+1 𝑥𝑚
∞  

 ⇒𝑧 = 𝛼 − 1 𝑥𝑚𝛼−1 
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 [Clauset-Shalizi-Newman 2007] 

𝑝 𝑥 =
𝛼 − 1
𝑥𝑚

𝑥
𝑥𝑚

−𝛼

 

P(x) diverges as x→0  
so xm is the  

minimum value of the 
power-law distribution 

x ∈ [xm, ∞] 



 What’s the expectation of a power-law 
random variable x? 

 𝐸 𝑥 = ∫ 𝑥 𝑃 𝑥 𝑑𝑥∞
𝑥𝑚

= 𝑧 ∫ 𝑥−𝛼+1𝑑𝑥∞
𝑥𝑚

 

 = 𝑧
2−𝛼

𝑥2−𝛼 𝑥𝑚
∞ = 𝛼−1 𝑥𝑚𝛼−1

2−𝛼
[∞2−𝛼 − 𝑥𝑚2−𝛼] 

⇒𝐸 𝑥 =
𝛼 − 1
𝛼 − 2

𝑥𝑚 
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 [Clauset-Shalizi-Newman 2007] 

Need: α > 2 



 Power-laws: Infinite moments! 
 If α ≤ 2 : E[x]= ∞ 
 If α ≤ 3 : Var[x]=∞ 
 Average is meaningless, as the variance is too high! 

 Sample average of n samples from  
a power-law with exponent α: 
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𝐸 𝑥 =
𝛼 − 1
𝛼 − 2

𝑥𝑚 

In real networks 
2 < α < 3 so: 
E[x] = const 
Var[x]=∞ 



 Estimating α from data: 
1. Fit a line on log-log axis using least squares 

method: min
𝛼

log 𝑦 − 𝛼 log 𝑥 2 
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BAD! 



 Estimating α from data: 
2. Plot Complementary CDF 𝑃 𝑋 > 𝑥 . Then 

𝛼 = 1 + 𝛼𝛼 where 𝛼 is the slope of 𝑃(𝑋 > 𝑥).  
 

If 𝐏 𝐗 = 𝐱 ∝ 𝒂−𝜶 then 𝐏 𝐗 = 𝒂 ∝ 𝒂−(𝜶−𝟏) 

 𝑃 𝑋 > 𝑥 = ∑ 𝑃(𝑗)∞
𝑗=𝑥 ≈ = ∫ 𝑧 𝑗−𝛼𝑑𝑗∞

𝑥 = 

 = 𝑧
𝛼
𝑗1−𝛼 𝑥

∞ = 𝑧
𝛼
𝑥− 𝛼−1  
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OK 



 Estimating α from data: 

3. Use MLE: 𝛼� = 1 + 𝑛 ∑ ln 𝑑𝑖
𝑥𝑚

𝑛
𝑖

−1
 

 𝐿 𝛼 = ln ∏ 𝑝 𝑑𝑖𝑛
𝑖 = ∑ ln 𝑝(𝑑𝑖)𝑛

𝑖  

 = ∑ ln (𝛼 − 1)𝑛
𝑖 − ln 𝑥𝑚 − 𝛼 ln 𝑑𝑖

𝑥𝑚
 

 Want to find 𝜶 that max: set dL 𝛼
d𝛼

= 0 


dL 𝛼
d𝛼

= 0 ⇒  𝑛
𝛼−1

− ∑ ln 𝑑𝑖
𝑥𝑚

= 0 

 ⇒ 𝛼� = 1 + 𝑛 ∑ ln 𝑑𝑖
𝑥𝑚

𝑛
𝑖

−1
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Power-law density: 

𝑝 𝑥 =
𝛼 − 1
𝑥𝑚

𝑥
𝑥𝑚

−𝛼

 

OK 
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Linear scale 
Log scale, 
α=1.75 

CCDF, Log 
scale, α=1.75 

CCDF, Log 
scale, α=1.75, 

exp. cutoff 



 What is the expected maximum degree K  
in a scale-free network? 
 The expected number of nodes with degree > K 

should be less than 1: ∫ 𝑃 𝑥 𝑑𝑥∞
𝐾 ≈ 1

𝑛
 

 = 𝑧 ∫ 𝑥−𝛼𝑑𝑥 = 𝑧
1−𝛼

𝑥1−𝛼 𝐾
∞ =∞

𝐾  

 = 𝛼−1 𝑥𝑚𝛼−1

−𝛼+1
0 − 𝐾1−𝛼 = 𝑥𝑚𝛼−1

𝐾𝛼−1
 ≈ 1

𝑛
 

⇒𝐾 = 𝑥𝑚𝑁
1

𝛼−1 
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Power-law density: 

𝑝 𝑥 =
𝛼 − 1
𝑥𝑚

𝑥
𝑥𝑚

−𝛼

 



 Why don’t we see networks with exponents 
in the range of 𝜶 = 𝟒,𝟓,𝟔 ? 
 In order to reliably estimate 𝛼, we need 2-3 orders 

of magnitude of K. That is, 𝐾 ≈ 103  

 E.g., to measure an degree exponent 𝛼 = 5,we 
need to maximum degree of the order of: 

𝐾 = 𝑥𝑚𝑁
1

𝛼−1 
 
   𝑁 = 𝐾

𝑥𝑚

𝛼−1
≈ 1012  
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 Can not arise from sums of independent events 
 Recall: in 𝐺𝑛𝑛 each pair of nodes in connected 

independently with prob. 𝑝 
 𝑋… degree of node 𝑣, 
 𝑋𝑤 … event that w links to v 
 𝑋 = ∑ 𝑋𝑤𝑤  
 𝐸 𝑋 = ∑ 𝐸 𝑋𝑤 = 𝑛 − 1 𝑝𝑤  
 Now, what is 𝑷 𝑿 = 𝒌 ? Central limit theorem! 
 𝑋,𝑋, … ,𝑋𝑛 : rnd. vars with mean µ, variance σ2 
 𝑆𝑛 = ∑𝑋𝑖  :  𝐸 𝑆𝑛 = 𝑛𝑛 , var 𝑆𝑛 = 𝑛𝜎2, SD 𝑆𝑛 = 𝜎 𝑛 

 𝑃 𝑆𝑛 = 𝐸 𝑆𝑛 + 𝑥 ∙ SD 𝑆𝑛 ~ 1
2𝜋

e−
x2

2  
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Random network Scale-free (power-law) network 
(Erdos-Renyi random graph) 

Degree distribution is Binomial 

Degree 
distribution is 
Power-law 
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 Preferential attachment  
[Price ‘65, Albert-Barabasi ’99, Mitzenmacher ‘03] 

 Nodes arrive in order 1,2,…,n 
 At step j, let di be the degree of node i < j 
 A new node j arrives and creates m out-links 
 Prob. of j linking to a previous node i is 

proportional to degree di of node i 
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∑
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i

d
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 New nodes are more likely to link to nodes 
that already have high degree 

 

 Herbert Simon’s result: 
 Power-laws arise from “Rich get richer” 

(cumulative advantage) 
 

 Examples [Price 65]: 
 Citations: New citations to a paper are 

proportional to the number it already has 
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 We will analyze the following model: 
 Nodes arrive in order 1,2,3,…,n 
 When node j is created it makes a  

single link to an earlier node i chosen: 
 1)With prob. p, j links to i chosen uniformly at 

random (from among all earlier nodes) 
 2) With prob. 1-p, node j chooses node i uniformly 

at random and links to a node i points to. 
 Note this is same as saying: With prob. 1-p, node j links 

to node u with prob. proportional to du (the degree of u) 
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[Mitzenmacher, ‘03] 



 Claim: The described model generates 
networks where the fraction of nodes with 
degree k scales as: 
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)11(
)( q

i kkdP
+−

∝=
where q=1-p 

p−
+=

1
11α



 Consider deterministic and continuous 
approximation to the degree of node i as a 
function of time t  
 t is the number of nodes that have arrived so far 

 

 Degree di(t) of node i (i=1,2,…,n) is a continuous 
quantity and it grows deterministically as a 
function of time t 

 

 Plan: Analyze di(t) – continuous degree of  
node i at time t ≥ i 
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 Plan: Analyze continuous degree di(t) of  
node i at time t ≥ i 

 Node i=t=5 comes and has degree of 1 to 
share with other nodes: 
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i di(t-1) di(t) 
1 1 =1 + 𝑝 1

4
+ 1 − 𝑝 1

6
 

2 3 =3 + 𝑝 1
4

+ 1 − 𝑝 3
6
 

3 1 =1 + 𝑝 1
4

+ 1 − 𝑝 1
6
 

4 1 =1 + 𝑝 1
4

+ 1 − 𝑝 1
6
 

i=5 0 1 

Node i=5 



 Initial condition:  
 di(t)=0, when t=i   (node i just arrived) 

 Expected change of di(t) over time: 
 Node i gains an in-link at step t+1 only if a link  

from a newly created node t+1 points to it. 
 What’s the probability of this event? 
 With prob. p node t+1 links randomly:  
 Links to our node i with prob. 1/t 

 With prob. 1-p node t+1 links preferentially: 
 Links to our node i with prob. di(t)/t 

 So: Prob. node t+1 links to i is:  𝐩 𝟏
𝒕

+ 𝟏 − 𝒑 𝒅𝒊(𝒕)
𝒕
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d𝑑𝑖(𝑡)
d𝑡

= 𝑝 1
𝑡

+ 1 − 𝑝 𝑑𝑖(𝑡)
𝑡

= 𝑛+𝑞𝑑𝑖
𝑡

 


1

𝑛+𝑞𝑑𝑖(𝑡)
d𝑑𝑖(𝑡) = 1

𝑡
d𝑡 

 ∫ 1
𝑛+𝑞𝑑𝑖(𝑡)

d𝑑𝑖(𝑡) = ∫ 1
𝑡

d𝑡 


1
𝑞

ln 𝑝 + 𝑞𝑑𝑖 𝑡 = ln 𝑡 + 𝑐 

 𝑞𝑑𝑖 𝑡 + 𝑝 = 𝐴 𝑡𝑞  ⇒  𝑑𝑖 𝑡 = 1
𝑞
𝐴𝑡𝑞 − 𝑝  
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Divide by  
p+q di(t) 

integrate 

Let A=ec and 
exponentiate 



 What is the constant A? 
 We know:  𝑑𝑖 𝑖 = 0 

 So: 𝑑𝑖 𝑖 = 1
𝑞
𝐴𝑖𝑞 − 𝑝 = 0 

 ⇒𝐴 = 𝑛
𝑖𝑞

 

 ⇒  𝑑𝑖 𝑡 = 𝑛
𝑞

𝑡
𝑖

𝑞
− 1  
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 𝑑𝑖 𝑡 =
1
𝑞
𝐴𝑡𝑞 − 𝑝  



 What is F(d) the fraction of nodes that has 
degree at least d at time t? 
 How many nodes i have degree > t? 

 𝑑𝑖 𝑡 = 𝑛
𝑞

𝑡
𝑖

𝑞
− 1 > 𝑑 

 then:  i < t 𝑞
𝑛
𝑑 − 1

−1𝑞 

 There are t nodes total at time t so F(d): 
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q
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qdF

1

1)(
−









+=



 What is the fraction of nodes with degree 
exactly d? 
 Take derivative of F(d): 
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 Two changes from the Gnp  
model 
 The network grows 
 Preferential attachment 

 Do we need both? Yes! 
 Add growth to Gnp (assume p=1): 
 xj = degree of node j at the end  
 Xj(u)= 1 if u links to j, else 0 
 xj = xj(j+1)+xj(j+2)+…+xj(n) 
 E[xj(u)] = P[u links to j]= 1/(u-1) 
 E[xj] = ∑ 1/(u-1) = 1/j + 1/(j+1)+…+1/(n-1) = Hn-1 – Hj 
 E[xj] = log(n-1) – log(j) = log((n-1)/j)   NOT  (n/j)α 
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Hn…n-th 
harmonic 
number: 



 Preferential attachment gives power-law 
degrees 

 Intuitively reasonable process 
 Can tune p to get the observed exponent 
 On the web, P[node has degree d] ~ d-2.1 

 2.1 = 1+1/(1-p)  p ~ 0.1 
 

There are also other network formation 
mechanisms that generate scale-free networks: 
 Random surfer model 
 Forest Fire model 
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 Copying mechanism (directed network) 
 select a node and an edge of this node 
 attach to the endpoint of this edge 

  Walking on a network (directed network) 
 the new node connects to a node, then to every 
 first, second, … neighbor of this node 

 Attaching to edges 
 select an edge 
 attach to both endpoints of this edge 

 Node duplication 
 duplicate a node with all its edges 
 randomly prune edges of new node 
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 Preferential attachment is not so good at 
predicting network structure 
 Age-degree correlation 
 Links among high degree nodes 
 On the web nodes sometime avoid linking to each other 

 Further questions: 
 What is a reasonable probabilistic model for how 

people sample through web-pages and link to 
them? 
 Short+Random walks 
 Effect of search engines – reaching pages based on 

number of links to them 
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 Preferential attachment is a key ingredient 
 Extensions: 
 Early nodes have advantage: node fitness 
 Geometric preferential attachment 

 Copying model: 
 Picking a node proportional to  

the degree is same as picking  
an edge at random (pick node  
and then it’s neighbor) 
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 We observe how the 
connectivity (length of 
the paths) of the network 
changes as the vertices 
get removed [Albert et al. 00; 
Palmer et al. 01] 

 Vertices can be removed: 
 Uniformly at random 
 In order of decreasing 

degree 
 It is important for 

epidemiology 
 Removal of vertices 

corresponds to vaccination 
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 Real-world networks are resilient to random attacks 
 One has to remove all web-pages of degree > 5 to disconnect the web 
 But this is a very small percentage of web pages 

 Random network has better resilience to targeted attacks  
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