Network Formation Processes:
Power-law degree distributions
and Preferential Attachment



Network Formation Processes

What do we observe that
needs explaining
Small-world model?

Diameter

Clustering coefficient

What fraction of all nodes have degree k (as a function of k)?

Prediction from simple random graph models:
P(k) = exponential function of —k

Observation: Power-law: P(k) = k™¢
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Degree Distributions
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[Leskovec et al. KDD ‘o8]

Node Degrees in Networks
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[Leskovec et al. KDD ‘o8]

Node Degrees in Networks

Plot the same data on log-log axis:
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Node Degrees: Faloutsos3
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Node Degrees: Web

In-degree (May 99, Oct 992 distr. Out-degree (May 99, Oct 332 distr.
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Node Degrees: Barabasi&Albert
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Actor collaborations
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Exponential vs. Power-Law

0.6 f(x)=cx°

f(x)

f(x)=cx’

0.2 |

f(x)=c*~~ 20 40 60 80 100

X

Above a certain x value, the power law is
always higher than the exponential.
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[Clauset-Shalizi-Newman 2007]

Exponential vs. Power-Law
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Exponential vs. Power-Law

Bell Curve

[ ¢
e
= .
H= 4 J
— ’ Most modes hape
= ' . the samme number of links
= by y
=
i | L
L B
E —k No r'|.':'.,r.|_r|l.' .
o ' connected modes
[ - 1 *

-
_E? oy
E L] L - ]
.!"F: . & r

.
1 .
- -
» - - &
L] " # :
L]
]
i .
L] - b -
- &
=%
» %
,-_l-
.y

11/1/2011

Power Law Distribution
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Power-Law Degree Exponents

In-degree (total, remote-onlyl? distr.
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Scale-Free Networks

Definition:

Networks with a power law tail in
their degree distribution are called
“scale-free networks”

Scale invariance: there is no characteristic scale

Scale-free function: f(ax) = a*f(x)

Power-law function: f(ax) = a’*x* = a?f(x)
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Power-laws are Everywhere

— Wealth distribution
— Scientific output
— Biological taxa and subtaxa
— Word frequency

— City populations
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[Clauset-Shalizi-Newman 2007]

Power-laws are Everywhere

0
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Many other quantities follow heavy-tailed distributions
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[Chris Anderson, Wired, 2004]

Anatomy of the LongTall
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Not Everyone Likes Power-Laws ©

L

CMU grad-students at
the G20 meetingin
Pittsburgh in Sept 2009
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Mathematics of Power-Laws



Heavy Tailed Distributions

Distribution P(X>x) is
PX>x)

lim 3 00
X— 00 e X
Note:
1 (x_.u')z
Normal PDF: f(x) = e 202

\V2TTo
Exponential PDF: f(x) = Y
thenP(X >x) =1 — P(X<x)= e~ Ax
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Heavy Talls

[Clauset-Shalizi-Newman 2007]

Long tail, Heavy tail, Zipf’s law, Pareto’s law

P(x) is proportional to:

power law

power law
with cutoft
stretched
exponential

log-normal
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[Clauset-Shalizi-Newman 2007]

Mathematics of Power-laws

P(x) is a distribution: [ P(x)dx = 1

Continuous approximation P(x) diverges as x—0
0 o0 SO X, IS the
— —_ ol 04 minimum value of the
1 T fx . P(X)dx — fo X dx power-law distribution
min m X € [X., ]
VA
—a+17]oo
= X
=>z=(a—1)x% 1
-
a—1(x

p(x) = o\
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[Clauset-Shalizi-Newman 2007]

Mathematics of Power-laws

E[x] = fxoo x P(x)dx = zfxoo x~*tldx

_Z r.2-gieo _ (a=Dxit o, 2—a
—g[x I, = [T —xy]
Need: o > 2
a—1
= E|x| = Xom

a— 2
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Mathematics of Power-Laws

Ifa <2
If a <3

E/x]=
Var[x]=c

Elx] =

a—1
q—2°m
In real networks
2 <o <3Ss0:
E[x] = const
Var[x]=

Average is meaningless, as the variance is too high!
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Estimating Power-Law Exponent o

Fit a line on log-log axis using least squares
method: min(log(y) — alog(x))?
a

In-degree Ctotal, remote-onlyl? distr.
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Estimating Power-Law Exponent o

Plot Complementary CDF P(X > x). Then
W a =1+ a' where ais the slope of P(X > x).

IfP(X = x) x x *“then P(X = x) « x~ (@~ D
P(X >x) = Z?;xp(]) = xoozj_“dj =

= Z[j17a]P = Zx~(a-D)
a a
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Estimating Power-Law Exponent o
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Use MLE:@ =1+ n [Z"ln( )]_1
L(a) = In(II{ p(dy)) = X' Inp(d;)
=Y/In(a — 1) — In(x,,) — aln(d )

Xm
dL(a)

da =0

set

dL(a)

i@ 0 :ﬁ—}]ln(ﬂ)zo

> = 1 n[zrn ()]

Power-law density:

-
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. . 26
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Flickr: Fitting Degree Exponent
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Maximum Degree

The expected number of nodes with degree > K

0o 1
should be less than 1: fK P(x)dx ~ -
— © = _ _Z 1—q1oo __
=z [, x %dx = —[x'"]g =

(a_l)x% 1 1—-a1 _ x%l_l N l
- —a+1 [O K ] T ga-1 n

Power-law density:

a—1/x\ "
p(x) = N <x_>
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Maximum Degree: Consequence

11/1/2011

In order to reliably estimate «, we need 2-3 orders
of magnitude of K. That is, K =~ 103

E.g., to measure an degree exponent & = 5,we

need to maximum degree of the order of:
1

K =x,Na-1

N = (i)a_l ~ 101°

Xm
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Why are Power-Laws Surprising

in Gy, each pair of nodes in connected
independently with prob. p
X... degree of node v,
X, ... eventthat wlinksto v

X = ZWXW

ElX] = 2XwElXw] =M —-1p

Now, what is P(X = k)?

X,X,...,X,, . rnd. vars with mean g, variance o2

S, =YX; : E[S,] =nu,var[S,] = no?, SD[S,] = ovn

x2

P(S, = E[S,] + x - SD[S,])~—e 2

2TT
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Random vs. Scale-free network

(Erdos-Renyi random graph)

Degree

distribution is

Power-law
Degree distribution is Binomial
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Model:
Preferential Attachment



Model: Preferential attachment

[Price ‘65, Albert-Barabasi 99, Mitzenmacher ‘03]
Nodes arrive in order 1,2,...,n
At step ], let d; be the degree of node I <]
A new node | arrives and creates m out-links

Prob. of J linking to a previous node I is

P(]—1)=

Z k
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Rich Get Richer

Power-laws arise from “Rich get richer”
(cumulative advantage)

New citations to a paper are
proportional to the number it already has
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[Mitzenmacher, ‘03]

The Exact Model

We will analyze the following model:
Nodes arrive in order 1,2.3,...,n
When node | is created it makes a
single link to an earlier node 1 chosen:

With prob. p, | links to I chosen
(from among all earlier nodes)

With prob. 1-p, node ] chooses node I uniformly
at random and links to

With prob. 1-p, node | links
to node U with prob. proportional to d, (the degree of u)
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The Model Givens Power-Laws

Claim: The described model generates
networks where the fraction of nodes with
degree K scales as: 1

—(1+-)

P(d, =k)ock A

where g=1-p
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Continuous Approximation

approximation to the degree of node jas a
function of time t
t is the number of nodes that have arrived so far

Degree di(t) of node I (1I=1,2,...,n) is a continuous
guantity and it grows deterministically as a
function of time t

Plan: — continuous degree of
nodel attimet>1
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Continuous Approximation

Plan: Analyze continuous degree di(t) of
nodelattimet>|

i deD ] d® Node i=5
1 1 =1+p;+(1-p)g /.
2 £ =3+p,+(1-p)>
8 1 =1+p;+(1-p)g
: 1 =1+p;+(1-p)g

1=5 0 1
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Continuous Degree: What We Know

di(t)=0, when t=I (node i just arrived)

Node I gains an in-link at step t+1 only if a link
from a newly created node t+1 points to it.

With prob. p node t+1 links randomly:
Links to our node i with prob. 1/t

With prob. 1-p node t+1 links preferentially:
Links to our node I with prob. d;(t)/t
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What is the rate of growth of d.?

11/1/2011

d‘ﬁf“ =pi+ (1-pH2 =
_1 integrate

p+qd 5 dd;(6) = dt

fp+qd () dd (t) T f dt Let A=e¢ and

exponentiate

Eln(p qd; (t)) =Int+c

qd;(t) +p = AtT = d;(t) = 3(/11:61 —p)



What is the constant A?

11/1/2011

What is the constant A?
We know: d;(i) =0

So: d;(i) = é(Aiq —p)=0

_ P
:>A—l_q

4,(8) = %(Atq P

lysis, http://cs224w.stanford.edu



Degree Distribution

How many nodes i have degree > t?

d;(t) = §<(§)q - 1) > d

1

then: i < t(%d — 1)‘6

F(d) = %d +1
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Degree Distribution

Take derivative of F(d):

1q0I ] 1

F'(d) =
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Preferential attachment: Reflections

N
| R
10 k-

ot

The network grows =
Preferential attachment Ty
Yes! O%J ER Y
Add growth to G (assume p=1): « ° o
X; = degree of node | at the end rljgéh}rgrt]?c
Xj(u)=1ifulinkstoJ, else 0 number.
X = X(J+1)+x,(+2)+...+x,(n) =Ly

E[x;(u)] = P[u links to j]= 1/(u-1)
E[x] =2 1/(u-1) = 1/j + 1/(j+1)+..+1/(n-1) = H,, - H,
E[x;] = log(n-1) —log(j) = log((n-1)/j) NOT (n/})~

11/1/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 44




Preferential attachment: Good news

Intuitively reasonable process
Can tune p to get the observed exponent

On the web, P[node has degree d] ~ d-21
2.1=1+1/1-p) 2 p~0.1

There are also other network formation
mechanisms that generate scale-free networks:

Random surfer model
Forest Fire model
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PA-like Link Formation

Copying mechanism (directed network)
select a node and an edge of this node

attach to the endpoint of this edge
Walking on a network (directed network)

the new node connects to a node, then to every

first, second, ... neighbor of this node
Attaching to edges

select an edge

attach to both endpoints of this edge
Node duplication

duplicate a node with all its edges
randomly prune edges of new node
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Preferential attachment: Bad news

11/1/2011

Age-degree correlation

Links among high degree nodes
On the web nodes sometime avoid linking to each other

What is a reasonable probabilistic model for how
people sample through web-pages and link to
them?

Short+Random walks

Effect of search engines — reaching pages based on
number of links to them
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PA: Many Extensions & Variations

Extensions:

11/1/2011

Early nodes have advantage: node fitness
Geometric preferential attachment

Picking a node proportional to
the degree is same as picking
an edge at random (pick node
and then it’s neighbor)

Copy

T -

-

o
New node

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 48



Network resilience (1)

We observe how the
connectivity (length of

the paths) of the networl
changes as the vertices

get removed [Albert et al. 00;
Palmer et al. 01]

Vertices can be removed:

It is important for
epidemiology

11/1/2011

Uniformly at random

In order of decreasing
degree

Removal of vertices
corresponds to vaccination
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Network resilience (2)

Real-world networks are resilient to random attacks

One has to remove all web-pages of degree > 5 to disconnect the web

But this is a very small percentage of web pages
Random network has better resilience to targeted attacks

Internet (Autonomous systems) Randemuietinork
LA N RN R S 40 — T T ]
20  Preferential m
®
® removal
<
(@)
5 . .
- o [ |
= - m _
Z 10 @ 1907 .
= Random ¢ o n
@ ® | Y
= b rem:va n _ I s |
g iSuEEEgeEn " EN n
- L
" | | | [

N | ! [ 1 | ! l i O L 1 L L .
00.0 02 04 06 08 10 00 02 04 06 08 10
Fraction of removed nodes Fraction of removed nodes
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Network resilience (2)

Real-world networks are resilient to random attacks

One has to remove all web-pages of degree > 5 to disconnect the web
But this is a very small percentage of web pages
Random network has better resilience to targeted attacks
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