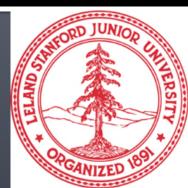
Network Formation Processes: Power-law degree distributions and Preferential Attachment

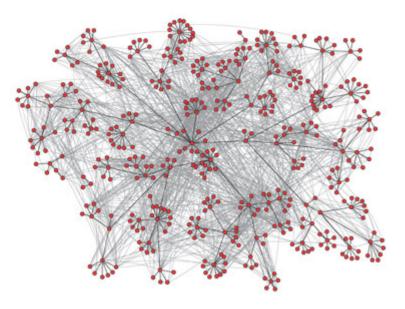
CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu



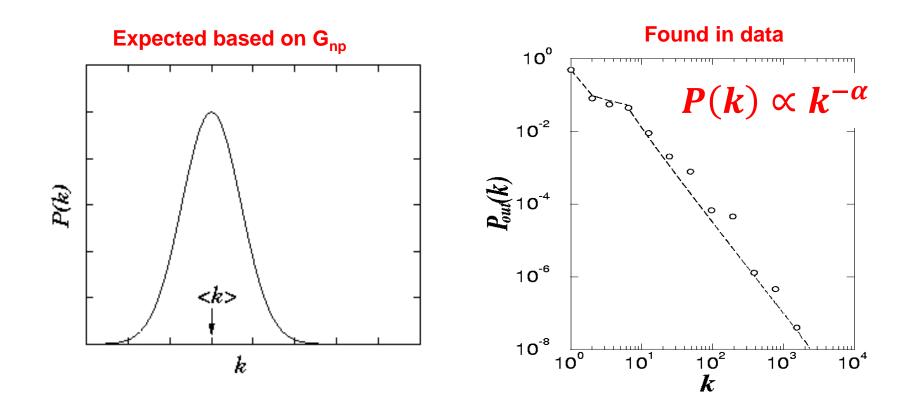
Network Formation Processes

What do we observe that needs explaining

- Small-world model?
 - Diameter
 - Clustering coefficient
- Preferential Attachment:
 - Node degree distribution
 - What fraction of all nodes have degree k (as a function of k)?
 - Prediction from simple random graph models: P(k) = exponential function of -k
 - Observation: Power-law: $P(k) = k^{-\alpha}$

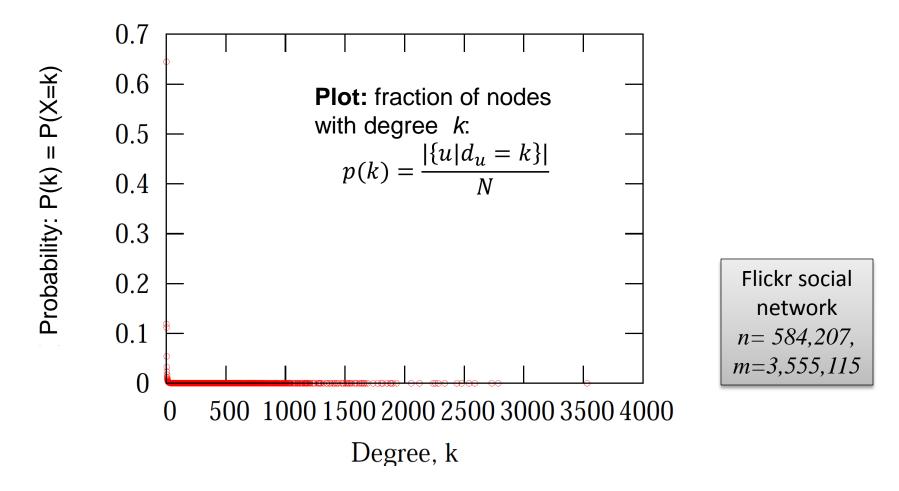


Degree Distributions



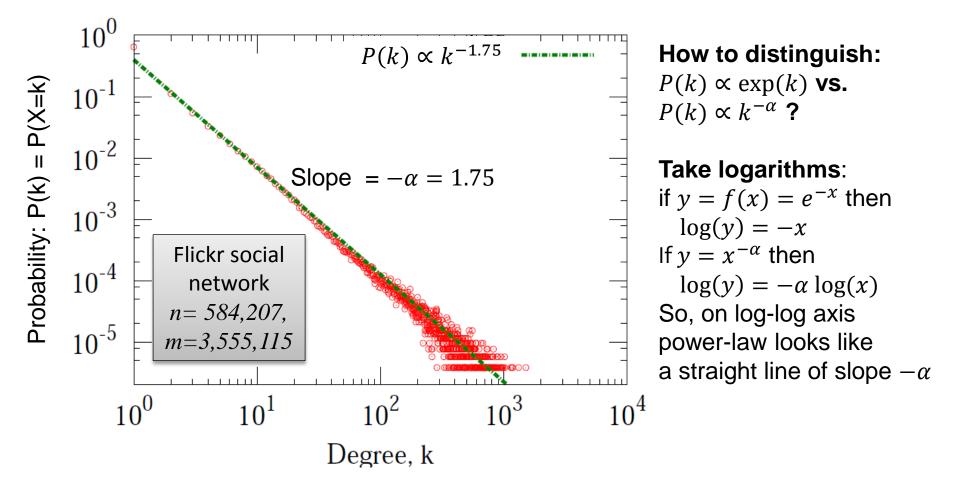
Node Degrees in Networks

Take a network, plot a histogram of P(k) vs. k



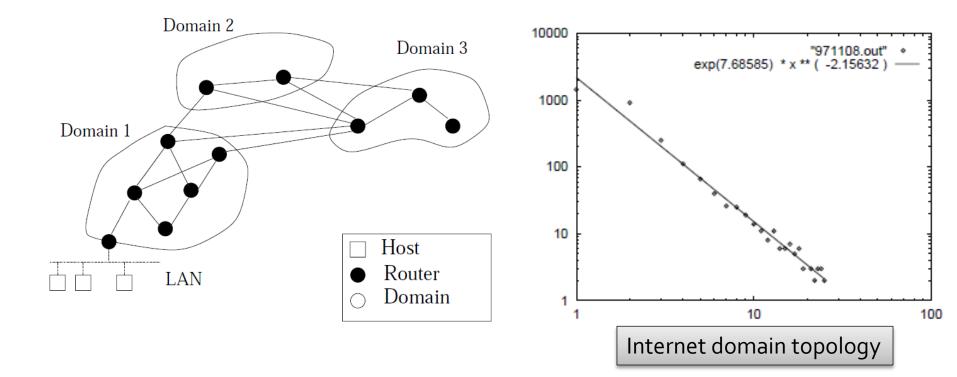
Node Degrees in Networks

Plot the same data on *log-log* axis:



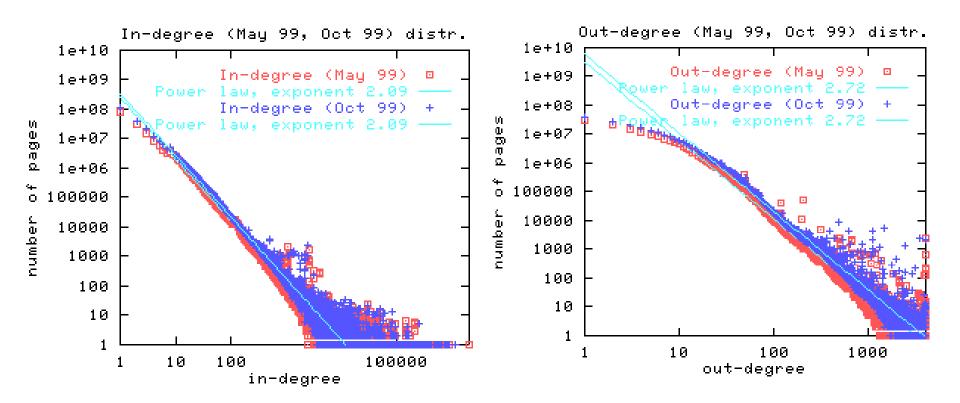
Node Degrees: Faloutsos³

Faloutsos, Faloutsos and Faloutsos, 1999

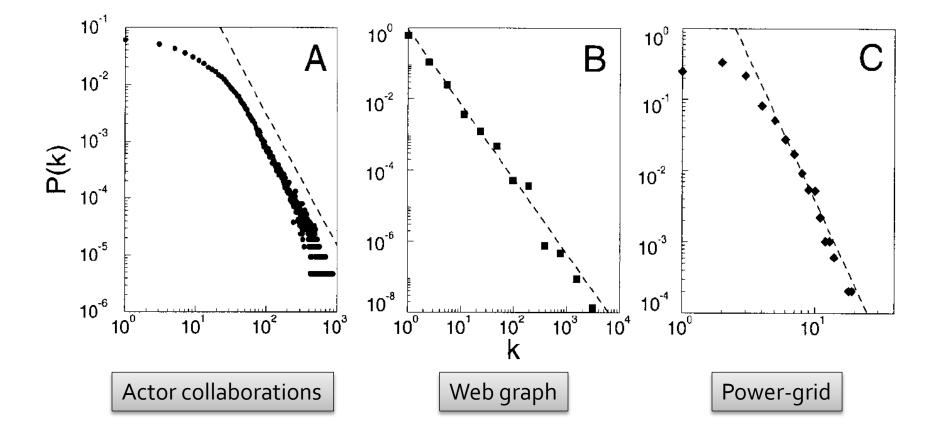


Node Degrees: Web

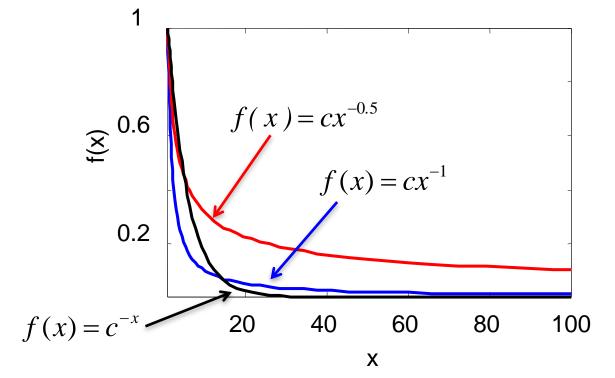
Broder et al., 2000]



Node Degrees: Barabasi&Albert



Exponential vs. Power-Law

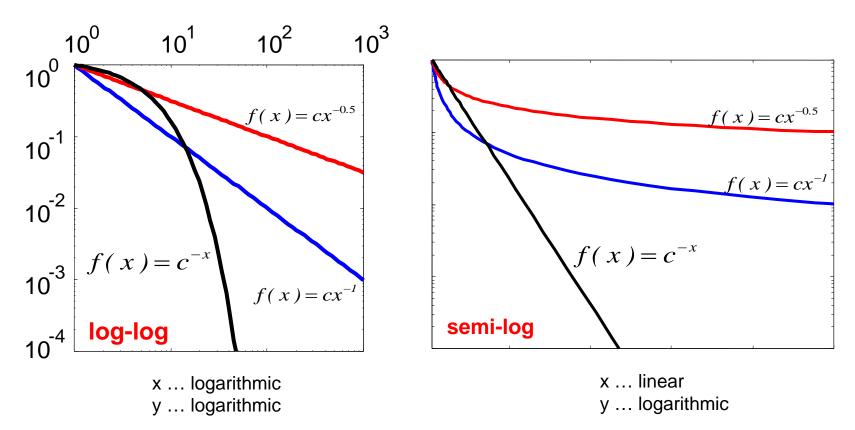


Above a certain x value, the power law is always higher than the exponential.

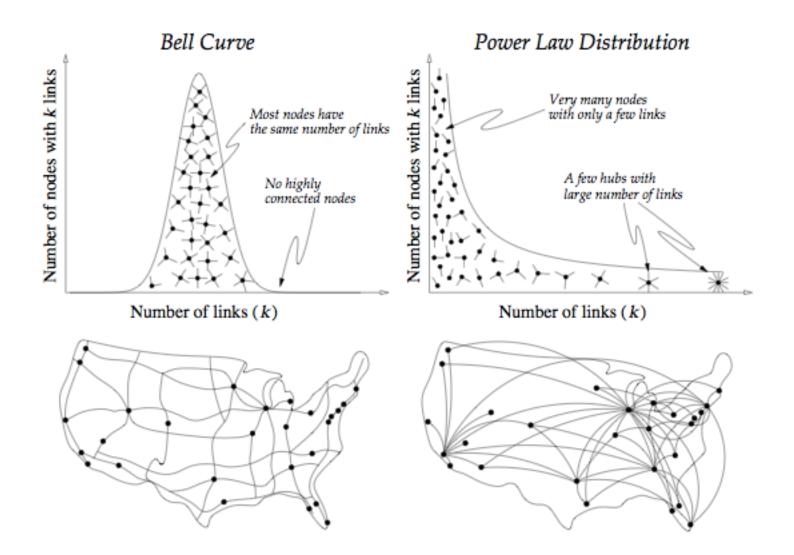
[Clauset-Shalizi-Newman 2007]

Exponential vs. Power-Law

Power-law vs. exponential on log-log and log-lin scales

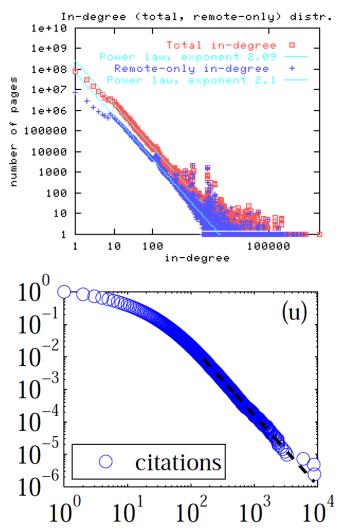


Exponential vs. Power-Law



Power-Law Degree Exponents

- Power-law degree exponent is typically 2 < α < 3
 - Web graph:
 - α_{in} = 2.1, α_{out} = 2.4 [Broder et al. 00]
 - Autonomous systems:
 - α = 2.4 [Faloutsos³, 99]
 - Actor-collaborations:
 - α = 2.3 [Barabasi-Albert 00]
 - Citations to papers:
 - α ≈ 3 [Redner 98]
 - Online social networks:
 - α ≈ 2 [Leskovec et al. 07]



Scale-Free Networks

Definition:

Networks with a power law tail in their degree distribution are called "scale-free networks"

Where does the name come from?

- Scale invariance: there is no characteristic scale
- Scale-free function: $f(ax) = a^{\lambda}f(x)$

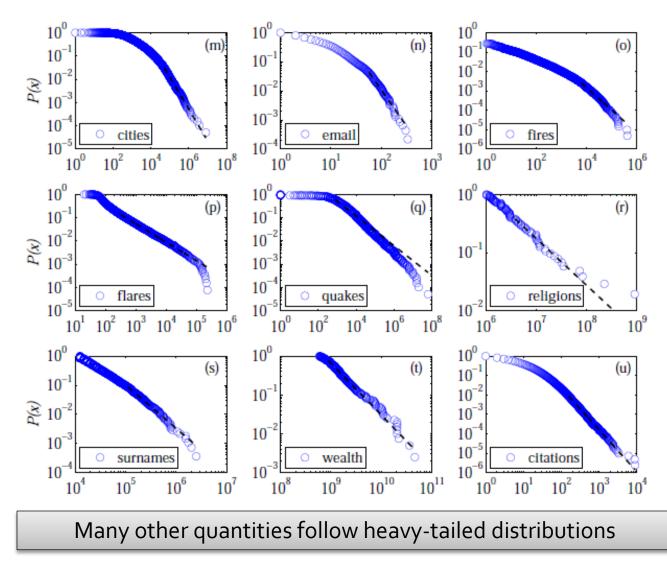
• Power-law function: $f(ax) = a^{\lambda}x^{\lambda} = a^{\lambda}f(x)$

Power-laws are Everywhere

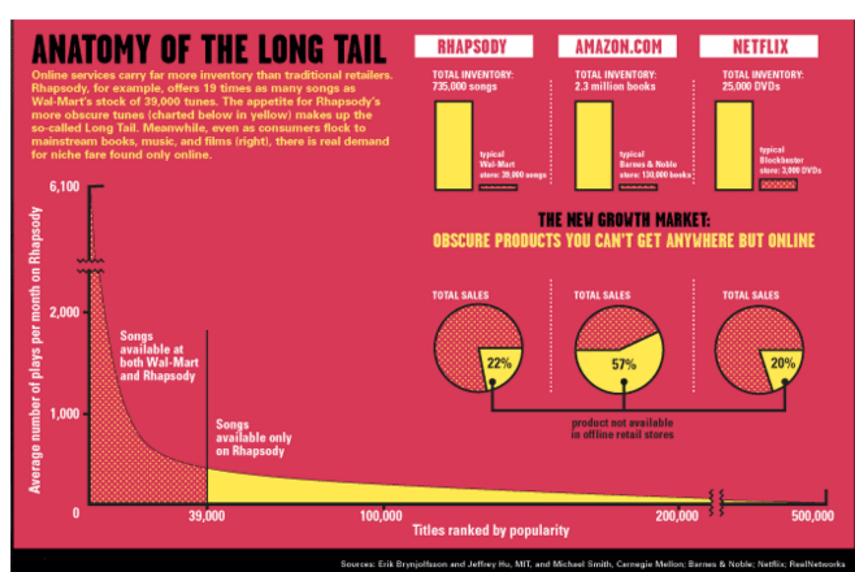
- In social systems lots of power-laws:
 - Pareto, 1897 Wealth distribution
 - Lotka 1926 Scientific output
 - Yule 1920s Biological taxa and subtaxa
 - Zipf 1940s Word frequency
 - Simon 1950s City populations

[Clauset-Shalizi-Newman 2007]

Power-laws are Everywhere



Anatomy of the Long Tail



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Not Everyone Likes Power-Laws 😊

the G20 meeting in Pittsburgh in Sept 2009

Mathematics of Power-Laws

Heavy Tailed Distributions

• Degrees are heavily skewed: Distribution P(X>x) is heavy tailed if: $\lim_{x \to \infty} \frac{P(X > x)}{e^{-\lambda x}} = \infty$

Note:

• Normal PDF:
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

• Exponential PDF: $f(x) = \lambda e^{-\lambda x}$

• then
$$P(X > x) = 1 - P(X \le x) = e^{-\lambda x}$$

are not heavy tailed!

Heavy Tails

Various names, kinds and forms:

Long tail, Heavy tail, Zipf's law, Pareto's law
 Heavy tailed distributions:

P(x) is proportional to:

power law power law with cutoff stretched exponential log-normal

$$x^{-\alpha}$$

$$x^{-\alpha} \mathrm{e}^{-\lambda x}$$

$$x^{\beta-1} \mathrm{e}^{-\lambda x^{\beta}}$$

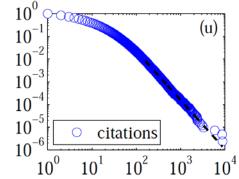
 $\frac{1}{x} \exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right]$

[Clauset-Shalizi-Newman 2007]

Mathematics of Power-laws

What is the normalizing constant?

- $P(x) = z x^{-\alpha} \qquad z = ?$
- P(x) is a distribution: $\int P(x)dx = 1$



Continuous approximation

•
$$1 = \int_{x_{min}}^{\infty} P(x) dx = z \int_{x_m}^{\infty} x^{-\alpha} dx$$

• $= \frac{z}{\alpha - 1} [x^{-\alpha + 1}]_{x_m}^{\infty}$
• $\Rightarrow z = (\alpha - 1) x_m^{\alpha - 1}$
 $p(x) = \frac{\alpha - 1}{\alpha - 1} \left(\frac{x}{-\alpha}\right)^{-\alpha}$

P(x) diverges as x→0 so x_m is the minimum value of the power-law distribution $x \in [x_m, \infty]$

 $x_m \setminus x_m$

[Clauset-Shalizi-Newman 2007]

Mathematics of Power-laws

What's the expectation of a power-law random variable x?

•
$$E[x] = \int_{x_m}^{\infty} x P(x) dx = z \int_{x_m}^{\infty} x^{-\alpha+1} dx$$

$$= \frac{z}{2-\alpha} [x^{2-\alpha}]_{x_m}^{\infty} = \frac{(\alpha-1)x_m^{\alpha-1}}{2-\alpha} [\infty^{2-\alpha} - x_m^{2-\alpha}]$$
Need: $\alpha > 2$

$$\Rightarrow E[x] = \frac{\alpha - 1}{\alpha - 2} x_m$$

Mathematics of Power-Laws

Power-laws: Infinite moments!

• If
$$\alpha \leq 2 : E[x] = \infty$$

• If $\alpha \leq 3$: Var[x]= ∞

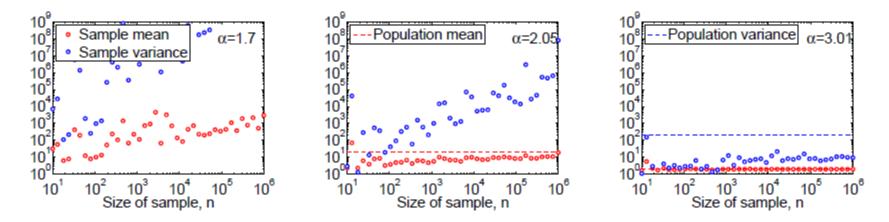
$$E[x] = \frac{\alpha - 1}{\alpha - 2} x_m$$

In real networks
$$2 < \alpha < 3 \text{ so:}$$

$$E[x] = \text{const}$$

Var[x]=∞

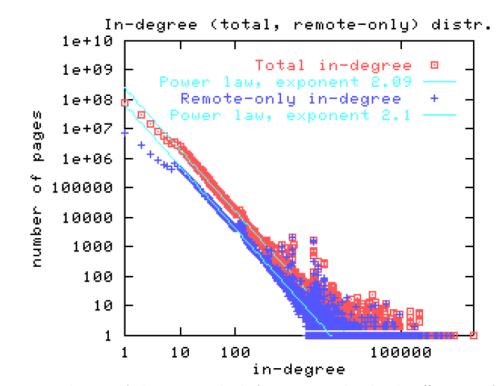
Average is meaningless, as the variance is too high!
 Sample average of *n* samples from a power-law with exponent *α*:



Estimating Power-Law Exponent α

Estimating α from data:

1. Fit a line on log-log axis using least squares method: $\min_{\alpha} (\log(y) - \alpha \log(x))^2$



BAD!

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Estimating Power-Law Exponent α

Estimating α from data:

2. Plot Complementary CDF
$$P(X > x)$$
. Then
 $\alpha = 1 + \alpha'$ where α is the slope of $P(X > x)$.

If
$$P(X = x) \propto x^{-\alpha}$$
 then $P(X = x) \propto x^{-(\alpha-1)}$
• $P(X > x) = \sum_{j=x}^{\infty} P(j) \approx = \int_{x}^{\infty} z \, j^{-\alpha} dj =$
• $= \frac{z}{\alpha} [j^{1-\alpha}]_{x}^{\infty} = \frac{z}{\alpha} x^{-(\alpha-1)}$

OK

Estimating Power-Law Exponent α

Estimating α from data:

OK 3. Use MLE:
$$\hat{\alpha} = 1 + n \left[\sum_{i}^{n} \ln \left(\frac{d_i}{x_m} \right) \right]^{-1}$$

$$L(\alpha) = \ln(\prod_{i=1}^{n} p(d_i)) = \sum_{i=1}^{n} \ln p(d_i)$$

$$=\sum_{i=1}^{n}\ln(\alpha-1) - \ln(x_{m}) - \alpha\ln\left(\frac{d_{i}}{x_{m}}\right)$$

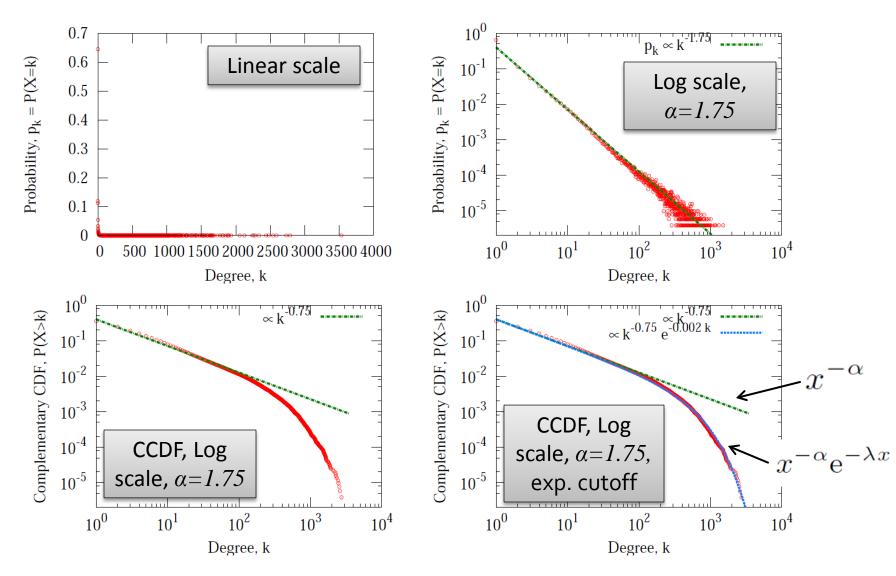
• Want to find
$$\alpha$$
 that max: set $\frac{dL(\alpha)}{d\alpha} = 0$

$$\frac{\mathrm{dL}(\alpha)}{\mathrm{d}\alpha} = 0 \Rightarrow \frac{n}{\alpha - 1} - \sum \ln\left(\frac{d_i}{x_m}\right) = 0$$

$$\Rightarrow \hat{\alpha} = 1 + n \left[\sum_{i=1}^{n} \ln \left(\frac{d_i}{x_m} \right) \right]^{-1}$$

Power-law density: $p(x) = \frac{\alpha - 1}{x_m} \left(\frac{x}{x_m}\right)^{-\alpha}$

Flickr: Fitting Degree Exponent



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Maximum Degree

- What is the expected maximum degree K in a scale-free network?
 - The expected number of nodes with degree > K should be less than 1: $\int_{K}^{\infty} P(x) dx \approx \frac{1}{n}$

$$= z \int_{K}^{\infty} x^{-\alpha} dx = \frac{z}{1-\alpha} [x^{1-\alpha}]_{K}^{\infty} =$$
$$= \frac{(\alpha-1)x_{m}^{\alpha-1}}{-\alpha+1} [0 - K^{1-\alpha}] = \frac{x_{m}^{\alpha-1}}{K^{\alpha-1}} \approx \frac{1}{n}$$
$$\Rightarrow K = x_{m} N^{\frac{1}{\alpha-1}}$$

Power-law density:

$$p(x) = \frac{\alpha - 1}{x_m} \left(\frac{x}{x_m}\right)^{-\alpha}$$

Maximum Degree: Consequence

- Why don't we see networks with exponents in the range of $\alpha = 4, 5, 6$?
 - In order to reliably estimate α , we need 2-3 orders of magnitude of K. That is, $K \approx 10^3$
 - E.g., to measure an degree exponent *α* = 5,we need to maximum degree of the order of:

$$K = x_m N^{\frac{1}{\alpha - 1}}$$

$$N = \left(\frac{\kappa}{x_m}\right)^{\alpha - 1} \approx 10^{12}$$

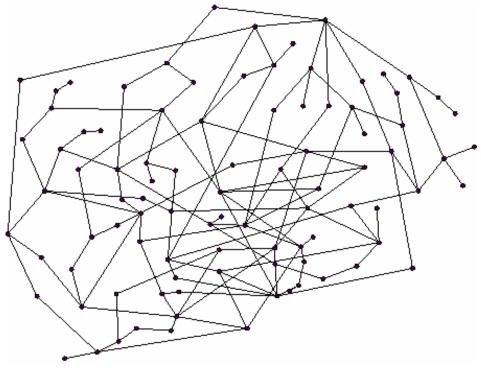
Why are Power-Laws Surprising

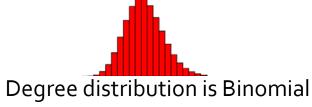
- Can not arise from sums of independent events
 - Recall: in G_{np} each pair of nodes in connected independently with prob. p
 - X... degree of node v,
 - X_w ... event that w links to v
 - $X = \sum_{w} X_{w}$
 - $E[X] = \sum_{w} E[X_{w}] = (n-1)p$
 - Now, what is P(X = k)? Central limit theorem!
 - *X*, *X*, ..., *X*_n : rnd. vars with mean μ , variance σ^2
 - $S_n = \sum X_i$: $E[S_n] = n\mu$, $var[S_n] = n\sigma^2$, $SD[S_n] = \sigma\sqrt{n}$

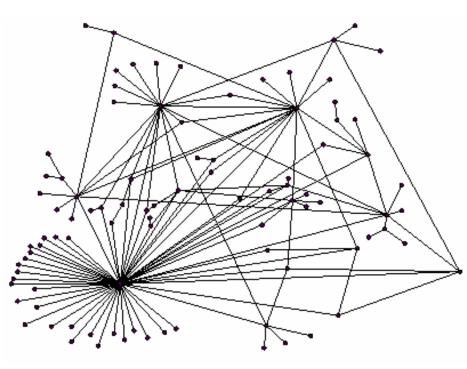
2

•
$$P(S_n = E[S_n] + x \cdot SD[S_n]) \sim \frac{1}{2\pi} e^{-\frac{x^2}{2}}$$

Random vs. Scale-free network







Scale-free (power-law) network

Degree distribution is Power-law

Model: Preferential Attachment

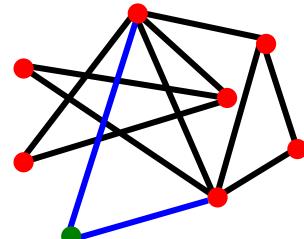
Model: Preferential attachment

Preferential attachment

[Price '65, Albert-Barabasi '99, Mitzenmacher '03]

- Nodes arrive in order 1,2,...,n
- At step j, let d_i be the degree of node i < j</p>
- A new node j arrives and creates m out-links
- Prob. of *j* linking to a previous node *i* is proportional to degree *d_i* of node *i*

$$P(j \to i) = \frac{d_i}{\sum_k d_k}$$



Rich Get Richer

New nodes are more likely to link to nodes that already have high degree

Herbert Simon's result:

- Power-laws arise from "Rich get richer" (cumulative advantage)
- **Examples** [Price 65]:
 - Citations: New citations to a paper are proportional to the number it already has

The Exact Model

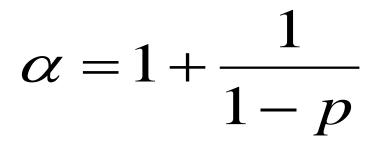
- We will analyze the following model:
- Nodes arrive in order 1,2,3,...,n
- When node *j* is created it makes a single link to an earlier node *i* chosen:
 - 1)With prob. p, j links to i chosen uniformly at random (from among all earlier nodes)
 - 2) With prob. 1-p, node j chooses node i uniformly at random and links to a node i points to.
 - Note this is same as saying: With prob. 1-p, node j links to node u with prob. proportional to d_u (the degree of u)

The Model Givens Power-Laws

 <u>Claim</u>: The described model generates networks where the fraction of nodes with degree k scales as:

$$P(d_i = k) \propto k^{-(1 + \frac{1}{q})}$$

where q=1-p



Continuous Approximation

- Consider deterministic and continuous approximation to the degree of node *i* as a function of time *t*
 - *t* is the number of nodes that have arrived so far
 - Degree d_i(t) of node i (i=1,2,...,n) is a continuous quantity and it grows deterministically as a function of time t
- Plan: Analyze d_i(t) − continuous degree of node i at time t ≥ i

Continuous Approximation

- Plan: Analyze continuous degree d_i(t) of node i at time t ≥ i
- Node i=t=5 comes and has degree of 1 to share with other nodes:

i	d _i (t-1)	d _i (t)	Node i=5
1	1	$=1+p\frac{1}{4}+(1-p)\frac{1}{6}$	
2	3	$=3 + p\frac{1}{4} + (1 - p)\frac{3}{6}$	
3	1	$=1+p\frac{1}{4}+(1-p)\frac{1}{6}$	
4	1	$=1+p\frac{1}{4}+(1-p)\frac{1}{6}$	
i=5	0	1	

Continuous Degree: What We Know

Initial condition:

- $d_i(t)=0$, when t=i (node *i* just arrived)
- Expected change of $d_i(t)$ over time:
 - Node *i* gains an in-link at step *t*+1 only if a link from a newly created node *t*+1 points to it.
 - What's the probability of this event?
 - With prob. *p* node *t*+1 links **randomly**:
 - Links to our node *i* with prob. 1/t
 - With prob. *1-p* node *t*+*1* links **preferentially**:
 - Links to our node *i* with prob. $d_i(t)/t$

• So: Prob. node t+1 links to i is: $p\frac{1}{t} + (1-p)\frac{d_i(t)}{t}$

What is the rate of growth of *d_i*?

$$\frac{dd_{i}(t)}{dt} = p \frac{1}{t} + (1-p) \frac{d_{i}(t)}{t} = \frac{p+qd_{i}}{t}$$

$$\frac{dd_{i}(t)}{dt} = p \frac{1}{t} + (1-p) \frac{d_{i}(t)}{t} = \frac{p+qd_{i}}{t}$$

$$\frac{1}{p+qd_{i}(t)} dd_{i}(t) = \frac{1}{t} dt$$

$$\int \frac{1}{p+qd_{i}(t)} dd_{i}(t) = \int \frac{1}{t} dt$$

$$\frac{dd_{i}(t)}{dt} = \int \frac{1}{t} dt$$

$$\frac{dd_{i}(t)}{dt} = \frac{1}{q} \ln(p+qd_{i}(t)) = \ln t + c$$

$$\frac{dd_{i}(t)}{dt} = A t^{q} \Rightarrow d_{i}(t) = \frac{1}{q} (At^{q} - p)$$

What is the constant A?

- What is the constant A?
- We know: $d_i(i) = 0$

• So:
$$d_i(i) = \frac{1}{q}(Ai^q - p) = 0$$

$$\bullet \Rightarrow A = \frac{p}{i^q}$$

•
$$\Rightarrow d_i(t) = \frac{p}{q} \left(\left(\frac{t}{i}\right)^q - 1 \right)$$

$$d_i(t) = \frac{1}{q}(At^q - p)$$

Degree Distribution

- What is F(d) the fraction of nodes that has degree at least d at time t?
 - How many nodes i have degree > t?

•
$$d_i(t) = \frac{p}{q}\left(\left(\frac{t}{i}\right)^q - 1\right) > d$$

• then:
$$i < t\left(\frac{q}{p}d - 1\right)^{-\frac{1}{q}}$$

There are t nodes total at time t so F(d):

$$F(d) = \left[\frac{q}{p}d + 1\right]^{\frac{1}{q}}$$

Degree Distribution

- What is the fraction of nodes with degree exactly d?
 - Take derivative of F(d):

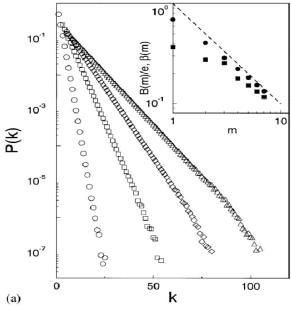
$$F'(d) = \frac{1}{p} \left[\frac{q}{p} d + 1 \right]^{-1 - \frac{1}{q}} \Rightarrow \alpha = 1 + \frac{1}{q}$$

Preferential attachment: Reflections

- Two changes from the G_{np} model
 - The network grows
 - Preferential attachment

Do we need both? Yes!

- Add growth to G_{np} (assume p=1):
 - x_j = degree of node j at the end
 - $X_i(u) = 1$ if u links to j, else 0
 - $x_j = x_j(j+1) + x_j(j+2) + \dots + x_j(n)$
 - $E[x_j(u)] = P[u \text{ links to } j] = 1/(u-1)$
 - $E[x_j] = \sum 1/(u-1) = 1/j + 1/(j+1) + \dots + 1/(n-1) = H_{n-1} H_j$
 - $E[x_j] = log(n-1) log(j) = log((n-1)/j)$ **NOT** $(n/j)^{\alpha}$



Preferential attachment: Good news

- Preferential attachment gives power-law degrees
- Intuitively reasonable process
- Can tune p to get the observed exponent
 - On the web, $P[node has degree d] \sim d^{-2.1}$
 - $2.1 = 1 + 1/(1-p) \rightarrow p \sim 0.1$

There are also other network formation mechanisms that generate scale-free networks:

- Random surfer model
- Forest Fire model

PA-like Link Formation

- Copying mechanism (directed network)
 - select a node and an edge of this node
 - attach to the endpoint of this edge
- Walking on a network (directed network)
 - the new node connects to a node, then to every
 - first, second, ... neighbor of this node

Attaching to edges

- select an edge
- attach to both endpoints of this edge

Node duplication

- duplicate a node with all its edges
- randomly prune edges of new node

Preferential attachment: Bad news

- Preferential attachment is not so good at predicting network structure
 - Age-degree correlation
 - Links among high degree nodes
 - On the web nodes sometime avoid linking to each other

Further questions:

- What is a reasonable probabilistic model for how people sample through web-pages and link to them?
 - Short+Random walks
 - Effect of search engines reaching pages based on number of links to them

PA: Many Extensions & Variations

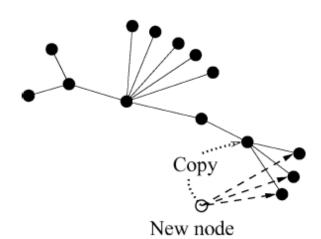
Preferential attachment is a key ingredient

Extensions:

- Early nodes have advantage: node fitness
- Geometric preferential attachment

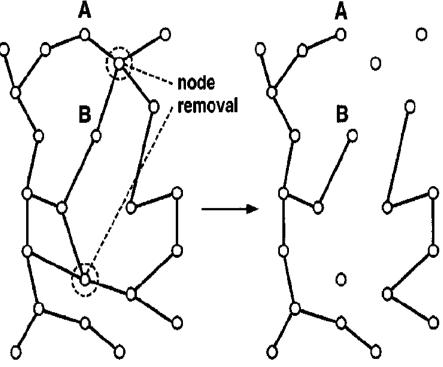
Copying model:

 Picking a node proportional to the degree is same as picking an edge at random (pick node and then it's neighbor)



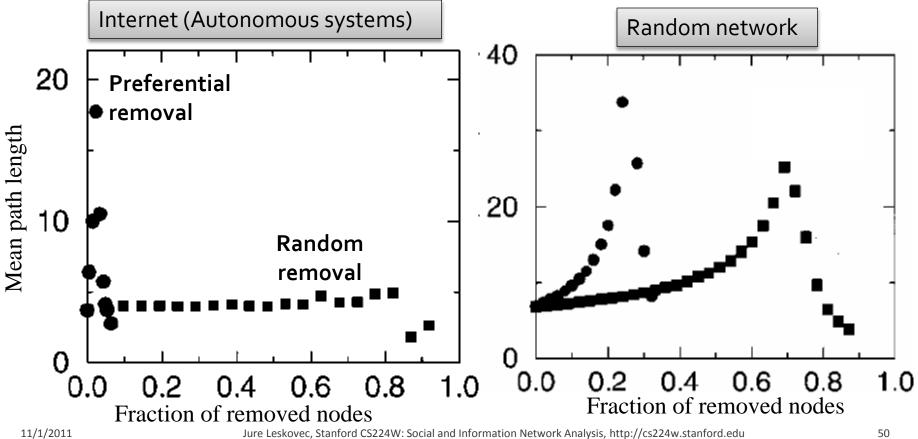
Network resilience (1)

- We observe how the connectivity (length of the paths) of the networl changes as the vertices get removed [Albert et al. 00; Palmer et al. 01]
- Vertices can be removed:
 - Uniformly at random
 - In order of decreasing degree
- It is important for epidemiology
 - Removal of vertices corresponds to vaccination



Network resilience (2)

- Real-world networks are resilient to random attacks
 - One has to remove all web-pages of degree > 5 to disconnect the web
 - But this is a very small percentage of web pages
- Random network has better resilience to targeted attacks



Network resilience (2)

- Real-world networks are resilient to random attacks
 - One has to remove all web-pages of degree > 5 to disconnect the web
 - But this is a very small percentage of web pages
- Random network has better resilience to targeted attacks

