Influence Maximization and
Outbreak Detection



RECAP: Influence Maximization

if set S is activated

Activate edges

N\ by coin flipping
P A )

Network, each edge Multiple realizations i:

activates with prob. p

max f (S) :ﬁz f (S) )

IS|=k

el
Consider S={a,d} then: /
f1(S)=5, ,(S)=4, f3(S)=3

and f(S) = 4 ... influence set
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Approximation Guarantee

Algorithm: Hill Climbing
At step i pick node u that: muaxf(Sl-_l U{u})

Thm: Hill climbing produces a solution S
where: f(S) >(1-1/e)*OPT

VScT: f(S)<A(T)and f({})=0
VScT:
f(S vtup) -f(S) 2 (T wiuf)-f(T)

Our f(S) is submodular! Why?
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Background: Submodular Functions

Submodularity: f(S\{u}) — f(S) = f(TU{u}) — f(T)

If f,(x), ....fi(x) are ,and c,,...,.c, =0
then F(x) = X;¢; - fi (x)
A simple function

Sets A, ..., A,
f(S) =|U;esAil (size of the union of sets A, i€S)

The more sets
you already
chose the less
new area a new
set u will cover
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Our f(S) iIs Submodular!

fi(a)
Activate ed (d
< f '\ / '\ b; éﬁ?neﬂ?pﬁﬁg W
A,
fi(a)

f/(u) = influence set: set of nodes
reachable from u on live-edge paths

fi(S) = size of cascades from S on coin flips i

fi(S) = |Uyes i) = fi(S)is

f.(v) are sets and f,(S) is the size of the union
fi(a) f

F(S) = —Sicr f:(S) = f(S) is N

1]
f(S) is linear combination of submodular functions
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Plan: Prove 2 things
(1) Our f(S) iIs submodular
(2) Hill Climbing gives near-

optimal solutions
(for monotone submodular functions)




Proof for Hill Climbing

Claim:
If f(S) is monotone and submodular.
Hill climbing produces a solution S
where: f(S) >(1-1/e)*OPT (f(S)>0.63*OPT)
Setting:
Keep adding nodes that give the largest gain
Start with S,={}, produce sets S, S,,...,S,

é;':f(si) 'f(si-1)
Let T={t,...t,} be of size k

We need to show:
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Basic Hill Climbing Fact

f(AUB) = f(A) < ZE[f(AU{b}) — f(A)]
where: B={b,,...,.b,} and f is submodular,

Proof:
Let B,= {b,,...b;}, so we have B, B,, ..., B,=B

fLAUB) = f(A) =3, f(AUB) — f(AU B;_y)

=X f(AUB;_; U {b}) - f(AU Bi_y)
< K 1f(A U {bl}) — f(A) Work out the sum.

L= Everything but 1t and

/ last term cancels out:
By submodularity +f 5) —= 1
since AuX U{b} o Au{b} m ..

+ f(AUBy) — f(AU Bi_y)
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What is o; (e.l., Gain at Step 1)?

10/13

/2009

Remember: 6= f(S) - f(S..,)

f(T) < f(Sl U T) (by monotonicity)
=f(S;UT)—f(5)+ f(S)

< 2§=1[f(51 U {t]<}) — f(Sl)] 4 f(Sl) (by prev. slide)
— T={t, ... t}

SZ;{: l+1-|—f(5)_f(S)-|_k5+1t|sonech0|Ceof

a next element.
We greedily

Thus: f(T) < f(Sl) + k 6i+1 choose the best

one, for a gain of
dir1- This is the

= 811 = 1 [F(T) = (5] “aseumption.
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What is £(S;,,)?

We just showed: §;,{ = %[f(T) — f(S5;)]
What is f(S,,,)?
f(Siv1) = f(S) + 6i4q

> f(S) + [f(T) = f(S)]
= (1=3) FGSD + (D)
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What is f(S,)?

Claim: f(S;)> 1—(1—%) f(T)

1 = 0:
fS)=f{H =0

[1 _ (1 _ %)O] F(T) = 0
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What is f(S,)?

Claim: f(S;)> 1—(1—%) f(T)

Ati + 1:
F(Sie) = (1—7) F(S) + L F(T)
> 1—1[1— r—l1fav+%faj

l+1

P—-1—— ]f@)
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What is f(S,)?

Thus:

| e
F(S) = F(5) 2 1—(17) F(T)

Q| =

Then:

1
f(Sk) = (1 — g)f(T)

ged.
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Solution Quality

Hill climbing finds solution S which
f(S) > (1-1/e)*OPT i.e., f(S) > 0.63*OPT
This is a data independent bound

This is a worst case bound

No matter what is the input data (influence sets) we know
that Hill Climbing won’t do worse than 0.63*OPT

Value of the bound depends on the input data
On “easy” data, hill climbing may do better than 63%
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Data Dependent Bound

Suppose to f(S) s.t. |S| <Kk
f(S) is monotone & submodular
Let be the solution

Foreachu ¢ S let
Order o, sothato, >0, >...>

Then: £(S) = f(T) — X/, &
Note:

This is a data dependent bound (0, depend on input data)
Bound holds for any algorithm

Makes no assumption about how S is computed

For some inputs the bound can be “loose” (worse than 63%)
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Data Dependent Bound

10/2

0/2010

Foreachu ¢ S let
Order o, sothato, >0, >...2>

Then: f(S) = f(T) — Xit, 6
Proof:
f(r)<f(Tus) =
F)+XEfSu{ty .t} — fFSU{ty . tizq D]
< FS)+ XS Uit — F(S)]
= f(S) + Z?=1 5ti

<fO)+XE, 6 =2 |f(T) < fS)+XE, 6

Instead of adding t,eT (of benefit 5),
we add the best possible element ()
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Speeding Up Hill Climbing:
Lazy Hill Climbing



Background: Submodular Functions

What do we know about

Hill-climbing optimizing submodular
reward functions?

a A hill-climbing is near optimal

] (1-1/e (~63%) of OPT)

C

d Hill-climbing algorithm is slow

A At each iteration we need to re-
evaluate marginal gains

It scales as O(n k)
Add node with highest

marginal gain

10/20/2010 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 18



[Leskovec et al., KDD ‘o07]

Speeding up Hill-Climbing

So far we picked S. = {s,,...,S;}
Now pick s, = argmax, f(S; U {u}) - f(S;)

maximize the “marginal benefit” o (S))

f(Su{ud) = £(S) = f(S; u{u}) — f(S;) for i<j

By submodularity : For some u
0,(S;) 2 0,(S;) fori<jsince S,

= >5,(S)

d

Activating node u in step i helps
more than activating it at step j (j>1)

10/20/2010 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 19




[Leskovec et al., KDD ‘07]

Lazy Hill Climbing

Use o; as upper-bound on o, (j>i) Marginal gain

Lazy hill-climbing: a S,={a}
Keep an ordered list of marginal b
benefits o, from previous .
iteration
Re-evaluate o, only for top node j

Re-sort and prune

fs vHuj)=f(S) 2 (T wHuf)=fT)  scr

4W: Socia tp://cs2
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[Leskovec et al., KDD ‘07]

Lazy Hill Climbing

Use o; as upper-bound on o, (j>i) Marginal gain

Lazy hill-climbing: a s,={a}
Keep an ordered list of marginal d S,={a,b}
benefits o, from previous X
iteration .

Re-evaluate o, only for top node i

Re-sort and prune

fs vHuj)=f(S) 2 (T wHuf)=fT)  scr

4W: Socia tp://cs2
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Outbreak Detection In
Networks



[Leskovec et al., KDD ‘07]

Problem: Water Network

Given a real city water
distribution network

And data on how
contaminants spread
in the network

Detect the
contaminant as quickly
as possible

Problem posed by the
US Environmental
Protection Agency
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Water Network: Utility

Water flow dynamics, demands of households, ...
For each subset A — V compute utility F(A)

High impact

Impact
(owtbreakation

outbreak

moact \,F_
- ®
:

. Sensgnrreduces
impactthrough’-

Set V of all early detection!
network junctions é

High sensing quality F(A) = 0.9 Low sensing quality F(A)=0.01
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[Leskovec et al., KDD ‘07]

Problem Setting

Given a graph G(V,E)
And the data on

For each outbreak i we know the time T{(i,u)
when outbreak i contaminated node u

Select a subset of nodes A that
maximize the expected reward:

max f(S) = Y PW)fi(S)

SCV

Expected reward for
detecting outbreak i

Raise the alarm
and save the most people

Monitoring node saves more
people than monitoring the node
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[Leskovec et al., KDD ‘07]

Structure of the Problem

Observation: Diminishing returns

Placement S=is_, s_}

1 92 PlacementS'={s , s, Sy S}
I Adding s" helps a lot I Adding s helps
very little
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[Leskovec et al., KDD ‘07]

Reward Function is Submodular

Claim:

The reward function is submodular

Consider outbreak i:
f.(u,) = set of nodes saved from u,
f.(S) = size of union f(u,), u €S
f.is

Global optimization:

f(S) = 2. P(i) f.(S)
= f(S) is
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[Leskovec et al., KDD ‘07]

Case study: Water Network

V =21,000 nodes
E = 25,000 pipes

Use a cluster of 50 machines for a month
Simulate 3.6 million epidemic scenarios
(152 GB of epidemic data)

By exploiting sparsity we fit it into main
memory (16GB)
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Bounds on optimal solution

“Offline”

1.2 the (1-1/e) bound
< 7 N\ Data-dependent|
g / bound
42\5 -0 ao—0—0-0"C »
<< | 08" S
o A
S 2 Rob6 . o -
25 Hill Climbing
ek
A 0.4 |

0.2

0 i L L L

0 5 10 15 20

Number of sensors placed

Data-dependent bound is much tighter

(gives more accurate estimate of alg. performance)
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[Leskovec et al., KDD ‘07]

Water: Heuristic Placement

0.8

0.6

Diameter

/_Population Iflow

Reduction in population affected
(@)
N
|

0 5 10 15 20
Number of sensors

Placement heuristics perform much worse
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Question...
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Detecting information outbreaks

= . _. hu:nﬂ‘lh-::n.inaﬁ
Detect blue & S ——
soon but miss red. £ jor=
©USAtSns B
| s s - |
T — pe
| . :
| &=

Detect all
stories but late.
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[Leskovec et al., KDD ‘07]

Blogs: Solution Quality

87% instead of 63%

5 1.4 | |
Q Offline bound b d
S 1.2 (1-1/e) boun
= N
4y]
c 1+ Online ]
2 bound Data dependent
4]
5 081 4 bound
@) . . .
Q 0.6 Hill Climbing
S 04) CELF .
‘g’ 0.2 solution )
O
o 0 | | | |
0 20 40 60 80 100

Number of blogs
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[Leskovec et al., KDD ‘07]

Blogs: Heuristic Selection

o
0o

o
o

=
N

Reduction in population affected
o
»

CELF

fBIog out-links

/

In—unks /

_ All oqﬁtlinks YI iy
| —+# Posts .
//Random
20 40 60 80

Number of blogs

Heuristics perform much worse
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100
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[Leskovec et al., KDD ‘07]

Blogs: Scalability

400 R | |
—~ ! Exhausti h - :
Tl s Lazy evaluation
: : .. A runs 700 times
U : Naive 'e j
g2000 | hill climbing > 1 faster than naive
g ol | = lay Hill Climbing
% \,., . . . .
> //A/./ hill ch:nbmg algorlthm

O ———p—+—9L
2 4 6 8 10

Number of blogs selected
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