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 Find most influential  set S of size k: largest  
expected cascade size f(S) if set S is activated 
 
 
 
 

 Want to solve: 
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 Algorithm: Hill Climbing 
 At step i pick node u that: max

𝑢
𝑓(𝑆𝑖−1 ∪ 𝑢 ) 

 Thm: Hill climbing produces a solution S  
where: f(S) ≥(1-1/e)*OPT 

 Claim holds for functions f() with 2 properties: 
 f is monotone: ∀ S ⊆ T:  f(S) ≤ f(T) and f({})=0 
 f is submodular: ∀S ⊆ T : 

f(S ∪ {u}) – f(S)   ≥  f(T ∪ {u}) – f(T) 
 

 Our f(S) is submodular! Why? 
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 Submodularity: f(S∪{u}) – f(S) ≥ f(T∪{u}) – f(T) 
 Basic fact 1: 
 If f1(x), …,fk(x) are submodular, and c1,…,ck ≥ 0 

then F x = ∑ 𝑐𝑖 ∙ 𝑓𝑖 𝑥𝑖   is also submodular 
 Basic fact 2: A simple submodular function 
 Sets A1, …, Am  
 𝑓 𝑆 = ⋃ 𝐴𝑖𝑖∈𝑆       (size of the union of sets Ai, i∈S) 
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S 
T 

u 
S ⊆ T  

The more sets 
you already 
chose the less 
new area a new 
set u will cover 



 Fix outcome i of coin flips 
 

 fi(u) = influence set: set of nodes  
reachable from u on live-edge paths 

 

 fi(S) = size of cascades from S on coin flips i 
 𝑓𝑖 𝑆 = ⋃ 𝑓𝑖(𝑢)𝑢∈𝑆  ⇒  fi(S) is submodular! 
 fi(v) are sets and fi(S) is the size of the union 

 

 Expected influence set size: 
𝑓 𝑆 = 1

|𝐼|
∑ 𝑓𝑖(𝑆)𝑖∈𝐼  ⇒ f(S) is submodular! 

 f(S) is linear combination of submodular functions 
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Claim:  
    If f(S) is monotone and submodular. 
    Hill climbing produces a solution S  
    where: f(S) ≥(1-1/e)*OPT    (f(S)>0.63*OPT) 
 

 Setting: 
 Keep adding nodes that give the largest gain 
 Start with S0={}, produce sets S1, S2,…,Sk 
 Add elements one by one 
 Marginal gain: δi = f(Si) - f(Si-1) 
 Let T={t1…tk} be the optimal set of size k 

 

 We need to show: f(S) ≥ (1-1/e) f(T) 
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 𝑓(𝐴 ∪ 𝐵) − 𝑓(𝐴) ≤  ∑ [𝑓(𝐴 ∪ {𝑏𝑗}𝑘
𝑗=1 ) − 𝑓(𝐴)] 

 where: B = {b1,…,bk} and f is submodular,  
 Proof:  
 Let Bi = {b1,…bi}, so we have B1, B2, …, Bk=B 
 𝑓 𝐴 ∪ B − 𝑓 𝐴 = ∑ 𝑓 𝐴 ∪ 𝐵𝑖 − 𝑓 𝐴 ∪ 𝐵𝑖−1𝑘

𝑖=1  
 = ∑ 𝑓 𝐴 ∪ 𝐵𝑖−1 ∪ 𝑏𝑖 − 𝑓 𝐴 ∪ 𝐵𝑖−1𝑘

𝑖=1  
 ≤  ∑ 𝑓 𝐴 ∪ {𝑏𝑖} − 𝑓 𝐴𝑘

𝑖=1  
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𝑓 𝐴 ∪ 𝐵1 − 𝑓 𝐴 ∪ 𝐵0
+ 𝑓 𝐴 ∪ 𝐵2 − 𝑓 𝐴 ∪ 𝐵1
+ 𝑓 𝐴 ∪ 𝐵3 − ⋯
+ 𝑓 𝐴 ∪ 𝐵𝑘 − 𝑓(𝐴 ∪ 𝐵𝑘−1) 
 

Work out the sum. 
Everything but 1st and 
last term cancels out: 

By submodularity  
since A∪X ∪{b} ⊇ A∪{b} 



 𝑓 𝑇 ≤ 𝑓 𝑆𝑖 ∪ 𝑇  

 = 𝑓 𝑆𝑖 ∪ 𝑇 − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖  

 ≤ ∑ 𝑓 𝑆𝑖 ∪ {𝑡𝑗} − 𝑓 𝑆𝑖 + 𝑓(𝑆𝑖)𝑘
𝑗=1  

 ≤ ∑ 𝛿𝑖+1𝑘
𝑗=1 + 𝑓 𝑆𝑖 = 𝑓 𝑆𝑖 + 𝑘 𝛿𝑖+1 

 Thus: 𝑓 𝑇 ≤ 𝑓 𝑆𝑖 + 𝑘 𝛿𝑖+1 

 ⇒𝛿𝑖+1 ≥
1
𝑘

[𝑓 𝑇 − 𝑓(𝑆𝑖)] 
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(by monotonicity) 

(by prev. slide) 

T = {t1, … tk} 
tj is one choice of 

a next element. 
We greedily 

choose the best 
one, for a gain of 

δi+1. This is the 
“hill-climbing” 
assumption. 

 Remember: δi = f(Si) - f(Si-1) 



 We just showed: 𝛿𝑖+1 ≥
1
𝑘

[𝑓 𝑇 − 𝑓(𝑆𝑖)] 

 What is f(Si+1)? 

 𝑓 𝑆𝑖+1 = 𝑓 𝑆𝑖 + 𝛿𝑖+1 

 ≥ 𝑓 𝑆𝑖 + 1
𝑘
𝑓 𝑇 − 𝑓 𝑆𝑖  

 = 1 − 1
𝑘
𝑓 𝑆𝑖 + 1

𝑘
𝑓(𝑇) 

 What is f(Sk)? 
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 Claim:  
 

Proof by induction: 
 𝑖 = 0: 
 𝑓 𝑆0 = 𝑓({}) = 0 

 1 − 1 − 1
𝑘

0
𝑓 𝑇 = 0 
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 Claim:  
 

Proof by induction: 
 At 𝑖 + 1: 
 𝑓 𝑆𝑖+1 ≥ 1 − 1

𝑘
𝑓 𝑆𝑖 + 1

𝑘
𝑓 𝑇  

 ≥ 1 − 1
𝑘

1 − 1 − 1
𝑘

𝑖
𝑓 𝑇 + 1

𝑘
𝑓 𝑇  

 = 1 − 1 − 1
𝑘

𝑖+1
𝑓(𝑇) 
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 Thus:  

𝑓 𝑆 = 𝑓 𝑆𝑘 ≥ 1 − 1 −
1
𝑘

𝑘

𝑓 𝑇  

 

 Then: 

𝑓 𝑆𝑘 ≥ 1 −
1
𝑒

𝑓(𝑇) 
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≤
𝟏
𝒆 

qed. 



We just proved:  
 Hill climbing finds solution S which 

f(S) ≥ (1-1/e)*OPT      i.e.,  f(S) ≥  0.63*OPT 
 This is a data independent bound 
 This is a worst case bound 
 No matter what is the input data (influence sets) we know 

that Hill Climbing won’t do worse than 0.63*OPT 
Data dependent bound: 
 Value of the bound depends on the input data 
 On “easy” data, hill climbing may do better than 63% 
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 Suppose S is some solution to f(S) s.t. |S| ≤ k 
 f(S) is monotone & submodular 

 Let T = {t1,…,tk} be the OPT solution 
 For each u ∉ S let δu = f(S∪{u})-f(S) 

Order δu so that δ1 ≥ δ2 ≥ … ≥ δn 
 Then: 𝑓 𝑆 ≥ 𝑓 𝑇 − ∑ 𝛿𝑖𝑘

𝑖=1  
 Note: 
 This is a data dependent bound (δu depend on input data) 
 Bound holds for any algorithm 
 Makes no assumption about how S is computed 

 For some inputs the bound can be “loose” (worse than 63%) 
10/20/2010 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 15 



 For each u ∉ S let δu = f(S∪{u})-f(S) 
   Order δu so that δ1 ≥ δ2 ≥ … ≥ δn 

Then: 𝑓 𝑆 ≥ 𝑓 𝑇 − ∑ 𝛿𝑖𝑘
𝑖=1  

 Proof: 
 𝑓 𝑇 ≤ 𝑓 𝑇 ∪ 𝑆 =
𝑓 𝑆 + ∑ 𝑓 𝑆 ∪ 𝑡1 … 𝑡𝑖 − 𝑓 𝑆 ∪ 𝑡1 … 𝑡𝑖−1𝑘

𝑖=1  
 ≤ 𝑓 𝑆 + ∑ 𝑓 𝑆 ∪ 𝑡𝑖 − 𝑓 𝑆𝑘

𝑖=1  
 = 𝑓 𝑆 + ∑ 𝛿𝑡𝑖

𝑘
𝑖=1  

 ≤ 𝑓 𝑆 + ∑ 𝛿𝑖  𝑘
𝑖=1   ⇒   𝑓 𝑇 ≤ 𝑓 𝑆 + ∑ 𝛿𝑖𝑘

𝑖=1  
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Instead of adding ti∈T (of benefit δti), 
we add the best possible element (δi) 
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What do we know about 
optimizing submodular 
functions? 

 A hill-climbing is near optimal 
(1-1/e (~63%) of OPT) 

 

 But  
 Hill-climbing algorithm is slow 
 At each iteration we need to re-

evaluate marginal gains 
 It scales as O(n k) 
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d 

reward 

e 

Hill-climbing 

Add node with highest 
marginal gain 



 In round i+1: So far we picked Si = {s1,…,si} 
 Now pick si+1 = argmaxu f(Si ∪ {u}) - f(Si) 
 maximize the “marginal benefit” δu(Si) = f(Si ∪ {u}) - f(Si) 

 

 By submodularity property: 
 𝑓 𝑆𝑖 ∪ 𝑢 − 𝑓 𝑆𝑖 ≥ 𝑓 𝑆𝑗 ∪ 𝑢 − 𝑓 𝑆𝑗  for i<j 

 

 Observation: By submodularity : For some u
 δu(Si) ≥ δu(Sj)  for i ≤ j since Si⊆Sj 

 
 

 Marginal benefits δx only shrink! 
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u 

δu(Si) ≥ δu(Sj) 

[Leskovec et al., KDD ’07] 

Activating node u in step i helps 
more than activating it at step j (j>i) 



 Idea:  
 Use δi as upper-bound on δj (j>i) 

 Lazy hill-climbing: 
 Keep an ordered list of marginal 

benefits δi from previous 
iteration 
 Re-evaluate δi only for top node 
 Re-sort and prune 
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d 

Marginal gain 

e 

[Leskovec et al., KDD ’07] 

f(S ∪ {u}) – f(S)   ≥  f(T ∪ {u}) – f(T) S ⊆ T  

S1={a} 



 Idea:  
 Use δi as upper-bound on δj (j>i) 

 Lazy hill-climbing: 
 Keep an ordered list of marginal 

benefits δi from previous 
iteration 
 Re-evaluate δi only for top node 
 Re-sort and prune 
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Marginal gain 

[Leskovec et al., KDD ’07] 

f(S ∪ {u}) – f(S)   ≥  f(T ∪ {u}) – f(T) S ⊆ T  

S1={a} 



 Idea:  
 Use δi as upper-bound on δj (j>i) 

 Lazy hill-climbing: 
 Keep an ordered list of marginal 

benefits δi from previous 
iteration 
 Re-evaluate δi only for top node 
 Re-sort and prune 
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e 

Marginal gain 

[Leskovec et al., KDD ’07] 

f(S ∪ {u}) – f(S)   ≥  f(T ∪ {u}) – f(T) S ⊆ T  

S1={a} 

S2={a,b} 





 Given a real city water 
distribution network 

 

 And data on how 
contaminants spread 
in the network 

 

 Detect the 
contaminant as quickly 
as possible 

 

 Problem posed by the 
US Environmental 
Protection Agency 
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S S 

[Leskovec et al., KDD ’07] 



 Utility of placing sensors 
 Water flow dynamics, demands of households, … 

 For each subset A ⊆ V compute utility F(A) 
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S2 

S3 

S4 S1 S2 

S3 

S4 

S1 

High sensing quality F(A) = 0.9 Low sensing quality F(A)=0.01 

High impact  
outbreak 

Medium  
impact 
outbreak 

Low impact 
outbreak 

Sensor reduces 
impact through 
early detection! 

S1 

Contamination 

Set V of all  
network junctions 



 Given a graph G(V,E) 
 And the data on how outbreaks spread over 

the network:  
 For each outbreak i we know the time T(i,u)  

when outbreak i contaminated node u 
 Goal: Select a subset of nodes A that  

maximize the expected reward: 
 

 

 
 

 Reward: Raise the alarm  
and save the most people 
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Expected reward for 
detecting outbreak i 

[Leskovec et al., KDD ’07] 

outbreak i 

Monitoring blue node saves more 
people than monitoring the green node 

max
𝑆⊆𝑉

𝑓 𝑆 = �𝑃 𝑖 𝑓𝑖 𝑆
𝑖

 



 Observation: Diminishing returns 
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S1 

S2 

Placement S={s1, s2} 

S’ 

New sensor: 

Adding s’ helps a lot 

S2 

S4 

S1 

S3 

Placement S’={s1, s2, s3, s4} 

s’ 

Adding s’ helps 
very little 

[Leskovec et al., KDD ’07] 



 Claim:  
 The reward function is submodular 

 

 Consider outbreak i: 
 fi(uk) = set of nodes saved from uk 

 fi(S) = size of union fi(uk), uk∈S 
⇒fi is submodular 

 

 Global optimization: 
 f(S) = ∑i P(i) fi(S) 
⇒ f(S) is submodular 
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u1 Ri(u1) 
outbreak i 

u2 

Ri(u2) 

[Leskovec et al., KDD ’07] 



 Real metropolitan area         water 
network  
 V = 21,000 nodes 
 E = 25,000 pipes 

 
 

 Use a cluster of 50 machines for a month 
 Simulate 3.6 million epidemic scenarios  
 (152 GB of epidemic data) 
 By exploiting sparsity we fit it into main 

memory (16GB) 
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[Leskovec et al., KDD ’07] 



 Data-dependent bound is much tighter  
(gives more accurate estimate of alg. performance) 
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 Placement heuristics perform much worse 
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[Leskovec et al., KDD ’07] 



= I have 10 minutes. Which 
blogs should I read to be 
most up to date?  
 
 

= Who are the most 
influential bloggers? 

32 

? 
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Detect all 
stories but late. 

Want to read things 
before others do. 

Detect blue & yellow 
soon but miss red. 



 Online bound is much tighter: 
 87% instead of 63% 

(1-1/e) bound 

Data dependent 
bound 
Hill Climbing 
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[Leskovec et al., KDD ’07] 



 Heuristics perform much worse 
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[Leskovec et al., KDD ’07] 



 Lazy evaluation 
runs 700 times 
faster than naïve 
Hill Climbing 
algorithm 
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[Leskovec et al., KDD ’07] 

Naïve  
hill climbing 

Lazy 
hill climbing 
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