Influence Maximization and Outbreak Detection

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

RECAP: Influence Maximization

Find most influential set S of size k: largest expected cascade size f(S) if set S is activated

Network, each edge activates with prob. p

Want to solve:

$$\max_{|S|=k} f(S) = \frac{1}{|I|} \sum_{i \in I} f_i(S)$$

Consider S={a,d} then: $f_1(S)=5$, $f_2(S)=4$, $f_3(S)=3$ and f(S) = 4 Activate edges by coin flipping Multiple realizations *i*:

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Approximation Guarantee

Algorithm: Hill Climbing

• At step *i* pick node *u* that: $\max_{i} f(S_{i-1} \cup \{u\})$

- Thm: Hill climbing produces a solution S where: f(S) ≥(1-1/e)*OPT
- Claim holds for functions f() with 2 properties:
 - *f* is monotone: \forall **S** \subseteq **T**: *f*(S) \leq *f*(T) and *f*({})=0
 - **f** is submodular: $\forall S \subseteq T$: $f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T)$
- Our f(S) is submodular! Why?

Background: Submodular Functions

- Submodularity: f(S∪{u}) f(S) ≥ f(T∪{u}) f(T)
 Basic fact 1:
- If f₁(x), ..., f_k(x) are submodular, and c₁,..., c_k ≥ 0 then F(x) = ∑_i c_i · f_i (x) is also submodular
 Basic fact 2: A simple submodular function
 - Sets A₁, ..., A_m
 - $f(S) = |\bigcup_{i \in S} A_i|$ (size of the union of sets A_i , $i \in S$)

The more sets you already chose the less new area a new set *u* will cover

Our f(S) is Submodular!

Activate edges by coin flipping

- Fix outcome i of coin flips
- *f_i(u)* = influence set: set of nodes
 reachable from *u* on live-edge paths
- *f_i(S)* = size of cascades from S on coin flips *i*
 - $f_i(S) = |\bigcup_{u \in S} f_i(u)| \Rightarrow f_i(S)$ is submodular!
 - f_i(v) are sets and f_i(S) is the size of the union
- Expected influence set size: $f(S) = \frac{1}{|I|} \sum_{i \in I} f_i(S) \Rightarrow f(S)$ is submodular!
 - f(S) is linear combination of submodular functions

Plan: Prove 2 things (1) Our f(S) is submodular (2) Hill Climbing gives nearoptimal solutions (for monotone submodular functions)

Proof for Hill Climbing

Claim:

If f(S) is monotone and submodular. Hill climbing produces a solution S where: $f(S) \ge (1-1/e)*OPT$ (f(S)>0.63*OPT)

Setting:

- Keep adding nodes that give the largest gain
- Start with S₀={}, produce sets S₁, S₂,...,S_k
- Add elements one by one
- Marginal gain: $\delta_i = f(S_i) f(S_{i-1})$
- Let T={t₁...t_k} be the optimal set of size k
- We need to show: $f(S) \ge (1-1/e) f(T)$

Basic Hill Climbing Fact

•
$$f(A \cup B) - f(A) \le \sum_{j=1}^{k} [f(A \cup \{b_j\}) - f(A)]$$

• where: $B = \{b_1, \dots, b_k\}$ and f is submodular,

Proof:

Let
$$B_i = \{b_1, \dots, b_i\}$$
, so we have $B_1, B_2, \dots, B_k = B$
If $(A \cup B) - f(A) = \sum_{i=1}^k f(A \cup B_i) - f(A \cup B_{i-1})$
If $(A \cup B_{i-1} \cup \{b_i\}) - f(A \cup B_{i-1})$
If $(A \cup \{b_i\}) - f(A)$
Work out the sum.
Everything but 1st and last term cancels out:
If $(A \cup B_1) - f(A \cup B_1) -$

What is δ_i (e.i., Gain at Step i)?

Remember: $\delta_i = f(S_i) - f(S_{i-1})$

$$f(T) \leq f(S_{i} \cup T) \qquad \text{(by monotonicity)}$$

$$= f(S_{i} \cup T) - f(S_{i}) + f(S_{i})$$

$$\leq \sum_{j=1}^{k} \left[f(S_{i} \cup \{t_{j}\}) - f(S_{i}) \right] + f(S_{i}) \qquad \text{(by prev. slide)}$$

$$= \sum_{j=1}^{k} \delta_{i+1} + f(S_{i}) = f(S_{i}) + k \delta_{i+1}^{t_{j}} \text{ is one choice of a next element.} We greedily choose the best one, for a gain of \delta_{i+1} \\ Thus: f(T) \leq f(S_{i}) + k \delta_{i+1} \qquad \text{(by prev. slide)}$$

$$\Rightarrow \delta_{i+1} \geq \frac{1}{k} \left[f(T) - f(S_{i}) \right]$$

What is f(S_{i+1})?

- We just showed: $\delta_{i+1} \ge \frac{1}{k} [f(T) f(S_i)]$
- What is f(S_{i+1})?

•
$$f(S_{i+1}) = f(S_i) + \delta_{i+1}$$

$$\bullet \ge f(S_i) + \frac{1}{k} [f(T) - f(S_i)]$$

$$\bullet = \left(1 - \frac{1}{k}\right)f(S_i) + \frac{1}{k}f(T)$$

What is f(S_k)?

What is $f(S_k)$?

• Claim:
$$f(S_i) \ge \left\lfloor 1 - \left(1 - \frac{1}{k}\right)^i \right\rfloor f(T)$$

Proof by induction:

• *i* = 0:

•
$$f(S_0) = f(\{\}) = 0$$

• $\left[1 - \left(1 - \frac{1}{k}\right)^0\right] f(T) = 0$

What is $f(S_k)$?

• Claim:
$$f(S_i) \ge \left\lfloor 1 - \left(1 - \frac{1}{k}\right)^i \right\rfloor f(T)$$

Proof by induction:

• At *i* + 1:

•
$$f(S_{i+1}) \ge \left(1 - \frac{1}{k}\right) f(S_i) + \frac{1}{k} f(T)$$

• $\ge \left(1 - \frac{1}{k}\right) \left[1 - \left(1 - \frac{1}{k}\right)^i\right] f(T) + \frac{1}{k} f(T)$
• $= \left[1 - \left(1 - \frac{1}{k}\right)^{i+1}\right] f(T)$

)

Thus: $f(S) = f(S_k) \ge \left[1 - \left(1 - \frac{1}{k}\right)^k\right] f(T)$ $\leq \frac{1}{e}$

Then:

$$f(S_k) \ge \left(1 - \frac{1}{e}\right) f(T)$$

qed.

Solution Quality

We just proved:

Hill climbing finds solution S which
 f(S) ≥ (1-1/e)*OPT i.e., f(S) ≥ 0.63*OPT

This is a data independent bound

- This is a worst case bound
- No matter what is the input data (influence sets) we know that Hill Climbing won't do worse than 0.63*OPT

Data dependent bound:

- Value of the bound depends on the input data
 - On "easy" data, hill climbing may do better than 63%

Data Dependent Bound

Suppose S is <u>some solution</u> to f(S) s.t. |S| ≤ k
f(S) is monotone & submodular
Let T = {t₁,...,t_k} be the OPT solution
For each u ∉ S let δ_u = f(S∪{u})-f(S) Order δ_u so that δ₁ ≥ δ₂ ≥ ... ≥ δ_n
Then: f(S) ≥ f(T) - ∑_{i=1}^k δ_i

Note:

- This is a data dependent bound (δ_u depend on input data)
- Bound holds for any algorithm
 - Makes no assumption about how S is computed
- For some inputs the bound can be "loose" (worse than 63%)

Data Dependent Bound

For each u \nothenged S let \delta_u = f(S\u2294\u2294\u2294)-f(S)
Order \delta_u so that \delta_1 \ge d_2 \ge ... \ge d_n
Then: $f(S) \ge f(T) - \sum_{i=1}^k \delta_i$ Proof:

$$f(T) \leq f(T \cup S) = f(S) + \sum_{i=1}^{k} [f(S \cup \{t_1 \dots t_i\}) - f(S \cup \{t_1 \dots t_{i-1}\})] \leq f(S) + \sum_{i=1}^{k} [f(S \cup \{t_i\}) - f(S)] = f(S) + \sum_{i=1}^{k} \delta_{t_i} \leq f(S) + \sum_{i=1}^{k} \delta_i \implies f(T) \leq f(S) + \sum_{i=1}^{k} \delta_i$$

Instead of adding $t_i \in T$ (of benefit δ_{ti}), we add the best possible element (δ_i)

10/20/2010

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Speeding Up Hill Climbing: Lazy Hill Climbing

Background: Submodular Functions

Add node with highest marginal gain

What do we know about optimizing submodular functions?

 A hill-climbing is near optimal (1-1/e (~63%) of OPT)

But

- Hill-climbing algorithm is slow
 - At each iteration we need to reevaluate marginal gains
 - It scales as O(n k)

Speeding up Hill-Climbing

- In round i+1: So far we picked $S_i = \{s_1, ..., s_i\}$
 - Now pick $s_{i+1} = \operatorname{argmax}_u f(S_i \cup \{u\}) f(S_i)$
 - maximize the "marginal benefit" $\delta_u(S_i) = f(S_i \cup \{u\}) f(S_i)$
- By submodularity property: $f(S_i \cup \{u\}) - f(S_i) \ge f(S_j \cup \{u\}) - f(S_j)$ for i<j

• Observation: By submodularity : For some u $\delta_u(S_i) \ge \delta_u(S_j)$ for $i \le j$ since $S_i \subseteq S_j$ $\delta_u(S_i) \ge \delta_u(S_j) \ge \delta_u(S_j)$

Marginal benefits δ_x only shrink!

Activating node *u* in step *i* helps more than activating it at step j (j>i)

u

Lazy Hill Climbing

Idea:

- Use δ_i as upper-bound on δ_j (j>i)
 Lazy hill-climbing:
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$

 $S \subseteq T$

Lazy Hill Climbing

Idea:

- Use δ_i as upper-bound on δ_j (j>i)
 Lazy hill-climbing:
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$

 $S \subseteq T$

Lazy Hill Climbing

Idea:

- Use δ_i as upper-bound on δ_j (j>i)
 Lazy hill-climbing:
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$

Outbreak Detection in Networks

Problem: Water Network

- Given a real city water distribution network
- And data on how contaminants spread in the network
- Detect the contaminant as quickly as possible
- Problem posed by the US Environmental Protection Agency

Water Network: Utility

Utility of placing sensors

- Water flow dynamics, demands of households, ...
- For each subset $A \subseteq V$ compute utility F(A)

10/20/2010

Problem Setting

Given a graph G(V,E)

 $\max_{S \subseteq V} f(S)$

- And the data on how outbreaks spread over the network:
 - For each outbreak i we know the time T(i,u) when outbreak *i* contaminated node *u*
- Goal: Select a subset of nodes A that maximize the expected **reward**:

detecting outbreak i Reward: Raise the alarm and save the most people

> Monitoring blue node saves more people than monitoring the green node

outbreak i

 $(i)f_i(S)$

Expected reward for

Structure of the Problem

Observation: Diminishing returns

Reward Function is Submodular

Claim:

The reward function is submodular

- Consider outbreak i:
 - f_i(u_k) = set of nodes saved from u_k
 - $f_i(S) = size of union f_i(u_k), u_k \in S$
 - ⇒f_i is <mark>submodular</mark>
- Global optimization:
 - $f(S) = \sum_{i} P(i) f_{i}(S)$
 - \Rightarrow f(S) is submodular

 $R_i(U_2)$

R_i(U₁

U₂

outbreak i

Case study: Water Network

- Real metropolitan area network
 - V = 21,000 nodes
 - E = 25,000 pipes

- Use a cluster of 50 machines for a month
- Simulate 3.6 million epidemic scenarios (152 GB of epidemic data)
- By exploiting sparsity we fit it into main memory (16GB)

Bounds on optimal solution

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Water: Heuristic Placement

Placement heuristics perform much worse

= I have 10 minutes. Which blogs should I read to be most up to date?

= Who are the most influential bloggers?

Detecting information outbreaks

Blogs: Solution Quality

Online bound is much tighter:

87% instead of 63%

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Blogs: Heuristic Selection

Heuristics perform much worse

Blogs: Scalability

Lazy evaluation runs **700** times faster than naïve Hill Climbing algorithm