Probabilistic Contagion in Graphs

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

Probabilistic Spreading Models

- Epidemic Model based on Random Trees
 - (a variant of branching processes)
 - A patient meets d other people
 - With probability q>0 infects each of them

= 0

- Q: For which values of *d* and *q* does the epidemic run forever?
 - Run forever: $\lim_{n\to\infty} P\begin{bmatrix} infected \ node \\ at \ depth \ n \end{bmatrix} > 0$
 - Die out:

-- || --

Probabilistic Spreading Models

- p_n = prob. there is an infected node at depth n
- We need: $\lim_{n\to\infty} p_n = ?$ (based on q and d)
- Need recurrence for p_n

$$p_n = 1 - (1 - qp_{n-1})^d$$

No infected node

- $\lim_{n \to \infty} p_n$ = result of iterating f(x) = 1 - (1 - qx)^d
 - Starting at x=1 (since p₁=1)

Fixed Point:
$$f(x) = 1 - (1 - qx)^d$$

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Fixed Point: When is this zero?

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Probabilistic Contagion

- In this model nodes only go from inactive → active
- Can generalize to allow nodes to alternate between active and inactive state by:

EXTRA: Generalizing the Model to Virus Propagation

Spreading Models of Viruses

- Generalizing to model to Virus Propagation
- **2** Parameters:
- (Virus) birth rate β:
 - probability than an infected neighbor attacks
- (Virus) death rate δ:
 - probability that an infected node heals

More Generally: S+E+I+R Models

General scheme for epidemic models:

Each node can go through phases:

Transition probs. are governed by model parameters

SIR Model

Node goes through phases

Susceptible → Infected → Recovered

Models chickenpox or plague:

Once you heal, you can never get infected again

Assuming perfect mixing

network is a complete graph
 the model dynamics is

$$\frac{dS}{dt} = -\beta IS$$
 $\frac{dI}{dt} = \beta IS - \nu I$ $\frac{dR}{dt} =$

νI

SIS Model

- Susceptible-Infective-Susceptible (SIS) model
- Cured nodes immediately become susceptible
- Virus "strength": $s = \beta / \delta$
- Node state transition diagram:

SIS Model

Models flu:

- Susceptible node becomes infected
- The node then heals and become susceptible again
- Assuming perfect mixing (complete graph):

 $\frac{dS}{dt} = -\beta SI + \delta I$

$$\frac{dI}{dt} = \beta SI - \delta I$$

Question: Epidemic threshold *t*

SIS Model

- Epidemic threshold of a graph G is a value of t, such that:
 - If virus strength s = β / δ < t
 the epidemic can not happen
 (it eventually dies out)

Given a graph what is its epidemic threshold?

Epidemic Threshold in SIS Model

• We have no epidemic if:

 $\triangleright \lambda_{1,A}$ alone captures the property of the graph!

Experiments (AS graph)

Does it matter how many people are initially infected?

Influence Maximization in Graphs

How to Create Big Cascades?

Blogs – Information epidemics

- Which are the influential/infectious blogs?
- Which blogs create big cascades?

Viral marketing

- Who are the influencers?
- Where should I advertise?

Disease spreading

Where to place monitoring stations to detect epidemics?

Probabilistic Contagion

Independent Cascade Model

- Directed finite G=(V,E)
- Set S starts out with new behavior
 - Say nodes with this behavior are "active"
- Each edge (v, w) has a probability p_{vw}
- If node v is active, it gets <u>one</u> chance to make w active, with probability p_{vw}
 - Each edge fires at most once

Does scheduling matter? No

- E.g., u,v both active, doesn't matter which fires first
- But the time moves in discrete steps

Independent Cascade Model

- Initially some nodes S are active
- Each edge (v,w) has probability (weight) p_{vw}

- When node v becomes active:
 - It activates each out-neighbor w with prob. p_{vw}
- Activations spread through the network

Most Influential Set of Nodes

- S: is initial active set
- f(S): the expected size of final active set

Most Influential Set

Problem:

Most influential set of size k: set S of k nodes producing largest expected cascade size f(S) if activated [Domingos-Richardson '01]

Influence set of b

• Optimization problem: $\max_{S \text{ of size } k} f(S)$

Most Influential Subset of Nodes

Most influential set of k nodes: set S on k nodes producing largest expected cascade size f(S) if activated
 The optimization problem:

 $\max_{\text{S of size } k} f(S)$

- How hard is this problem?
 - NP-HARD!
 - Show that finding most influential set is at least as hard as a vertex cover

Background: Vertex Cover

Vertex cover problem:

- Given universe of elements $U = \{u_1, ..., u_n\}$ and sets $S_1, ..., S_m \subseteq U$
- Are there k sets among S₁,..., S_m such that their union is U?

Goal:

Encode vertex cover as an instance of $\max_{S \text{ of size } k} f(S)$

Influence Maximization is NP-hard

- Given a vertex cover instance with sets S₁,..., S_m
- Build a bipartite "S-to-U" graph:

e.g.: S₁={u₁, u₂, u₃}

Construction:

• Create edge $(S_i,u) \forall S_i \forall u \in S_i$ -- directed edge from sets to their elements • Put weight 1 on each edge

There exists a set S of size k with f(S)=k+n iff there exists a size k set cover

Note: Optimal solution is always a set of S_i This is hard in general, could be special cases that are easier

Summary so Far

Bad news:

- Influence maximization is NP-hard
- Next, good news:
 - There exists an approximation algorithm!
- Consider the Hill Climbing algorithm to find S:
 - Input: Influence set of each node u = {v₁, v₂, ... }
 - If we activate u, nodes {v₁, v₂, ... } will eventually get active
 - Algorithm: At each step take the node u that gives best marginal gain: $\max f(S_{i-1} \cup \{u\})$

(Greedy) Hill Climbing

Algorithm:

- Start with S₀={}
- For *i*=1...*k*
 - Take node v that $\max f(S_{i-1} \cup \{v\})$

• Let
$$S_i = S_{i-1} \cup \{v\}$$

Example:

- Eval f({a}),... f({d}), pick max
- Eval f({a,b}),... f({a,d}), pick max
- Eval f(a,b,c},... f({a,b,d}, pick ...

b

pproximation Guarantee

Hill climbing produces a solution S where: f(S) ≥(1-1/e)*OPT (f(S)>0.63*OPT)

[Nemhauser, Fisher, Wolsey '78, Kempe, Kleinberg, Tardos '03]

- Claim holds for functions f() with 2 properties:
 - f is monotone: (activating more nodes doesn't hurt) if S \subset T then $f(S) \leq f(T)$ and $f({})=0$
 - f is submodular: (activating each additional node helps less) adding an element to a set gives less improvement than adding it to one of its subsets: $\forall S \subseteq T$

 $f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T)$

Gain of adding a node to a small set Gain of adding a node to a large set

Submodularity– Diminishing returns

Plan: Prove 2 things (1) Our f(S) is submodular (2) Hill Climbing gives nearoptimal solutions (for monotone submodular functions)

Background: Submodular Functions

We must show our *f()* is submodular:
 ∀S ⊆ T

$$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$$

Gain of adding a node to a small set

Gain of adding a node to a large set

Basic fact 1:

• If $f_1(x)$, ..., $f_k(x)$ are **submodular**, and c_1 ,..., $c_k \ge 0$ then $F(x) = \sum_i c_i \cdot f_i(x)$ is also **submodular**

(Linear combination of submodular functions is a submodular function)

(trivially u∉T)

Background: Submodular Functions

$$\forall S \subseteq T: f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$$

Gain of adding *u* to a small set Gain of adding *u* to a large set

- Basic fact 2: A simple submodular function
 - Sets A₁, ..., A_m
 - $f(S) = |\bigcup_{i \in S} A_i|$ (size of the union of sets A_i , $i \in S$)
 - Claim: f(S) is submodular!

The more sets you already have the less new area a new set will cover

Our *f(S)* is Submodular!

Principle of deferred decision:

- Flip all the coins at the beginning and record which edges fire successfully.
- Now we have a deterministic graph!
- Edges which succeed are <u>live</u>
- For the i-th realization of coin flips
 - f_i(S) = size of the set reachable by live-edge paths from nodes in S
 - f_i(S={a,b}) = {a,f,c,g,b}
 - f_i(S={a,d}) = {a,f,c,g,d,e,h}

Influence sets: $f_i(a) = \{a, f, c, g\}$ $f_i(d) = \{d, e, h\}$ $f_i(b) = \{b, c\}, ...$

a

Our *f(S)* is Submodular!

- Fix outcome i of coin flips
- *f_i(v)* = set of nodes
 reachable from *v* on
 live-edge paths
- *f_i(S)* = size of cascades
 from *S* given coin flips *i*

• $f_i(S) = |\bigcup_{v \in S} f_i(v)| \Rightarrow f_i(S)$ is submodular

f_i(v) are sets and f_i(S) is the size of the union

- Expected influence set size: $f(S) = \sum_{i} f_{i}(S) \Rightarrow f(S)$ is submodular!
 - f(S) is linear combination of submodular functions

Plan: Prove 2 things (1) Our f(S) is submodular (2) Hill Climbing gives nearoptimal solutions (for monotone submodular functions)

Proof for Hill Climbing

Claim:

If f(S) is monotone and submodular. Hill climbing produces a solution S where: $f(S) \ge (1-1/e)*OPT$ (f(S)>0.63*OPT)

Setting

- Keep adding nodes that give the largest gain
- Start with S₀={}, produce sets S₁, S₂,...,S_k
- Add elements one by one
- Marginal gain: $\delta_i = f(S_i) f(S_{i-1})$
- Let T={t₁...t_k} be the optimal set of size k
- We need to show: $f(S) \ge (1-1/e) f(T)$

Basic Hill Climbing Fact

•
$$f(A \cup B) - f(A) \le \sum_{j=1}^{k} [f(A \cup \{b_j\}) - f(A)]$$

• where: $B = \{b_1, \dots, b_k\}$ and f is submodular,

Proof:

Let
$$B_i = \{b_1, \dots, b_i\}$$
, so we have $B_1, B_2, \dots, B_k = B$
If $(A \cup B) - f(A) = \sum_{i=1}^k f(A \cup B_i) - f(A \cup B_{i-1})$
If $(A \cup B_{i-1} \cup \{b_i\}) - f(A \cup B_{i-1})$
If $(A \cup B_{i-1} \cup \{b_i\}) - f(A \cup B_{i-1})$
If $(A \cup \{b_i\}) - f(A)$
Work out the sum.
Everything but 1st and last term cancels out.
If $(A \cup B_1) - f(A \cup B_0) + f(A \cup B_2) - f(A \cup B_1) + f(A \cup B_2) - f(A \cup B_1) + f(A \cup B_3) - \dots + f(A \cup B_k) - f(A \cup B_{k-1})$

What is δ_i (e.i., Gain in step i)?

•
$$f(T) \leq f(S_i \cup T)$$
 (by monotonicity)
• $= f(S_i \cup T) - f(S_i) + f(S_i)$
• $\leq \sum_{j=1}^k [f(S_i \cup \{t_j\}) - f(S_i)] + f(S_i)$ (by prev. slide)
• $\leq \sum_{j=1}^k \delta_{i+1} + f(S_i) = f(S_i) + k \delta_{i+1}$
• Thus: $f(T) \leq f(S_i) + k \delta_{i+1}$
• $\delta_{i+1} \geq \frac{1}{k} [f(T) - f(S_i)]$

What is f(S_{i+1})?

- We just showed: $\delta_{i+1} \ge \frac{1}{k} [f(T) f(S_i)]$
- What is f(S_{i+1})?

•
$$f(S_{i+1}) = f(S_i) + \delta_{i+1}$$

$$\bullet \ge f(S_i) + \frac{1}{k} [f(T) - f(S_i)]$$

$$\bullet = \left(1 - \frac{1}{k}\right)f(S_i) + \frac{1}{k}f(T)$$

What is f(S_k)?

What is $f(S_k)$?

• Claim:
$$f(S_i) \ge \left[1 - \left(1 - \frac{1}{k}\right)^i\right] f(T)$$

Proof by induction:

• *i* = 0:

•
$$f(S_0) = f(\{\}) = 0$$

• $\left[1 - \left(1 - \frac{1}{k}\right)^0\right] f(T) = 0$

What is $f(S_k)$?

• Claim:
$$f(S_i) \ge \left\lfloor 1 - \left(1 - \frac{1}{k}\right)^i \right\rfloor f(T)$$

Proof by induction:

• At *i* + 1:

•
$$f(S_{i+1}) \ge \left(1 - \frac{1}{k}\right) f(S_i) + \frac{1}{k} f(T)$$

• $\ge \left(1 - \frac{1}{k}\right) \left[1 - \left(1 - \frac{1}{k}\right)^i\right] f(T) + \frac{1}{k} f(T)$
• $= \left[1 - \left(1 - \frac{1}{k}\right)^{i+1}\right] f(T)$

)

What is f(S_k)?

Thus: $f(S) = f(S_k) \ge \left| 1 - \left(1 - \frac{1}{k}\right)^{\kappa} \right| f(T)$ $\leq \frac{1}{2}$ Then: $f(S_k) \ge \left(1 - \frac{1}{e}\right) f(T)$

qed

Solution Quality

We just proved:

- Hill climbing finds solution S which
 f(S) ≥ (1-1/e)*OPT
 - this is a data independent bound
 - This is a worst case bound
 - No matter what is the input data (influence sets) we know that Hill Climbing won't do worse than 0.63*OPT

Data dependent bound:

 We want a bound whose value depends on the input data

If the data is "easy", we are likely doing better than 63% of OPT

Data Dependent Bound

Suppose S is some solution to

 $\operatorname{argmax}_{S} f(S) \text{ s.t. } |S| \leq k$

f() is monotone & submodular and let T = {t₁,...,t_k} be the OPT solution

CLAIM:

For each $u \notin S$ let $\delta_u = f(S \cup \{u\}) - f(S)$ Order δ_u so that $\delta_1 \ge \delta_2 \ge ... \ge \delta_n$ **Then:** $f(T) \le f(S) + \sum_{i=1}^k \delta_i$

Data Dependent Bound

For each u ∉ S let $\delta_u = f(S \cup \{u\}) - f(S)$ Order δ_u so that $\delta_1 \ge \delta_2 \ge ... \ge \delta_n$ Then: $f(T) \le f(S) + \sum_{i=1}^k \delta_i$ Proof:

$$f(T) \leq f(T \cup S) = f(S) + \sum_{i=1}^{k} [f(S \cup \{t_1 \dots t_i\}) - f(S \cup \{t_1 \dots t_{i-1}\})] \leq f(S) + \sum_{i=1}^{k} [f(S \cup \{t_i\}) - f(S)] = f(S) + \sum_{i=1}^{k} \delta_{t_i} \leq f(S) + \sum_{i=1}^{k} \delta_{t_i} \Rightarrow f(T) \leq f(S) + \sum_{i=1}^{k} \delta_i$$

Speeding Up Hill Climbing: Lazy Hill Climbing

Background: Submodular Functions

Add node with highest marginal gain

What do we know about optimizing submodular functions?

- A hill-climbing is near optimal (1-1/e (~63%) of OPT)
- But
 - Hill-climbing algorithm is slow
 - At each iteration we need to reevaluate marginal gains
 - It scales as O(n k)

Speeding up Hill-Climbing

- In round i+1: So far we picked $S_i = \{s_1, ..., s_i\}$
 - Now pick s_{i+1} = argmax_u F(S_i ∪ {u}) F(S_i)
 maximize the "marginal benefit" δ_u(S_i) = F(S_i ∪ {u}) F(S_i)
- By submodularity property: $f(S_i \cup \{u\}) - f(S_i) \ge f(S_j \cup \{u\}) - f(S_j)$ for i<j

• Observation: Submodularity implies $i \le j \Rightarrow \delta_x(S_i) \ge \delta_x(S_j)$ since $S_i \subseteq S_j$ Marginal benefits δ_x only shrink!

Activating node *u* in step *i* helps more than activating it at step j (j>i)

 $\delta_{ii}(S_i) \geq \delta_{ii}(S_{i+1})$

u

Lazy Hill Climbing

Idea:

- Use δ_i as upper-bound on δ_j (j>i)
 Lazy hill-climbing:
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$

 $S \subseteq T$

Lazy Hill Climbing

Idea:

- Use δ_i as upper-bound on δ_j (j>i)
 Lazy hill-climbing:
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$

 $S \subseteq T$

Lazy Hill Climbing

Idea:

- Use δ_i as upper-bound on δ_j (j>i)
 Lazy hill-climbing:
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$

 $S \subseteq T$

Outbreak Detection in Networks

[Leskovec et al., KDD '07]

Problem: Water Network

- Given a real city water distribution network
- And data on how contaminants spread in the network
- Detect the contaminant as quickly as possible
- Problem posed by the US Environmental Protection Agency

Problem Setting

- Given a graph G(V,E)
- Data on how outbreaks spread over the network:
 - for each outbreak *i* we know the time *T(i,u)* when outbreak *i* contaminated node *u*
- Select a subset of nodes A that maximize the expected reward:

$$\max_{\mathcal{A}\subseteq\mathcal{V}} R(\mathcal{A}) \equiv \sum_{i} P(i) \underset{\text{Reward for detecting}}{\sum_{i}} P(i) R_i(T(i,\mathcal{A}))$$

• **Reward:** Save the most people

[Leskovec et al., KDD '07]

Structure of the Problem

Observation: Diminishing returns

Reward Function is Submodular

Claim:

The reward function is submodular

Consider outbreak i:

- R_i(u_k) = set of nodes saved from u_k
- $R_i(A) = size of union R_i(u_k), u_k \in A$
- \Rightarrow R_i is submodular

Global optimization:

• $R(A) = \sum_{i} Prob(i) R_i(A)$

 \Rightarrow R(A) is submodular

 $f_i(U_2)$

 $f_i(U_1)$

 U_2

 U_1

outbreak i

[Leskovec et al., KDD '07]

Case study: Water Network

- Real metropolitan area network
 - V = 21,000 nodes
 - E = 25,000 pipes

- Use a cluster of 50 machines for a month
- Simulate 3.6 million epidemic scenarios (152 GB of epidemic data)
- By exploiting sparsity we fit it into main memory (16GB)

Bounds on optimal solution

10/20/2010

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

[Leskovec et al., KDD '07]

Water: Heuristic Placement

Placement heuristics perform much worse

- = I have 10 minutes. Which blogs should I read to be most up to date?
- = Who are the most influential bloggers?

Detecting information outbreaks

Blogs: Solution Quality

Online bound is much tighter:

13% instead of 37%

[Leskovec et al., KDD '07]

Blogs: Heuristic Selection

Heuristics perform much worse

Blogs: Scalability

Lazy evaluation runs **700** times faster than naïve Hill Climbing algorithm