Decision Based Models of Cascades

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

RECAP: Game Theoretic Model of Cascades

Game Theoretic Model of Cascades

- Based on 2 player coordination game
- 2 players - each chooses technology A or B
- Each person can only adopt one "behavior", A or B
- You gain more payoff if your friend has adopted the same behavior as you

Local view of the network of node v

The Model for Two Nodes

- Payoff matrix:
- If both v and w adopt behavior A, they each get payoff $a>0$
- If v and w adopt behavior B, they reach get payoff $b>0$

- If v and w adopt the opposite behaviors, they each get 0

- In some large network:
- Each node v is playing a copy of the game with each of its neighbors
- Payoff: sum of node payoffs per game

Calculation of Node v

Threshold:
v choses A if $p>q$

$$
q=\frac{b}{a+b}
$$

- Let v have d neighbors
- Assume fraction p of v 's neighbors adopt A
- Payoff $_{v}=a \cdot p \cdot d$

$$
=b \cdot(1-p) \cdot d
$$

if v chooses A
if v chooses B

- Thus: v chooses A if: $a \cdot p \cdot d>b \cdot(1-p) \cdot d$

Extending the Model:
Allow People to Adopt A and B

Cascades \& Compatibility

- So far:
- Behaviors A and B compete
- Can only get utility from neighbors of same behavior: $A-A$ get $a, B-B$ get $b, A-B$ get 0
- Let's add extra strategy " $A-B$ "
- AB-A: gets a
- $A B-B$: gets b
- AB-AB: gets max (a, b)
- Also: Some cost c for the effort of maintaining both strategies (summed over all interactions)

Cascades \& Compatibility: Model

- Every node in an infinite network starts with B
- Then a finite set S initially adopts A
- Run the model for $t=1,2,3, \ldots$
- Each node selects behavior that will optimize payoff (given what its neighbors did in at time $t-1$)

- How will nodes switch from B to A or $A B$?

Example

- Path: Start with all Bs, a>b (A is better)
- One node switches to \mathbf{A} - what happens?
- With just A, B: A spreads if $b \leq a$
- With A, B, AB: Does A spread?
- Assume $a=2, b=3, c=1$

Cascade stops

Example

- Let $\mathrm{a}=5, \mathrm{~b}=3, \mathrm{c}=1$

For what pairs (c,a) does A spread?

- Infinite path, start with all Bs

B

- Payoffs for w: A:a, B:1, AB:a+1-c
- What does node w in A-w-B do?

For what pairs (c,a) does A spread?

- Same reward structure as before but now payoffs for w change: $A: a, B: 1+1, A B: a+1-c$
- Notice: Now also AB spreads
- What does node w in AB-w-B do?

For what pairs (c, a) does A spread?

- Joining the two pictures:

Lesson

- You manufacture default B and new/better A comes along:
- Infiltration: If B is too compatible then people will take on both and then drop the worse one (B)
- Direct conquest: If A makes itself not compatible - people on the border must choose. They pick the better one (A)

- Buffer zone: If you choose an optimal level then you keep a static "buffer" between A and B

Decision Based Model: Herding

Decision Based Model: Herding

- Influence of actions of others
- Model where everyone sees everyone else’s behavior
- Sequential decision making
- Example: Picking a restaurant
- Consider you are choosing a restaurant in an unfamiliar town
- Based on Yelp reviews you intend to go to restaurant A
- But then you arrive there is no one eating at A but the next door restaurant B is nearly full
- What will you do?
- Information that you can infer from other's choices may be more powerful than your own

Herding: Structure

- Herding:
- There is a decision to be made
- People make the decision sequentially
- Each person has some private information that helps guide the decision
- You can't directly observe private information of the others but can see what they do
- You can make inferences about the private information of others

Herding: Simple Experiment

- Consider an urn with 3 marbles. It can be either:
- Majority-blue: 2 blue, 1 red, or
- Majority-red: 1 blue, 2 red
- Each person wants to best guess whether the urn is majority-blue or majority-red
- Guess red if P (majority-red | what she has seen or heard) > $1 / 2$
- Experiment: One by one each person:
- Draws a marble
- Privately looks are the color and puts the marble back
- Publicly guesses whether the urn is majority-red or majority-blue
- You see all the guesses beforehand. How should you make your guess?

Herding: What Happens?

See ch. 16 of

- Informally, What happens?
- \#1 person: Guess the color you draw from the urn.
- \#2 person: Guess the color you draw from the urn. Why?
- If same color as $1^{\text {st }}$, then go with it
- If different, break the tie by doing with your own color
- \#3 person:
- If the two before made different guesses, go with your color
- Else, go with their guess (regardless your color) - cascade starts!
- \#4 person:
- Suppose the first two guesses were R, you go with R
- Since $3^{\text {rd }}$ person always guesses R
- Everyone else guesses R (regardless of their draw)

Herding: Three Ingredients

- Three ingredients:
- State of the world:
- Whether the urn is MR or MB
- Payoffs:
- Utility of making a correct guess
- Signals:
- Models private information:
- The color of the marble that you just draw
- Models public information:
- The MR vs MB guesses of people before you

Sequential Decision Making

- Decision: Guess MR if $P(M R \mid$ past actions $]>\frac{1}{2}$
- Analysis (Bayes rule):
- \#1 follows her own color (private signal)!
- Why? $P(M R \mid \mathrm{r}]=\frac{P(M R) P(r \mid M R)}{P(r)}=\frac{1 / 2 \cdot 2 / 3}{1 / 2}=2 / 3$

$$
P(r)=P(r \mid M B) P(M B)+P(r \mid M R) P(M R)=\frac{1}{2} \frac{1}{3}+\frac{1}{2} \frac{2}{3}=1 / 2
$$

- \#2 guesses her own color (private signal)!
- \#2 knows \#1 revealed her color. So, \#2 gets 2 colors.
- If they are the same, decision is easy.
- If not, break the tie in favor of her own color

Sequential Decision Making

- \#3 follows majority signal!
- Knows \#1, \#2 acted on their colors. So, \#3 gets 3 signals.
- If \#1 and \#2 made opposite decisions, \#3 goes with her own color. Future people will know \#3 revealed its signal $P(M R \mid r, r, b]=2 / 3$
- If \#1 and \#2 made same choice, \#3's decision conveyed no info. Cascade has started!
- How does this unfold? You are N-th person
- \#MB = \#MR : you guess your color
- |\#MB - \#MR|=1 : your color makes you indifferent, or reinforces you guess
- |\#MB - \#MR| 22 : Ignore your signal. Go with majority.

Sequential Decision Making

- Cascade begins when the difference between the number of blue and red guesses reaches 2

Herding: Observations

- Easy to occur given the right structural conditions
- Can lead to bizarre patterns of decisions
- Non-optimal outcomes
- With prob. $1 / 3 \cdot 1 / 3=1 / 9$ first two see the wrong color, from then on the whole population guesses wrong
- Can be very fragile
- Suppose first two guess blue
- People 100 and 101 draw red and cheat by showing their marbles
- Person 102 now has 4 pieces of information, she guesses based on her own color
- Cascade is broken

Empirical Studies of
Cascading Behavior

Modeling Cascading Behavior

- Basis for models:
- Probability of adopting new behavior depends on the number of friends who have already adopted
- What's the dependence?

Diminishing returns: Viruses, Information

Adoption Curve: LiveJournal

- Group memberships spread over the network:
- Red circles represent existing group members
- Yellow squares may join
- Question:
- How does prob. of joining a group depend on the number of friends already in the group?

[Backstrom et al., KDD 'o6]

Adoption Curve: LiveJournal

- LiveJournal group membership

Diffusion in Viral Marketing

- Senders and followers of recommendations receive discounts on products

- Data: Incentivized Viral Marketing program
- 16 million recommendations
- 4 million people, 500 k products

Adoption Curve: Validation

DVD recommendations
 (8.2 million observations)

What are We Really Measuring?

- For viral marketing:
- We see that node v receiving the i-th recommendation and then purchased the product
- For groups:
- At time t we see the behavior of node v's friends
- Good questions:
- When did v become aware of recommendations or friends' behavior?
- When did it translate into a decision by v to act?
- How long after this decision did v act?

Cascading of Product Recommendations \& Purchases

Diffusion in Viral Marketing

- Large Anonymous online retailer
(June 2001 to May 2003)
- 15,646,121 recommendations
- 3,943,084 distinct customers
- 548,523 products recommended
- Products belonging to 4 product groups:
- Books, DVDs, music, VHS
- Important:
- You can only make recommendations when you buy
- Only the $1^{\text {st }}$ person to respond to a recommendation gets 10% discount, recommender gets 10% credit

Viral Marketing: Subtle Features

- What role does the product category play?

	products	customers	recommenda- tions	edges	buy + get discount	buy+no discount
Book	103,161	$2,863,977$	$5,741,611$	$2,097,809$	65,344	17,769
DVD	19,829	805,285	$8,180,393$	962,341	17,232	58,189
Music	393,598	794,148	$1,443,847$	585,738	7,837	2,739
Video	26,131	239,583	280,270	160,683	909	467
Full	542,719	$3,943,084$	$15,646,121$	$3,153,676$	91,322	79,164

DVD Recommendation Network

- purchase following a recommendation
- customer recommending a product
- customer not buying a recommended product

Observations:

- Majority of
recommendations do not cause purchases nor propagation
- Notice many star-like patterns
- Many disconnected components

Cascade Formation Process

- Recommendations on a single product

- Time: $\mathrm{t}_{1}<\mathrm{t}_{2}<\ldots<\mathrm{t}_{\mathrm{n}}$

legend

bought but didn't receive a discount
bought and
received a discount
received a recommendation
but didn't buy

How we know who purchased?
Buy-bit: receiver purchased first
(got 10\% credit)
Buy-edge: since t_{1} recommended to t_{3} and t_{3} further recommended, t_{3} must have purchased

Measuring Cascade Sizes

- How big are cascades?
- Delete late recommendations
- Count how many people are in a single cascade
- Exclude nodes that did not buy

Cascade Size: DVDs

- DVD cascades can grow large
- Possibly as a result of websites where people sign up to exchange recommendations

shallow drop off - fat tail

More Subtle Features

- Does sending more recommendations influence more purchases?

BOOKS

DVDs

More Subtle Features

- What is the effectiveness of subsequent recommendations?

DVDs
BOOKS

Observations on Product Groups

- We have relatively few DVD titles, but DVDs account for ~ 50% of all recommendations
- Recommendations per person
- DVD: 10
- books and music: 2
- VHS: 1
- Recommendations per purchase
- books: 69
- DVDs: 108
- music: 136
- VHS: 203
- Overall there are 3.69 recommendations per node on 3.85 different products
- Music recommendations reached about the same number of people as DVDs but used only 20\% as many recommendations
- Book recommendations reached by far the most people -2.8 million
- All networks have a very small number of unique edges
- For books, videos and music the number of unique edges is smaller than the number of nodes - the networks are highly disconnected

Product Characteristics

- consider successful recommendations in terms of
- av. \# senders of recommendations per book category
- av. \# of recommendations accepted
- books overall have a 3% success rate
- (2\% with discount, 1% without)
- lower than average success rate (significant at $\mathrm{p}=0.01$ level)
- fiction
- romance (1.78), horror (1.81)
- teen (1.94), children's books (2.06)
- comics (2.30), sci-fi (2.34), mystery and thrillers (2.40)
- nonfiction
- sports (2.26)
- home \& garden (2.26)
- travel (2.39)
- higher than average success rate (statistically significant)
- professional \& technical
- medicine (5.68)
- professional \& technical (4.54)
- engineering (4.10), science (3.90), computers \& internet (3.61)
- law (3.66), business \& investing (3.62)

Anime DVDs

- 47,000 customers responsible for the 2.5 out of 16 million recommendations in the system
- 29% success rate per recommender of an anime DVD
- Giant component covers 19\% of the nodes
- Overall, recommendations for DVDs are more likely to result in a purchase (7\%), but the anime community stands out

Predicting Recommendation Success

Variable	transformation	Coefficient
const		$-0.940 * * *$
\# recommendations	$\ln (\mathrm{r})$	$0.426 * * *$
\# senders	$\ln \left(\mathrm{n}_{\mathrm{s}}\right)$	$-0.782^{* * *}$
\# recipients	$\ln \left(\mathrm{n}_{\mathrm{r}}\right)$	$-1.307 * * *$
product price	$\ln (\mathrm{p})$	$0.128 * * *$
\# reviews	$\ln (\mathrm{v})$	$-0.011 * * *$
avg. rating	$\ln (\mathrm{t})$	$-0.027 *$
R^{2}		$\mathbf{0 . 7 4}$

significance at the $0.01\left({ }^{(* *)}\right.$, $0.05\left(^{(* *)}\right.$ and $0.1\left(^{*}\right)$ levels

Viral Marketing: Not spreading virally

- 94\% of users make first recommendation without having received one previously
- Size of giant connected component increases from 1\% to 2.5% of the network (100,420 users) - small!
- Some sub-communities are better connected
- 24% out of 18,000 users for westerns on DVD
- 26% of 25,000 for classics on DVD
- 19\% of 47,000 for anime (Japanese animated film) on DVD
- Others are just as disconnected
- 3\% of 180,000 home and gardening
- 2-7\% for children's and fitness DVDs

Viral Marketing: Consequences

Products suited for Viral Marketing:

- small and tightly knit community
- few reviews, senders, and recipients
- but sending more recommendations helps
- pricey products
- rating doesn't play as much of a role

Observations for future diffusion models:

- purchase decision more complex than threshold or simple infection
- influence saturates as the number of contacts expands
- links user effectiveness if they are overused

Conditions for successful recommendations:

- professional and organizational contexts
- discounts on expensive items
- small, tightly knit communities

