Diffusion and Cascading Behavior in Networks

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

Spreading Through Networks

- Spreading through networks:
- Cascading behavior
- Diffusion of innovations
- Network effects
- Epidemics
- Behaviors that cascade from node to node like an epidemic
- Examples:
- Biological:
- Diseases via contagion
- Technological:
- Cascading failures
- Spread of information
- Social:
- Rumors, news, new technology
- Viral marketing

Information Diffusion

Diffusion in Viral Marketing

- Product adoption:
- Senders and followers of recommendations

Spread of Diseases

Network Cascades

- Behavior/contagion spreads over the edges of the network
- It creates a propagation tree, i.e., cascade

Network

Cascade
(propagation graph)

Terminology:

- Stuff that spreads: Contagion
- "Infection" event: Adoption, infection, activation
- We have: Infected/active nodes, adoptors

How to Model Diffusion?

- Probabilistic models:
- Models of influence or disease spreading
- An infected node tries to "push" the contagion to an uninfected node
- Example:
- You "catch" a disease with some prob. from each active neighbor in the network
- Decision based models:

- Models of product adoption, decision making
- A node observes decisions of its neighbors and makes its own decision
- Example:
- You join demonstrations if k of your friends do so too

Decision Based Model of Diffusion

Decision Based Models

- Collective Action [Granovetter, '78]
- Model where everyone sees everyone else's behavior
- Examples:
- Clapping or getting up and leaving in a theater
- Keeping your money or not in a stock market
- Neighborhoods in cities changing ethnic composition
- Riots, protests, strikes

Collective Action: The Model

- n people - everyone observes all actions
- Each person i has a threshold t_{i}
- Node i will adopt the behavior iff at least t_{i} other people are adopters:
- Small t_{i} : early adopter
- Large $\boldsymbol{t}_{\boldsymbol{i}}$: late adopter

- The population is described by $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$
- $\mathrm{F}(\mathrm{x})$... fraction of people with threshold $\boldsymbol{t}_{\boldsymbol{i}} \leq \boldsymbol{x}$

Collective action: Dynamics

- Think of the step-by-step change in number of people adopting the behavior:
- $\mathbf{F}(\mathbf{x})$... fraction of people with threshold $\leq x$
- $\mathbf{s}(\mathbf{t})$... number of participants at time t
- Easy to simulate:
- $s(0)=0$
- $s(1)=F(0)$
- $s(2)=F(s(1))=F(F(0))$
- $s(t+1)=F(s(t))=F^{t+1}(0)$
- Fixed point: F(x)=x
- There could be other fixed points but starting from 0 we never reach them

Starting Elsewhere

- What if we start the process somewhere else?
- We move up/down to the next fixed point
- How is market going to change?

Fragile vs. Robust Fixed Point

Discontinuous transition

- Each threshold t_{i} is drawn independently from some distribution $F(x)=\operatorname{Pr}[$ thresh $\leq x]$
- Suppose: Normal with $\mu=n / 2$, variance σ Small σ :

Large σ :

Discontinuous transition

$N(45,10)$ PDF

N(45, 27) PDF

Bigger variance let's you build a bridge from early adopters to mainstream

Discontinuous transition

But if we increase the variance even more we move the higher fixed point lover

Weaknesses of the model

- It does not take into account:
- No notion of social network - more influential users
- It matters who the early adopters are, not just how many
- Models people’s awareness of size of participation not just actual number of people participating
- Modeling thresholds
- Richer distributions
- Deriving thresholds from more basic assumptions
- game theoretic models

Weaknesses of the model

- It does not take into account:
- Modeling perceptions of who is adopting the behavior/ who you believe is adopting
- Non monotone behavior - dropping out if too many people adopt
- Similarity - thresholds not based only on numbers
- People get "locked in" to certain choice over a period of time
- Network matters! (next slide)

Game Theoretic Model of Cascades

Game Theoretic Model of Cascades

- Based on 2 player coordination game
- 2 players - each chooses technology A or B
- Each person can only adopt one "behavior", A or B
- You gain more payoff if your friend has adopted the same behavior as you

Local view of the network of node v

Example: BlueRay vs. HD DVD

The Model for Two Nodes

- Payoff matrix:
- If both v and w adopt behavior A, they each get payoff $a>0$
- If v and w adopt behavior B, they reach get payoff $b>0$

- If v and w adopt the opposite behaviors, they each get 0
- In some large network:
- Each node v is playing a copy of the game with each of its neighbors
- Payoff: sum of node payoffs per game

w

Calculation of Node v

Threshold:
v choses A if $p>q$

$$
q=\frac{b}{a+b}
$$

- Let v have d neighbors
- Assume fraction p of v 's neighbors adopt A
- Payoff $_{v}=a \cdot p \cdot d$

$$
=b \cdot(1-p) \cdot d
$$

if v chooses A
if v chooses B

- Thus: v chooses A if: $a \cdot p \cdot d>b \cdot(1-p) \cdot d$

Example Scenario

- Scenario:

Graph where everyone starts with B.
Small set S of early adopters of A

- Hard wire S - they keep using A no matter what payoffs tell them to do
- Payoffs are set in such a way that nodes say: If at least $\mathbf{5 0 \%}$ of my friends are red l'll be red (this means: $a=b+\varepsilon$)

Example Scenario

$S=\{u, v\}$

If more than 50% of my friends are red I'll be red

Example Scenario

$S=\{u, v\}$

If more than 50% of my friends are red I'll be red

Example Scenario

$S=\{u, v\}$

If more than
50% of my
friends are red
I'll be red

Example Scenario

$S=\{u, v\}$

If more than
50% of my
friends are red
I'll be red

Example Scenario

$S=\{u, v\}$

If more than
50% of my
friends are red
I'll be red

Example Scenario

$S=\{u, v\}$

If more than
50% of my
friends are red
I'll be red

Monotonic Spreading

- Observation:
- The use of A spreads monotonically
(Nodes only switch from B to A, but never back to B)
- Why? Proof sketch:
- Nodes keep switching from B to $A: B \rightarrow A$
- Now, suppose some node switched back from $A \rightarrow B$, consider the first node v to do so (say at time t)
- Earlier at time $t^{\prime}\left(t^{\prime}<t\right)$ the same node v switched $B \rightarrow A$
- So at time $t^{\prime} v$ was above threshold for A
- But up to time t no node switched back to B, so node v could only had more neighbors who used A at time t compared to t^{\prime}. There was no reason for v to switch.
!! Contradiction !!

Infinite Graphs

v choses A if $p>q$

- Consider infinite graph G

$$
q=\frac{b}{a+b}
$$

- (but each node has finite number of neighbors)
- We say that a finite set S causes a cascade in G with threshold q if, when S adopts A, eventually every node adopts A
- Example: Path

If $q<1 / 2$ then cascade occurs

S

Infinite Graphs

- Infinite Tree:

If $q<1 / 3$ then

cascade occurs

- Infinite Grid:

If $\mathbf{q}<1 / 4$ then cascade occurs

Cascade Capacity

- Def:
- The cascade capacity of a graph G is the largest q for which some finite set S can cause a cascade
- Fact:
- There is no G where cascade capacity > $1 / 2$
- Proof idea:
- Suppose such G exists: $q>1 / 2$, finite S causes cascade
- Show contradiction: Argue that nodes stop switching after a finite \# of steps

Cascade Capacity

- Fact: There is no G where cascade capacity $>1 / 2$
- Proof sketch:
- Suppose such G exists: $q>1 / 2$, finite S causes cascade
- Contradiction: Switching stops after a finite \# of steps
" Define "potential energy"
- Argue that it starts finite (non-negative) and strictly decreases at every step
- "Energy": = |dout $(\mathrm{X}) \mid$
- |dout $(X) \mid:=\#$ of outgoing edges of active set X
- The only nodes that switch have a strict majority of its neighbors in S
- |dout $(X) \mid$ strictly decreases
- It can do so only a finite number of steps

Stopping Cascades

- What prevents cascades from spreading?
- Def: Cluster of density ρ is a set of nodes C where each node in the set has at least ρ fraction of edges in C.

Stopping Cascades

- Let S be an initial set of adopters of A
- All nodes apply threshold q to decide whether to switch to A
- Two facts:
- 1) If $G \backslash S$ contains a cluster of density $>(1-q)$ then S can not cause a cascade
- 2) If S fails to create a cascade, then there is a cluster of density $>(1-q)$ in $G \backslash S$

Extending the model:
Allow people to adopt A and B

Cascades \& Compatibility

- So far:
- Behaviors A and B compete
- Can only get utility from neighbors of same behavior: $A-A$ get $a, B-B$ get $b, A-B$ get 0
- Let's add extra strategy " $A-B$ "
- AB-A: gets a
- $A B-B$: gets b
- AB-AB: gets max (a, b)
- Also: Some cost c for the effort of maintaining both strategies (summed over all interactions)

Cascades \& Compatibility: Model

- Every node in an infinite network starts with B
- Then a finite set S initially adopts A
- Run the model for $t=1,2,3, \ldots$
- Each node selects behavior that will optimize payoff (given what its neighbors did in at time $t-1$)

- How will nodes switch from B to A or $A B$?

Example

- Path: Start with all Bs, a>b (A is better)
- One node switches to \mathbf{A} - what happens?
- With just A, B: A spreads if $b \leq a$
- With A, B, AB: Does A spread?
- Assume $a=2, b=3, c=1$

Cascade stops

Example

- Let $\mathrm{a}=5, \mathrm{~b}=3, \mathrm{c}=1$

For what pairs (c,a) does A spread?

- Infinite path, start with all Bs
- Payoffs: A:a, B:1, AB:a+1-c

- What does node w in A-w-B do?

For what pairs (c,a) does A spread?

- Payoffs: A:a, B:2, AB:a+2-c
- Notice: now also AB spreads

B

- What does node w in AB-w-B do?

For what pairs (c, a) does A spread?

- Joining the two pictures:

Lesson

- You manufacture default B and new/better A comes along:
- Infiltration: If you make B too compatible then people will take on both and then drop the worse one (B)
- Direct conquest: If A makes itself not compatible - people on the border must choose. They pick the better one (A)
 optimal level then you keep a static "buffer" between A and B

