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 Networks with positive and negative 
relationships 

 

 Consider an undirected complete graph 
 Label each edge as either: 
 Positive: friendship, trust, positive sentiment, … 
 Negative: enemy, distrust, negative sentiment, … 

 

 Examine triples of connected nodes A, B, C 
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 Start with the intuition [Heider ’46]: 
 Friend of my friend is my friend 
 Enemy of enemy is my friend 
 Enemy of friend is my enemy 

 Look at connected triples of nodes: 
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“enemy of the enemy” intuition 
Inconsistent with the “friend of a friend” 

or “enemy of the enemy” intuition 
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Balanced Unbalanced 

 Graph is balanced if every connected triple of 
nodes has: 
 all 3 edges labeled +, or  
 exactly 1 edge labeled + 



 Balance implies global coalitions [Cartwright-Harary] 

 If all triangles are balanced, then either: 
 The network contains only positive edges, or 
 Nodes can be split into 2 sets where negative edges 

only point between the sets 
 

10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 5 

+ + 
L 

+ 
R 

- 



10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 6 

B 
+ 

C 

D 

E 

+ 

– 

–  

Friends of A Enemies of A 

Every node in L is enemy of R 

+ + 

– 

A 
Any 2 nodes 
in L are friends 

Any 2 nodes 
in R are friends 

L 

R 



 International relations: 
 Positive edge: alliance 
 Negative edge: animosity 

 Separation of Bangladesh from Pakistan in 
1971: US supports Pakistan. Why? 
 USSR was enemy of China 
 China was enemy of India 
 India was enemy of Pakistan 
 US was friendly with China 
 China vetoed  

Bangladesh from U.N. 
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 Def 1: Local view 
 Fill in the missing 

edges to achieve 
balance 

 

 Def 2: Global view 
 Divide the graph into 

two coalitions 
 

 The 2 defs. are 
equivalent! 
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 Graph is balanced if and only if it contains no 
cycle with an odd number of negative edges. 

 How to compute this? 
 Find connected components on + edges 
 For each component create a super-node 
 Connect components A and B if there is a  

negative edge between the members 
 Assign super-nodes to sides using BFS 

10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 15 



10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 16 



10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 17 



10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 18 



 Using BFS assign each node a side 
 Graph is unbalanced if any two  

super-nodes are assigned the same side 
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 Each link AB is explicitly tagged with a sign: 
 Epinions: Trust/Distrust 
 Does A trust B’s product reviews? 

(only positive links are visible) 

 Wikipedia: Support/Oppose 
 Does A support B to become 

Wikipedia administrator? 

 Slashdot: Friend/Foe 
 Does A like B’s comments? 

 Other examples:  
 Online multiplayer games 
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 Does structural balance hold? 
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 Intuitive picture of social 
 network in terms of  
densely linked clusters 

 

 How does structure  
interact with links? 

 

 Embeddedness of  
link (A,B): Number of shared 
neighbors 
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 Embeddedness of ties: 
 Positive ties tend to be 

more embedded 
 

 Positive ties tend to be 
more clumped together 

 Public display of signs 
(votes) in Wikipedia 
further attenuates this 
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 Clustering: 
 +net: More clustering than baseline 
 –net: Less clustering than baseline 

 Size of connected component: 
 +/–net: Smaller than the baseline 
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 New setting: 
 Links are directed and  

created over time 
 
 
 

 How many  are now  
explained by balance? 
 Only half (8 out of 16) 

 Is there a better explanation? Yes. Status. 
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B B 

 Links are directed and created over time 
 Status theory [Davis-Leinhardt ‘68, Guha et al. ’04, Leskovec et al. ‘10] 

 Link A  B means: B has higher status than A 
 Link A  B means: B has lower status than A 

 Status and balance give different predictions: 
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B 

 Edges are directed 
 Edges are created over time 
 X has links to A and B 
 Now, A links to B (triad A-B-X) 
 How does sign of A-B depend  

signs of X? 
 We need to formalize: 
 Links are embedded in triads: 
 Provides context for signs 
 Users are heterogeneous in  

their linking behavior 
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 Link (A,B) appears 
in the context 
(A,B; X) 
 

 16 different 
contextualized 
links: 
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 Surprise: How much behavior of user 
deviates from baseline in context t: 
 (A1, B1; X1),…, (An, Bn; Xn) …  

instances of contextualized link t 
 k of them closed with a plus 
 pg(Ai)… generative baseline of Ai  
 empirical prob. of Ai giving a plus 

 Then: generative surprise of  
triad type t: 
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 Two basic examples: 
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Rec. surprise of B:  — 

Gen. surprise of A: — 
Rec. surprise of B:  — 



 Determine node status: 
 Assign X status 0 
 Based on signs and directions 

of edges set status of A and B 
 

 Surprise is status-consistent, if: 
 Gen. surprise is status-consistent 

if it has same sign as status of B 
 Rec. surprise is status-consistent  

if it has the opposite sign from the status of A 
 Surprise is balance-consistent, if: 
 If it completes a balanced triad 
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 Predictions: 
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 Both theories make predictions about the 
global structure of the network 

 

 Structural balance – Factions 
 Find coalitions 

 Status theory – Global Status 
 Flip direction and sign of  

minus edges 
 Assign each node a unique status  

so that edges point from low to high 
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 Fraction of edges of the network that satisfy 
Balance  and Status? 

 

 Observations: 
 No evidence for global balance beyond the 

random baselines 
 Real data is 80% consistent vs. 80% consistency under 

random baseline 
 Evidence for global status beyond the random 

baselines  
 Real data is 80% consistent, but 50% consistency under 

random baseline 
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Edge sign prediction problem 
 Given a network and signs on all but 

one edge, predict the missing sign 
Machine Learning Formulation: 
 Predict sign of edge (u,v) 
 Class label:  
 +1: positive edge 
 -1: negative edge 

 Learning method: 
 Logistic regression 

 
 
 

 Dataset: 
 Original: 80%  +edges 
 Balanced:  50%  +edges 

 Evaluation: 
 Accuracy and ROC curves 

 Features for learning: 
 Next slide 
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For each edge (u,v) create features: 
 Triad counts (16): 
 Counts of signed triads  

edge uv takes part in 
 Node degree (7 features): 
 Signed degree:  
 d+

out(u), d-
out(u),  

d+
in(v),  d-

in(v) 
 Total degree:  
 dout(u), din(v) 

 Embeddedness  
of edge (u,v) 

 
 

u v 

- + 
+ + 

- - 
+ - 
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 Classification Accuracy: 
 Epinions: 93.5% 
 Slashdot: 94.4% 
 Wikipedia: 81% 

 Signs can be modeled from 
local network structure alone 
 Trust propagation model of 

[Guha et al. ‘04] has 14% error 
on Epinions 

 Triad features perform less 
well for less embedded edges 

 Wikipedia is harder to model: 
 Votes are publicly visible 
 

Epin 

Slash 

Wiki 
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 Do people use these very different linking 
systems by obeying the same principles? 
 How generalizable are the results across the datasets? 
 Train on row “dataset”, predict on “column” 
 
 
 
 

 
 Nearly perfect generalization of the models  

even though networks come from very  
different applications 
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 Signed networks provide insight into how 
social computing systems are used: 
 Status vs. Balance 
 Different role of reciprocated links 
 Role of embeddedness and public display 

 Sign of relationship can be reliably predicted 
from the local network context 
 ~90% accuracy sign of the edge 
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 More evidence that networks are globally 
organized based on status 

 People use signed edges consistently 
regardless of particular application 
 Near perfect generalization of models across 

datasets 
 Many further directions: 
 Status difference of nodes  

A and B [ICWSM ‘10]: 
 

 
A<B         A=B           A>B 

Status difference (A-B) 
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