Networks with Signed Edges



Signed Networks

Networks with and
relationships

Consider an
Label each edge as either:

friendship, trust, positive sentiment, ...
enemy, distrust, negative sentiment, ...

Examine triples of connected nodes A, B, C
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Theory of Structural Balance

[Heider ’46]:

of my is my
of is my
of is my

Look at connected triples of nodes:

oy o

Consistent with “friend of a friend” or Inconsistent with the “friend of a friend”

“enemy of the enemy” intuition or “enemy of the enemy” intuition
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Balanced/unbalanced networks

Graph is if every connected triple of
nodes has:

all 3 edges labeled +, or
exactly 1 edge labeled +

Unbalanced
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Local Balance = Global Factions

[Cartwright-Harary]
If all triangles are balanced, then either:

The network contains only positive edges, or

Nodes can be split into 2 sets where negative edges
only point between the sets

O 60
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Analysis of Balance

Every nodein L is enemy of R

Any 2 nodes \ \‘/ Any 2 nodes

in L are friends + A + INR are friends

& Yo

Friends of A Enemies of A
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Example: International Relations

edge: alliance
edge: animosity

Separation of Bangladesh from Pakistan in

1971: Why?
®

10/10/2011

USSR was enemy of China =% ?

China was enemy of India
India was enemy of Pakistan
US was friendly with China

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu




1872-1881

Austria-Hungary

France

Russia
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1882

France

Russia
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1891-1894

Austria-Hungary

France

Russia
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France

Russia
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Balance in General Networks

-@ balance ®+©

¥

Fill in the missing Q/@
: + edges to achieve v Fe A

O\
®+ Divide the graph into X

- two coalitions (5 ) _

The 2 defs. are oo
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Is a Signed Network Balanced?

Graph is if and only if it contains no

10/10/2011

edges.

Find connected components on + edges
For each component create a super-node

Connect components A and B if there is a
negative edge between the members

Assign super-nodes to sides using BFS

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Signed Graph: Is it Balanced?

[o)
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Positive Connected Components
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Reduced Graph on Super-Nodes
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BFS on Reduced Graph

Using BFS assign each node a
Graph is if any two
super-nodes are assigned the same side

PON
N
O ¥

Unbalanced!
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Real Large Signed Networks

10/10/2011

Trust/Distrust

Does A trust B’s product reviews?

(only positive links are visible)

Support/Oppose

Does A support B to become
Wikipedia administrator?

Friend/Foe
Does A like B’s comments?

Other examples:

Online multiplayer games

Epinions | Slashdot | Wikipedia
Nodes 119,217 82,144 7,118
Edges 841,200 | 549,202 103,747
+ edges 85.0% 17.4% 18.7%
— edges 15.0% 22.6% 21.2%

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Balance in our network data

10/10/2011

0.05

0.007

0.32 0.08 0.49 v

0.003 0.011 0.010 x

P(T) ... probability of a triad
P,(T)... triad probability if the
signs would be random

Shuffled data

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Global Structure of Signed Nets

Intuitive picture of social
network in terms of
densely linked clusters

Number of shared
neighbors



[CHI 10]

Global Factions: Embeddedness
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[CHI '10]

Global Structure of Signed Nets

Size Clustering Component
Nodes Edges Real Rnd Real Rnd

Epinions: — 119,090 | 123,602 || 0.012 | 0.022 || 0.308 | 0.334
Epinions: + 119,090 | 717,027 || 0.093 | 0.077 || 0.815 | 0.870
Slashdot: — 82,144 | 124,130 || 0.005 | 0.010 | 0.423 | 0.524
Slashdot: + 82,144 | 425,072 || 0.025 | 0.022 || 0.906 | 0.909

Wikipedia: — 7,115 21,984 || 0.028 [ 0.031 || 0.583 | 0.612
Wikipedia: + 7,115 81,705 || 0.130 | 0.103 || 0.870 | 0.918

+net: More clustering than baseline
—net: Less clustering than baseline

+/—net: Smaller than the baseline
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Evolving Directed Networks

New setting:

16 *2 signed directed triads

Links are and

iy

M%M%

:9'

(8 out of 16)
Yes.
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Alternate Theory: Status

Links are
[Davis-Leinhardt ‘68, Guha et al. ’04, Leskovec et al. ‘10]
Link A = B means: B has status than A
Link A = B means: B has status than A
Status and balance give predictions:

Balance: + Balance: +
Status: - Status: -

10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 26




[CHI *10]
Theory of Status

Edges are
Edges are

X has links to A and B
Now, A links to B (triad A-B-X)

We need to formalize:
Links are
Provides

Users are in
their

10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 27



16 Types of Context

Link (A,B) appears

I(g,tf? ,-EX) °A° 059 oA@
VN4 NN
9
ANAN
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[CHI '10]

Generative (Receptive) Surprise

How much behavior of user
from baseline in context t:

(A, By; Xy),-.., (A, B,; X.) ...
instances of contextualized link t

k of them closed with a plus
p.(A)... generative baseline of A,

empirical prob. of A, giving a plus

K=Y p,(A)

S, (t) =
\/Z Py (A)(A— Py (A))

10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 29




Status: Two Examples

Gen. surprise of A: — Gen. surprise of A: —
Rec. surprise of B: — Rec. surprise of B: —

10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 30



Consistency with Status

Determine node status: ) o
Assign X status O

Based on sighs and directions
of edges set status of Aand B
A B

Surprise is status-consistent, if:

Status-consistent if:
Gen. surprise >0
Rec. surprise <0

Surprise is balance-consistent, if:
If it completes a balanced triad

10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 35



Status vs. Balance (Epinions)
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[WWW '10]

From Local to Global Structure

10/10/2011

Find coalitions

Flip direction and sign of
minus edges

Assign each node a unique status
so that edges point from low to high
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[WWW '10]

From Local to Global Structure

beyond the
random baselines

Real data is 80% consistent vs. 80% consistency under
random baseline

beyond the random
baselines

Real data is 80% consistent, but 50% consistency under
random baseline
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[WWW '10]

Predicting Edge Signs

Given a network and signs on all but
one edge, predict the missing sign

Predict sign of edge (u,v)

+1: positive edge Original: 80% +edges

-1: negative edge Balanced: 50% +edges

Logistic regression

P(+|x) =

| Accuracy and ROC curves
1 4 e~ (027 biza)

Next slide

10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 39



Features for Learning

Counts of signed triads
edge u—v takes partin

Signed degree:

d*oui(u), dioulu),
d+in(v)' d-in(v)

Total degree:
doy(U), din(v)
Embeddedness

of edge (u,v)

10/10/2011 Jure Leskovec, Stanford CS224W: Social and InformationNetwork Analysis, ht cs



Edge sign prediction

Epinions: 93.5%
Slashdot: 94.4% ..
Wikipedia: 81% L
09+ Slash

Trust propagation model of f
|Guha et al. ‘04| has 14% error 05 |

Predictive accuracy

on Epinions ! — ' g —
3 0 Wik 5
0.8 + |
0.7

Wikipedia is harder to model: o
Votes are publicly visible :

& g = =
= ] = N
& 3 5 «
= D o
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Balance and Status: Complete Model

Feature Bal Stat Epin Slashd Wikip

const -0.2 0.02 -0.2
00 1 1 0.5 0.9 0.3
o —0—e -1 0 -0.5 -0.9 -0.4
o —0 -0 -1 0 -0.4 -1.1 -0.3
o —0—0 1 -1 -0.7 -0.6 -0.8
O0<0 1 0 0.3 0.4 0.05
OH0<«<0 -1 1 -0.01 -0.1 -0.01
o —0< 0 -1 -1 -0.9 -1.2 -0.2
O—0<—0 1 0 0.04 -0.07 -0.03
O<+0O-50 1 0 0.08 0.4 0.1
<0 —0 -1 -1 -1.3 -1.1 -0.4
O<—0O-50 -1 1 -0.1 -0.2 0.05
O<—0—0 1 0 0.08 -0.02 -0.1
OO0 1 -1 -0.09 -0.09 -0.01
O<t+0O<—0 -1 0 -0.05 -0.3 -0.02
O<—0O<t0O -1 0 -0.04 -0.3 0.05
O<—0<0 1 1 -0.02 0.2 -0.2
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Generalization

Train on row “dataset”, predict on “column”

All23 Epinions | Slashdot | Wikipedia
Epinions 0.9342 0.9289 0.7722
Slashdot 0.9249 0.9351 0.7717
Wikipedia 0.9272 0.9260 0.8021
Nearly of the models

even though networks come from very
different applications

10/10/2011 Jure
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Concluding Remarks

Status vs. Balance
Different role of reciprocated links

Role of embeddedness and public display
of relationship can be reliably
from the

~90% accuracy sign of the edge



Concluding Remarks

More evidence that

People use signhed edges

Near perfect generalization of models across

datasets N
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