Small-World Phenomena and
Decentralized Search



The Small-World Experiment

Can’t measure, need to probe explicitly

Picked 300 people in Omaha, Nebraska
and Wichita, Kansas

Task: Get a letter to a Boston stock-
broker by passing it through friends .-
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Two Questions

The chains progress from the starting
position (Omaha) to the target area
{Boston) with each remeove. Dlagram
shows the number of miles from the
target area, with the distance of each
remove averaged over completed
and uncompleted chains.
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6-Degrees: Should We Be Surprised?

Assume each human is connected to 100 other people.

Step 1: reach 100 people

Step 2: reach 100*100 = 10,000 people

Step 3: reach 100*100*100 = 1,000,000 people
Step 4: reach 100*100*100*100 = 100M people
In 5 steps we can reach 10 billion people

92% of new FB friendships are to a friend-of-a-friend
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Scientific Collaborations

Viap of scientific collaborations from 2005 to 2009

_omiputed by Olivier H. Beauchesne @ Science-Metrix, Inc.

Sais fromm Scopis, wning bachs, asde joumals and peerrevdeved oamah
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Clustering Implies Edge Locality

Actor Collaborations (IMDB): 225,226 nodes, avg. degree k=61
Electrical power grid: 4,941 nodes, k=2.67
Network of neurons 282 nodes, k=14

Table 1 Empirical examples of small-world networks

/—actual lLrandom Cactual Crandom
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.2b 0.28 0.05
L ... Average shortest path length
C ... Average clustering coefficient
6
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Back to the Small-World

Short paths: O(log n)

This is the “best” we can
do if the graph has constant
degree and n nodes

Triadic closure:

Friend of a friend is my friend
How can we have both?

Triadic closure reduces growth rate
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Clustering vs. Randomness

LU R
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Small-World: How?

10/6/2011

How can we at the same time have
high clustering and small diameter?

High clustering Low clustering
High diameter Low diameter

Clustering implies edge “locality”
Randomness enables “shortcuts”
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[Watts-Strogatz Nature ‘98]

Solution: The Small-World Model

[Watts-Strogatz ‘98]:
2 components to the model:
(1) Start with a

Has high clustering coefficient

Now introduce randomness (“shortucts”)

(2)

Add/remove edges to create
shortcuts to join remote parts
of the lattice

For each edge with prob. p move
the other end to a random node

10/6/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



[Watts-Strogatz Nature ‘98]

The Small-World Model

REGULAR HETUOREK SMALL LWORLD HETLIORE RAHDOM HETLIORK

F=0 IHCREASIHG RANDOMHESS P=1
High clustering High clustering Low clustering
High diameter Low diameter Low diameter

N 3 —
h_i C_Z h:IogN C=£
loga N

Rewiring allows us to interpolate between reqular
lattice and a random graph
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The Small-World Model
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Diameter of the Watts-Strogatz

Start with a square grid
Each node has 1 random long-range edge

Each node has 1 spoke. Then randomly connect them.
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Diameter of the Watts-Strogatz

Proof:

10/6/2011

Consider a graph where we contract % AR

2x2 subgraphs into supernodes Eﬁﬁiﬁﬁ:@%{?
Now we have 4 edges sticking out of E’,ﬁ{i’,ﬁ'}g‘_
each supernode I

From Thm. we have short paths
between super nodes

We can turn this into a path in a real
graph by adding at most 2 steps per
hop

4-regular random
i.e. short paths exist! graph

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Small-World: Summary

10/6/2011

Yes. You don’t need more than a few random links.

Provides insight on the interplay between
clustering and the small-world

Captures the structure of many realistic networks
Accounts for the high clustering of real networks
Does not lead to the correct degree distribution

Does not enable navigation (next lecture)
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How to Navigate the Network?

The chains progress from the starting
position (Omaha) to the target area
{Boston) with each remeove. Dlagram

shows the number of miles from the “ j‘)
target area, with the distance of each

remove averaged over completed

and uncompleted chains.

-
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How would you go about finding the path?

10/6/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 16



Decentralized Search

10/6/2011

S only knows locations of its friends
and location of the target t
S does not know links of anyone but itself

S navigates to the node closest to t
Search time T: Number of steps to reach t



Overview of the Results

Search time:

O((logn)”) O(n%)

O((logn)?) O(n*)
ErdGs—Rényi

O(n)
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Navigation in Watts-Strogatz

2-dim grid where each node has one
random edge

A decentralized search algorithm in
Watts-Strogatz model needs N23 steps to
reach t in expectation
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Navigation in Watts-Strogatz

Let’s do the proof for 1-dimensional case

S

N nodes on aring
plus one random directed

edge per node.

Search time is now O(n?)
For d-dim. case: ~ nd/(d+1)

Doesn’t matter when a random decision is made if you
haven’t seen it yet

Assume random long range links are only created once
you get to them
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Proof: Search time is > n/2

Expected search time is > n'/2

E.= event that long link out
of node I points to some node
in interval | of width 2X nodes

P(E;)= 2x/n

(haven’t seen node 1 yet, but can
assume random edge generation)

E=event that any of first k
nodes you see has a link to I:

P(E) = P(UE]<ZP(E)_2—kX

10/6/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 21




Proof: Search time is > n/2

Prob. of link to |: P(E) SZ_kx
2Kkx 4
S.t. o <1 Case when:
T2k
k=x:%Jﬁ
S
SO, P(E) =2 (%\/H)Z _1 w\k
n 2
initial s is outside |
and E does not happen. xj
the search algorithm must t

take > min(k, x) steps to getto t
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Proof: Search time is > n/2

10/6/2011

Getting from s to t takes > k = %\/ﬁ steps

If we don’t take a Iong range link, we
must traverse = - \/ﬁ stepsto getint s

Expected time to get tot: 1n

1 1
>|=k+=x]|P(E occurs) +
2 2 1

E\/ﬁ P(E doesn't occur) = E\/ﬁ

Walk in the direction of t
With prob. — we have a link to |

1V
Vn

It takes O(+/n) steps on average to find such link
After that need another O(y/n) steps to walk towards t
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Navigable Small-World Graph?

Watts-Strogatz graphs
are not searchable

Intuition:

Our long range links
are not random

They follow geography!

Saul Steinberg, “View of the World from gth Avenue”
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Variation of the Model

[Kleinberg, Nature ‘01]

@) O

O O

. O O O

Node has one long range link vom o

Prob. of long link to node Vv: 0 0 "o %<0
O

P(u—>v)~d(u,v)‘“ ° 00 e

d(u,v)™
P(u—v)= 5 —
d(u,v) ... grid distance between u and v V; (u,w)
o ... parameter 20
A A ﬂ
=0
> - > a=1 = || a>>1
) ) )
o o o
> > ;_>

d d d
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Kleinberg’s Model in 1 Dimension

For a=1 we can get from S
to tin O(log(n)?) steps

Set: [ = &
2
long range link
Now we want P ( from v points ) /2
toanodein/
t
di2
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Kleinberg’s Model in 1D

We need to calculate:
d(v,w)™ d

> d(v,u)*

u+v

P(v—ow)=

Sduv)yt= Y2d?= i%szlnn /

UV o ol
froml—n/2
/2 d/ t
n/2 1 n dX 2
—<1+ —_1+In(—)_lnn
d=1 d 1 X
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Kleinberg’s Model in 1D

We need P(v points to I)= v

-1
P(vpointsto I)=> P(v>w)2>> d(;/I,r\]/\;]) d
wel wel

1 N S
2Inn=d(v,w) 2Inn 3d 3Inn

d/2
All terms
> 2/(3d)

t

d/2

Note:
d(v,x)=3d/2 X
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Kleinberg’s Model in 1D

| ... interval of d/2 around t (where d=d(s,t)) d
P(long link of v points to 1)=1/In(n)
<In(n)
you get into |, and you thus
halve the distance to t dlz/

, SO
expected time to reach t: dr2

O(In(n)-log,(n)) = O(log(n)?)
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Kleinberg’s Model: Search Time

We know:

a=0 (i.e., Watts-Strogatz): we need \/n steps
a=1: we need T=0(log(n)?) steps
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Intuition: Why Search Takes Long

Small a: too many long links Big a: too many short links

Demo: http://projects.si.umich.edu/netlearn/Netlogos/SmallWorldSearch.html

111111111


http://projects.si.umich.edu/netlearn/NetLogo4/SmallWorldSearch.html

Why Does It Work?

10/6/2011

P(u—v) >1/Z
logn

Approx uniform over all
“scales of resolution”

# points at distance d grows
as d9™ prob. d-9M of each edge
—> const. prob. of a link,

independent of d

- size(l) - Prob on each node

d’ d™ = o=2
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Different Model: Hierarchies

n(u,v) = tree-distance

(height of the least common ancestor) {:: N
D(U %V) ~ b'OC h(U,V) g %
P(U—V) is - 2
O
v¢

(b_l)bh-l ~ bh Nodes/Edges of the network

So we need b to cancel, as we
wanted for distance independence

Startats, wanttogotot
Only see out links of node you are at
Have knowledge of where tis in the tree
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Different Model: Hierarchies

10/6/2011

Departments, topics, ...

Create I-th (1=1...k) edge out

of v by choosing v—w with
prob. ~p-hww)

Node has 1 link to each
direct subtree

For any subtree T’ one of V’s
links pointsto T’

Claim 1 guarantees efficient search
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[Watts-Dodds-Newman ‘'02]

Different Model: Hierarchies

Multiple hierarchies — geography, profession, ...
Generate separate random graph in each hierarchy
Superimpose the graphs

Choose a link that gets closest

A
o
£
Search works for a range of alphas %
Biggest range of searchable S
alphas for 2 or 3 hierarchies n

Too many hierarchies hurts o
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Empirical Studies of
Navigation in Small-World
Networks



[Adamic-Adar 2005]

Small-World in HP Labs

10/6/2011

CEO

HP Labs email logs (436 people) VPs
Link if U,v exchanged >5 emails each way

P(u—v) ~ 1/ (social distance)3*

1L 1u

Cubicle
locations

4U

Data has weighted edges
Data has people on non-leaf nodes e.u
Data not b-ary or uniform depth

2U 2L 3L
Jure Leskovec, Stanford CS224W: Social and Information Network Anal




[Adamic-Adar 2005]

Small-World in HP Labs

T T T T
=» search w/ degree
=4 search w/ hierarchy

4+ search w/ cubicle distance

Search strategies

Arbitrary tree defines

£ using degree,
“ n _ g :
groups” = rooted subtrees  : hierarchy, geo
g distance between
F) ~ 1/ |lest the cubicles
U—Vv (smallest group
containing u,v) WO
gu, S o~ es TTTTTTE IR TIOR
0 5 10 15 20 25 30 35 40
number of steps
0= observed
= = fitexp(-0.92°h)
D.Ec-
g 0.5F
:_g 04r
g 0.3F
8 021 6 8 10
h
0.1
source A —_— target B T TN S A S

hierarchical distance h
h. distance 1
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[Liben-Nowell et al. ‘o5]

Small-World in LiveJournal

::gi _ P()-g o 1812 ===~
LiveJournal data ¥ 1e05
_ = 1e-06
Blogers + zip codes > 1e-07

1e-08 1w T PR
100 1000
distance & (km)
_ Link length in a network of bloggers
a = (0.5 million bloggers, 4 million links)

Not uniform population density
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[Liben-Nowell et al. ‘o5]

Improved model

B 1e-03

L™
e,
-

18-04 :-__-‘x\-l-l ..‘ ~ ey

(L =] i
—1e-05 |
8 E - P(a)m 11’80'5

- West Coast -
1e-06

East Coast =
F-"(S) oc 1;’8

I“‘IG 100 — 1000 |
distance & (km)

mnkﬁ( ): = \{w d(u w) < d(u, v)}]

P(u—v) = rank,(v)

For equally spaced pairs: a=dim. of the space
In this special case a=1 is best for search
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[Liben-Nowell et al. ‘o5]

Rank based friendships

1e-02
1e-03
1e-04
1e-05
18—06 P(r) s r'115 e Sy S

llll llll llll ltll llll | —

16-06 - | r]:lllll || | 'F‘IIIIII | B B Illfll || | |_|'||I_ll
! > P(r) o< 1/r10% =]
1e-07 | ~«_ West Coast + —
f s, &.,°', EastCoast = ]
E B '\-__‘-- -.A.‘ .'..‘ PI:I'} o 1J|I'l- == |
o 1e-08 3 . P -‘_H % 3
[ . o { | The difference between
1e-09 | Ny “+._ = | the East and West coast
3 R % 7 | disappears
1E‘1D Ll l1llul L1 1l juul 1l 111[“] “al L opaiau

10° 10° 10* 10° 10°

rank r
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[Liben-Nowell et al. ‘o5]

Geographic Navigation

0.04 F
0.03 |
< 0.02 |
0.01 | I |
i I I I e l |
0 5 10 15 20

path length k

12% searches finish, average 4.12 hops
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Messenger: Prob. of Hitting Target

Fraction of paths hitting the target vs, max path length

Randon : 214667 pathi, 43 hit —— ! I Deg*/A\ge/GeO2

MinGeoDist @ 214662 paths, 5417 hit ——

MaxDeg : 214662 paths, 457 hit —F—

| DegDiwG2 : 214862 paths, 10575 hit —8—
CntryTransDeg @ 21d661 paths, 7652 hit

LangTransleg : 214660 paths, 2791 hit ——

Deghgebea @ 214660 paths, 12519 hit —e—

.06

o 2
Hitting the node is Deg/Geo

very hard. Very small :
fraction (4%) of runs
hits the target after
1000 steps.

Cntry*Deg

003 — —

fraction of paths hitting the target

= P GeO
0.02 |— |
+ Language
0,01 — : 1
i | Degree
0 . et _. o A e :;;:, R ic &Y FERE 10 3 33 ::’: = :::: - :::: ::::' B . X & ::: . A e:: ” - ” " o . ) ”L . T T Random
L] 200 00 4] oo Lo

maximum path length (max number of hops)
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Prob. of Getting Close to Target t

Fraction of paths hitting the target vs. max path length
1 T T T

fraction of paths hitting the target
L=
o

Getting close (10km) is

o2 |1 very easy. Geographic
navigation gets close in |
Random @ 214682 paths, 93077 hit ——
] MinGeoDist @ 214662 paths, 196761 hit —s—
0u1 |e55 than 15 StepS 90% MaxDeg : 214662 paths, 91570 hit —#— |
iE DegDivGZ : 214662 paths, 202145 hit —5—
H truTransDeg : Z14661 paths, 147637 hit i
Of the tl mes- angTranzsbeg @ 214660 paths, 125815 hit —=—
| Deghgebeo : 234660 paths, 189729 hit
0
0 200 400 00 00 160
i th th o ber of hops)
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Distribution of Getting-Close Times

Distribution of hitting times

14000 T T T T T T T T T T T T
Random : 214662 paths, 93077 hit —+—
MinGeoDist @ 214662 paths, 108761 hit ——
MaxDeg : 214662 paths, 91570 hit ——
o DegDivGZ : 214662 paths, 202145 hit —8—
ChtryTransDeg : 214661 paths, 147637 hit
LangTransDeg : 214660 paths, 125815 hit —#—
DegAgeGen @ 214060 paths, 189729
12000 —
2
- . Deg/Geo? gets close to
the target (10km) with
10000 —
at most 2 hops 60% of
- ! the times
F000 [—
a
=2
o
o —
b
2
3
BO00 |—
4000 [—
2000 |— —
o 1 | 1 1 | 1
o 5 10 15 20
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Q: Why do searchable networks arise?

Why in any network? Why online?

How robust/reproducible?
Mechanisms that get a=1 purely through local
“rearrangements” of links

Nodes on a ring with random edges

Process of morphing links:

Randomly choose s, t, run decentr. search alg.

each node on path updates long range link
to go directly to t with some small prob.

P(u—v) ~dist !
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EXTRA MATERIAL:
Search in P2P Networks



Extra Material:
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Client — Server




P2P: Only Clients




Napster

10/6/2011

Jure

Napster existed from
June ‘99 and July ‘01

Hybrid between P2P
and a centralized
network

Once lawyers got the
central server to shut
down the network
fell apart

Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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True P2P networks

Networks that can’t be turned “off”
BitTorrent, ML-donkey, Kazaa, Gnutella

First attempt:
Random graph of peers who know each other

Query: Find a file with key x, x€[0,2%4]

If node has it, done

Forward query to node with a file having
key y as close to x as possible: min, |x-y|

If can’t forward, then backtrack.
Cut off after some # of steps.
Copy the key x along the path ( )

10/6/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Protocol Chord

Protocol consistently maps key
(filename) to a node:
Keys are files we are searching for

Computer that keeps the key can then point to the
true location of the file

Keys and nodes have m-bit IDs assigned to
them:

Node ID is a hash-code of the IP address
Key ID is a hash-code of the file
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Chord on a Cycle

N1

Cycle with node ids N6 .
0 to 2m-1

N5
File (key) K is N14
assigned to a node N48
a(k) with ID > k

N42 N21
N38 N32
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Basics

Assume we have N nodes and K keys (files)

When a node joins/leaves the system it only
needs to talk to its immediate neighbors

When N+1 nodes join or leave, then only
O(K/N) keys need to be rearranged

Each node know the IP address of its
immediate neighbor
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Searching the network

N1

If every node knows N6
its immediate NS
neighbor then use  N52
sequential search N14

N48

N42 N21
N38 N32
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Faster search

A node maintains a table of m=log(N) entries
I-th entry of a node n contains the address of
(n+2Y-th neighbor
When a node joins we violate
long range pointers of all other nodes

Many papers about how to make this work

Take the longest link that does not overshoot

This way with each step we the distance to the
target
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i-th entry of N has the address of (N+2')-th node

N1

/ N8+1 =Nai4
N56 N8 N8+2 =Niy4
N8+4 =N1i4
N52 N8+8 =N21
Ni14 |N8+16 =N32
N48 N8+32 = N42

N42 N21

N38 N32
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Find key with ID 54

N1
/ N8+1 =Nai4
N56 N8 N8+2 =Niy4
N8+4 =N1i4
N52 N8+8 =N21
Ni14 |N8+16 =N32
N48 N8+32 = N42
Ng2+1 =Ng48 \
Ng2+2 =Ng8 | Ng2 N1
N42+4 =Ng48
N42+8 =Ng51 N38 N32
N42+16 = N1
N42+32 = N8
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How long does it take to find a key?

Search for a key in the network of N nodes
visits O(log N) nodes

Assume that node n queries for key k
Let the key K reside at node t
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We start the search at node n
Let | be a number such that t is contained in
interval [n+2"1, n+21]
Then the table at node n contains a pointer to
node n+2""1—the smallest node f from the
interval

fis closer totthann
So, in one step we the distance to t
We can do this at most log N times
Thus, we find tin O(log N) steps

ure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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