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 What is the typical shortest path 
length between any two people? 
 Experiment on the global soc. network 
 Can’t measure, need to probe explicitly  

 Small-world experiment [Milgram ’67] 

 Picked 300 people in Omaha, Nebraska 
and Wichita, Kansas 
 Task: Get a letter to a Boston stock-

broker by passing it through friends 
 

 How many steps did it take? 
 It took 6.2 steps on the average,  

thus “6 degrees of separation” 
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 (1) What is the structure of a social network? 
 (2) Which mechanisms do people use to route 

and find the target? 
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 Assume each human is connected to 100 other people.  
Then:  
 Step 1: reach 100 people 
 Step 2: reach 100*100 = 10,000 people 
 Step 3: reach 100*100*100 = 1,000,000 people 
 Step 4: reach 100*100*100*100 = 100M people 
 In 5 steps we can reach 10 billion people 

 What’s wrong here? 
 92% of new FB friendships are to a friend-of-a-friend 
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 MSN network has 7 orders of magnitude 
larger clustering than the corresponding Gnp! 

 Other examples: 
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L ... Average shortest path length 
C ... Average clustering coefficient 

Actor Collaborations (IMDB): 225,226 nodes, avg. degree k=61 
Electrical power grid: 4,941 nodes, k=2.67 
Network of neurons  282 nodes, k=14 
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Pure exponential growth 

Triadic closure reduces growth rate 

 Consequence of expansion: 
 Short paths: O(log n)  
 This is the “best” we can  

do if the graph has constant  
degree and n nodes 

 But networks have  
local structure: 
 Triadic closure: 

Friend of a friend is my friend 
 How can we have both? 
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Where should we place social networks? 

Clustered? Random? 



 Could a network with high clustering be at 
the same time a small world? 
 How can we at the same time have  

high clustering and small diameter? 
 
 
 
 
 
 Clustering implies edge “locality” 
 Randomness enables “shortcuts” 
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High clustering 
High diameter 

Low clustering 
Low diameter 



Small-world Model [Watts-Strogatz ‘98]: 
2 components to the model: 
 (1) Start with a low-dimensional regular lattice 
 Has high clustering coefficient 

 

 Now introduce randomness (“shortucts”) 
 

 (2) Rewire:  
 Add/remove edges to create  

shortcuts to join remote parts  
of the lattice 
 For each edge with prob. p move  

the other end to a random node 
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[Watts-Strogatz Nature ‘98] 
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High clustering 
High diameter 

High clustering 
Low diameter 

Low clustering 
Low diameter 

[Watts-Strogatz Nature ‘98] 
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It takes a lot of 
randomness to ruin 
the clustering, but a 
very small amount 
to overcome locality. 



 Alternative formulation of the model: 
 Start with a square grid 
 Each node has 1 random long-range edge 
 Each node has 1 spoke. Then randomly connect them. 
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Ci ≥ 2*12/(8*7) ≥ 0.43 
 

What’s the diameter? 
It is log(n) 
Why? 



 Proof: 
 Consider a graph where we contract 

2x2 subgraphs into supernodes 
 Now we have 4 edges sticking out of 

each supernode 
 4-regular random graph! 

 From Thm. we have short paths 
between super nodes 
 We can turn this into a path in a real 

graph by adding at most 2 steps per 
hop 

⇒Diameter of the model is  
 O(2 log n) i.e. short paths exist! 
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4-regular random 
graph 



 Could a network with high clustering be at 
the same time a small world? 
 Yes. You don’t need more than a few random links. 

 The Watts Strogatz Model: 
 Provides insight on the interplay between 

clustering and the small-world  
 Captures the structure of many realistic networks 
 Accounts for the high clustering of real networks 
 Does not lead to the correct degree distribution 
 Does not enable navigation (next lecture) 
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 (1) What is the structure of a social network? 
 (2) What strategies do people use to route 

and find the target? 
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How would you go about finding the path? 



 s only knows locations of its friends  
and location of the target t 

 s does not know links of anyone but itself 
 Geographic Navigation:  

s navigates to the node closest to t 
 Search time T: Number of steps to reach t 
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 Model: 2-dim grid where each node has one 
random edge 
 This is a small-world 

 

 Fact: A decentralized search algorithm in 
Watts-Strogatz model needs N2/3 steps to 
reach t in expectation  
 Note: even though paths of O(log N) steps exist 
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 Let’s do the proof for 1-dimensional case  
 About the proof: 
 Setting: n nodes on a ring  

plus one random directed  
edge per node.  
 Search time is now O(n1/2) 
 For d-dim. case: ~ nd/(d+1) 
 Proof strategy: Principle of deferred decision 
 Doesn’t matter when a random decision is made if you 

haven’t seen it yet 
 Assume random long range links are only created once 

you get to them 
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 Claim: 
 Expected search time is  ≥ n1/2 

 

 Let: Ei= event that long link out  
of node i points to some node  
in interval I of width 2x nodes 
 

 Then: P(Ei)= 2x/n 
(haven’t seen node i yet, but can  
assume random edge generation) 

 Let: E=event that any of first k  
nodes you see has a link to I: 

 Then: 
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 Prob. of link to I: 

 Need k, x s.t.  

 Choose:   

So,  

 Suppose initial s is outside I  

and E does not happen. 

Then the search algorithm must 

take ≥ min(k, x) steps to get to t 
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 Claim: Getting from s to t takes ≥ 𝑘 = 1
2
𝑛 steps  

 If we don’t take a long-range link, we  
must traverse ≥ 1

2
𝑛 steps to get in t 

 Expected time to get to t:  
≥

1
2
𝑘 +

1
2
𝑥 𝑃 𝐸 𝑜𝑜𝑜𝑜𝑜𝑜 + 

1
2

𝑛 𝑃 𝐸 𝑑𝑑𝑑𝑑𝑛′𝑡 𝑜𝑜𝑜𝑜𝑜 =
1
2

𝑛 

 Algorithm: 
 Walk in the direction of t 
 With prob. 1

n
  we have a link to I 

 It takes O( 𝑛) steps on average to find such link 
 After that need another O( 𝑛) steps to walk towards t 
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 Watts-Strogatz graphs 
are not searchable 

 How do we make a  
searchable small-world 
graph? 

 Intuition: 
 Our long range links  

are not random 
 They follow geography! 
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Saul Steinberg, “View of the World from 9th Avenue” 



 Model [Kleinberg, Nature ‘01] 
 Nodes still on a grid 
 Node has one long range link 
 Prob. of long link to node v:   

𝑃 𝑢→𝑣 ~𝑑 𝑢, 𝑣 −𝛼  

 d(u,v) … grid distance between u and v 
 α … parameter ≥ 0 
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1-dim case: 
 Claim: For α=1 we can get from s 

to t in O(log(n)2) steps 

 Set: 𝐼 = 𝑑
2
 

 Now we want 𝑃
long range link 
from 𝑣 points 
to a node in 𝐼
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 We need to calculate: 
 
 
 

 What  is the normalizing const? 
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 We need P(v points to I)= 
 
 
 

 
 

 

10/6/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 28 

∑∑
∈∈

≥→=
IwIw n

IvP
ln2
w)d(v,  w)P(v)  topoints (

1-
v 

t 

d/2 

d/2 

d 

nd
d

nwvdn Iw ln3
1

3
2

ln2
1

),(
1

ln2
1

=≥= ∑
∈

All terms  
≥ 2/(3d) 

Note: 
d(v,x)=3d/2 x 



 We have: 
 I ... interval of d/2 around t (where d=d(s,t)) 
 P(long link of v points to I)=1/ln(n) 

 In expected # of steps ≤ ln(n)  
you get into I, and you thus  
halve the distance to t 

 Distance can be halved at  
most log2(n) times, so  
expected time to reach t: 

 O(ln(n)⋅log2(n)) = O(log(n)2) 
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 We know: 
 α=0 (i.e., Watts-Strogatz): we need 𝑛 steps 
 α=1: we need T=O(log(n)2) steps 
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Small  α: too many long links Big α: too many short links 
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Demo:  http://projects.si.umich.edu/netlearn/NetLogo4/SmallWorldSearch.html 

http://projects.si.umich.edu/netlearn/NetLogo4/SmallWorldSearch.html


 How does the argument change for 2-d grid: 
 P(u→v) >1/Z   ⋅   size(I)  ⋅   Prob on each node 

 
 
 

 Why P(u→v) ~ d(u,v)-dim works? 
 Approx uniform over all 

“scales of resolution” 
 # points at distance d grows  

as ddim, prob. d-dim of each edge  
 const. prob. of a link, 
independent of d 
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nlog 2d 2−d ⇒ α=2 



 h(u,v) = tree-distance  
(height of the least common ancestor) 

 P(u→v) ~ b-α h(u,v) 

 P(u→v) is approx uniform  
at all scales of resolution 

 How many nodes are  
at dist. h?  (b-1)bh-1 ~ bh 

 So we need b-h to cancel, as we  
wanted for distance independence 

 Start at s, want to go to t 
 Only see out links of node you are at 
 Have knowledge of where t is in the tree 
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 Nodes are in the leaves of a 
tree: 
 Departments, topics, … 

 Create k edges out of a node 
 Create i-th (i=1…k) edge out  

of v by choosing v→w with  
prob. ~b-h(v,w) 

 Claim 1:  
 For any direct subtree T’ one of v’s 

links points to T’ 
 Claim 2:  
 Claim 1 guarantees efficient search 

 You will prove C1 & C2 in HW1 
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Node has 1 link to each  
direct subtree 



 Extension: 
 Multiple hierarchies – geography, profession, … 
 Generate separate random graph in each hierarchy 
 Superimpose the graphs 
 Search algorithm:  
 Choose a link that gets closest in any hierarchy 

 Q: How to analyze the model? 
 Simulations: 
 Search works for a range of alphas 
 Biggest range of searchable  

alphas for 2 or 3 hierarchies 
 Too many hierarchies hurts 
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 Adamic-Adar 2005: 
 HP Labs email logs (436 people) 
 Link if u,v exchanged >5 emails each way 
 Map of the organization hierarchy 
 How many edges cross groups? 
 Finding:  

P(u→v) ~ 1 / (social distance)3/4 
 

 Differences from the  
hierarchical model: 
 Data has weighted edges 
 Data has people on non-leaf nodes 
 Data not b-ary or uniform depth 
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[Adamic-Adar 2005] 

Cubicle  
locations 

CEO 

VPs 



 Generalized hierar. model: 
 Arbitrary tree defines 

“groups” = rooted subtrees 
 P(u→v) ~ 1 / (smallest group  

   containing u,v) 
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Search strategies 
using degree, 
hierarchy, geo 

distance between 
the cubicles 

Prob. of link vs. distance in the hierarchy 

[Adamic-Adar 2005] 



Liben-Nowell et al. ’05: 
 LiveJournal data  
 Blogers + zip codes 

 
 

 Link prob.: P(u,v)=δ-α 

 α =? 
 

 Problem: 
 Not uniform population density 

 Solution: Rank based friendship 
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Link length in a network of bloggers 
(0.5 million bloggers, 4 million links) 

[Liben-Nowell et al. ‘05] 



 P(u→v) = ranku(v)-α 
 What is best α? 
 For equally spaced pairs: α=dim. of the space 
 In this special case α=1 is best for search 
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[Liben-Nowell et al. ‘05] 
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 Close to 
theoretical 
optimum of -1 
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[Liben-Nowell et al. ‘05] 

The difference between 
the East and West coast 
disappears 

41 



 Decentralized search in a LiveJournal network 
 12% searches finish, average 4.12 hops 
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[Liben-Nowell et al. ‘05] 
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Hitting the node is 
very hard. Very small 
fraction (4%) of runs 
hits the target after 
1000 steps. 

Deg*Age/Geo2 

Deg/Geo2 

Cntry*Deg 

Geo 

Random 

Language 

Degree 
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Getting close (10km) is 
very easy. Geographic 
navigation gets close in 
less than 15 steps 90% 
of the times. 
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Deg/Geo2 gets close to 
the target (10km) with 
at most 2 hops  60% of 
the times 
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 Why is rank exponent close to -1? 
 Why in any network? Why online? 
 How robust/reproducible? 

 Mechanisms that get α=1 purely through local 
“rearrangements” of links  

 Conjecture [Sandbeng-Clark 2007]: 
 Nodes on a ring with random edges 
 Process of morphing links: 
 Update step: Randomly choose s, t, run decentr. search alg. 
 Path compression: each node on path updates long range link 

to go directly to t with some small prob. 
 Conjecture from simulation:  P(u→v)  ~ dist -1  
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Algorithmic consequence of 
small-world:  

 
How to find files in  

Peer-to-Peer networks? 
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 Napster existed from 
June ‘99 and July ‘01 

 

 Hybrid between P2P 
and a centralized 
network 

 

 Once lawyers got the 
central server to shut 
down the network 
fell apart 
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 Networks that can’t be turned “off” 
 BitTorrent, ML-donkey, Kazaa, Gnutella 

 Q: How to find a file in a network without a 
central server? 

 First attempt: Freenet 
 Random graph of peers who know each other 
 Query: Find a file with key x,  x∈[0,264] 
 Algorithm: 
 If node has it, done 
 Forward query to node with a file having  

key y as close to x as possible: miny |x-y| 
 If can’t forward, then backtrack.  
 Cut off after some # of steps. 
 Copy the key x along the path (path compression) 
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 Protocol Chord consistently maps key 
(filename) to a node: 
 Keys are files we are searching for 
 Computer that keeps the key can then point to the 

true location of the file 
 Keys and nodes have  m-bit IDs assigned to 

them: 
 Node ID is a hash-code of the IP address 
 Key ID is a hash-code of the file 
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 Cycle with node ids 
0 to 2m-1 
 

 File (key) k is 
assigned to a node 
a(k) with ID ≥ k 
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 Assume we have N nodes and K keys (files) 
How many keys has each node? 

 

 When a node joins/leaves the system it only 
needs to talk to its immediate neighbors 
 When N+1 nodes join or leave, then only  

O(K/N) keys need to be rearranged 
 

 Each node know the IP address of its 
immediate neighbor 
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 If every node knows 
its immediate 
neighbor then use 
sequential search 
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 A node maintains a table of m=log(N) entries 
 i-th entry of a node n contains the address of 

(n+2i)-th neighbor 
 Problem: When a node joins we violate  

long range pointers of all other nodes 
 Many papers about how to make this work 

 

 Search algorithm: 
 Take the longest link that does not overshoot 
 This way with each step we half the distance to the 

target 
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 Search for a key in the network of  N nodes 
visits O(log N) nodes 

 
 Assume that node n queries for key k 
 Let the key k reside at node t 

 
 How many steps do we need to reach t? 
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 We start the search at node n 
 Let i be a number such that t is contained in 

interval [n+2i-1, n+2i] 
 Then the table at node n contains a pointer to 

node n+2i-1 – the smallest node f from the 
interval 

 Claim:  f is closer to t than n 
 So, in one step we halved the distance to t 
 We can do this at most log N times 
 Thus, we find t in O(log N) steps 
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