Small-World Phenomena and Decentralized Search

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

The Small-World Experiment

- What is the typical shortest path length between any two people?
- Experiment on the global soc. network
- Can't measure, need to probe explicitly
- Small-world experiment [Milgram '67]

- Picked 300 people in Omaha, Nebraska and Wichita, Kansas
- Task: Get a letter to a Boston stockbroker by passing it through friends
- How many steps did it take?
- It took 6.2 steps on the average, thus " 6 degrees of separation"

Two Questions

- (1) What is the structure of a social network?
- (2) Which mechanisms do people use to route and find the target?

The chains progress from the starting position (Omaha) to the target area (Boston) with each remove. Dlagram shows the number of miles from the target area, with the distance of each remove averaged over completed and uncompleted chains.

6-Degrees: Should We Be Surprised?

- Assume each human is connected to 100 other people. Then:
- Step 1: reach 100 people
- Step 2: reach $100 * 100=10,000$ people
- Step 3: reach 100*100*100 = 1,000,000 people
- Step 4: reach 100*100*100*100 = 100M people
- In 5 steps we can reach 10 billion people
- What's wrong here?
- 92\% of new FB friendships are to a friend-of-a-friend

Scientific Collaborations

Clustering Implies Edge Locality

- MSN network has 7 orders of magnitude larger clustering than the corresponding G_{np} !
- Other examples:

Actor Collaborations (IMDB): 225,226 nodes, avg. degree k=61
Electrical power grid: 4,941 nodes, $\mathrm{k}=2.67$
Network of neurons 282 nodes, $k=14$

Table 1 Empirical examples of small-world networks

	$L_{\text {actual }}$	$L_{\text {random }}$	$C_{\text {actual }}$	$C_{\text {random }}$
Film actors	3.65	2.99	0.79	0.00027
Power grid	18.7	12.4	0.080	0.005
C. elegans	2.65	2.25	0.28	0.05

L ... Average shortest path length
C ... Average clustering coefficient

Back to the Small-World

- Consequence of expansion:
- Short paths: O(log n)
- This is the "best" we can do if the graph has constant degree and n nodes
- But networks have local structure:
- Triadic closure:

Friend of a friend is my friend

- How can we have both?

Clustering vs. Randomness

Where should we place social networks?

Clustered?

Small-World: How?

- Could a network with high clustering be at the same time a small world?
- How can we at the same time have high clustering and small diameter?

- Clustering implies edge "locality"
- Randomness enables "shortcuts"

Solution: The Small-World Model

Small-world IModel [Watts-Strogatz '98]:
2 components to the model:

- (1) Start with a low-dimensional regular lattice
- Has high clustering coefficient
- Now introduce randomness ("shortucts")
- (2) Rewire:
- Add/remove edges to create shortcuts to join remote parts of the lattice
- For each edge with prob. p move the other end to a random node

The Small-World Model

High clustering High diameter

$$
h=\frac{N}{2 \bar{k}} \quad C=\frac{3}{4}
$$

$P=1$
Low clustering Low diameter

$$
h=\frac{\log N}{\log \alpha} \quad C=\frac{\bar{k}}{N}
$$

Rewiring allows us to interpolate between regular lattice and a random graph

The Small-World Model

Diameter of the Watts-Strogatz

- Alternative formulation of the model:
- Start with a square grid
- Each node has 1 random long-range edge
- Each node has 1 spoke. Then randomly connect them.

$$
\begin{aligned}
& C_{i} \geq 2^{*} 12 /\left(8^{*} 7\right) \geq 0.43 \\
& \text { What's the diameter? } \\
& \text { It is log(n) } \\
& \text { Why? }
\end{aligned}
$$

Diameter of the Watts-Strogatz

- Proof:
- Consider a graph where we contract 2×2 subgraphs into supernodes
- Now we have 4 edges sticking out of each supernode
- 4-regular random graph!
- From Thm. we have short paths between super nodes
- We can turn this into a path in a real graph by adding at most 2 steps per hop
\Rightarrow Diameter of the model is
$O(2 \log n)$ i.e. short paths exist!

4-regular random graph

Small-World: Summary

- Could a network with high clustering be at the same time a small world?
- Yes. You don't need more than a few random links.
- The Watts Strogatz Model:
- Provides insight on the interplay between clustering and the small-world
- Captures the structure of many realistic networks
- Accounts for the high clustering of real networks
- Does not lead to the correct degree distribution
- Does not enable navigation (next lecture)

How to Navigate the Network?

- (1) What is the structure of a social network?
- (2) What strategies do people use to route and find the target?

The chains progress from the starting position (Omaha) to the target area (Boston) with each remove. Dlagram shows the number of miles from the target area, with the distance of each remove averaged over completed and uncompleted chains.

How would you go about finding the path?

Decentralized Search

- s only knows locations of its friends and location of the target t
- s does not know links of anyone but itself
- Geographic Navigation: s navigates to the node closest to t
- Search time T: Number of steps to reach t

Overview of the Results

Searchable

Not searchable

Search time:
$O\left((\log n)^{\beta}\right)$
$O\left(n^{\alpha}\right)$

Kleinberg's model
$O\left((\log n)^{2}\right)$
Watts-Strogatz
$O\left(n^{\frac{2}{3}}\right)$

Erdős-Rényi
$O(n)$

Navigation in Watts-Strogatz

- Model: 2-dim grid where each node has one random edge
- This is a small-world
- Fact: A decentralized search algorithm in Watts-Strogatz model needs $N^{2 / 3}$ steps to reach t in expectation
- Note: even though paths of $O(\log N)$ steps exist

Navigation in Watts-Strogatz

- Let's do the proof for 1-dimensional case
- About the proof:
- Setting: n nodes on a ring plus one random directed edge per node.
- Search time is now $O\left(n^{1 / 2}\right)$
- For d-dim. case: $\sim n^{d /(d+1)}$

- Proof strategy: Principle of deferred decision
- Doesn't matter when a random decision is made if you haven't seen it yet
- Assume random long range links are only created once you get to them

Proof: Search time is $\geq \mathrm{n}^{\mathbf{1} / 2}$

- Claim:
- Expected search time is $\geq n^{1 / 2}$
- Let: $E_{i}=$ event that long link out of node i points to some node in interval I of width $2 x$ nodes
- Then: $\mathrm{P}\left(E_{i}\right)=2 x / n$ (haven't seen node i yet, but can assume random edge generation)
- Let: $E=$ event that any of first k
 nodes you see has a link to I :
- Then:

$$
P(E)=P\left(\bigcup_{i}^{k} E_{i}\right) \leq \sum_{i}^{k} P\left(E_{i}\right)=\frac{2 k x}{n}
$$

Proof: Search time is $\geq \mathrm{n}^{\mathbf{1} / 2}$

- Prob. of link to I: $P(E) \leq \frac{2 k x}{n}$
- Need k, x s.t. $\frac{2 k x}{n}<1$ n
- Choose: $k=x=\frac{1}{2} \sqrt{n}$

So, $P(E)=2 \frac{\left(\frac{1}{2} \sqrt{n}\right)^{2}}{n}=\frac{1}{2}$

- Suppose initial s is outside I and E does not happen.

Then the search algorithm must

Case when: Case when:
$T \geq k$
 take $\geq \min (k, x)$ steps to get to t

Proof: Search time is $\geq \mathrm{n}^{\mathbf{1} / 2}$

- Claim: Getting from s to t takes $\geq k=\frac{1}{2} \sqrt{n}$ steps
- If we don't take a long-range link, we must traverse $\geq \frac{1}{2} \sqrt{n}$ steps to get in t
- Expected time to get to t :
- Algorithm:
- Walk in the direction of t
- With prob. $\frac{1}{\sqrt{n}}$ we have a link to I

- It takes $O(\sqrt{n})$ steps on average to find such link
- After that need another $O(\sqrt{n})$ steps to walk towards t

Navigable Small-World Graph?

- Watts-Strogatz graphs are not searchable
- How do we make a searchable small-world graph?
- Intuition:
- Our long range links are not random
- They follow geography!

Saul Steinberg, "View of the World from gth Avenue"

Variation of the Model

- Model [Kleinberg, Nature ‘01]
- Nodes still on a grid
- Node has one long range link
- Prob. of long link to node v :

$$
P(u \rightarrow v) \sim d(u, v)^{-\alpha}
$$

- $d(u, v)$... grid distance between u and v

$$
\begin{aligned}
& \circ \circ \circ \circ \circ \circ \\
& \begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{array} \\
& \mathrm{P}(\mathrm{u} \rightarrow \mathrm{v})=\frac{\mathrm{d}(\mathrm{u}, \mathrm{v})^{-\alpha}}{\sum_{\mathrm{w} * \mathrm{u}}^{\mathrm{d}}(\mathrm{u}, \mathrm{w})^{-\alpha}}
\end{aligned}
$$

- α... parameter ≥ 0

Kleinberg's Model in 1 Dimension

1-dim case:

- Claim: For $\boldsymbol{\alpha}=\boldsymbol{1}$ we can get from s to t in $\boldsymbol{O}\left(\log (n)^{2}\right)$ steps
- Set: $I=\frac{d}{2}$
- Now we want $P\left(\begin{array}{c}\text { long range link } \\ \text { from } v \text { points } \\ \text { to a node in } I\end{array}\right)$

Kleinberg's Model in 1D

- We need to calculate:

$$
\mathrm{P}(\mathrm{v} \rightarrow \mathrm{w})=\frac{\mathrm{d}(\mathrm{v}, \mathrm{w})^{-1}}{\sum_{u \neq v} \mathrm{~d}(\mathrm{v}, \mathrm{u})^{-1}}
$$

- What is the normalizing const?

$$
\sum_{u \neq v} d(u, v)^{-1}=\sum_{\substack{\text { all possible } \\ \text { distances } \\ \text { from } 1 \rightarrow n / 2}} 2 d^{-1}=2 \sum_{d=1}^{n / 2} \frac{1}{d} \leq 2 \ln n
$$

$$
\sum_{d=1}^{n / 2} \frac{1}{d} \leq 1+\int_{1}^{n / 2} \frac{d x}{x}=1+\ln \left(\frac{n}{2}\right)=\ln n
$$

Kleinberg's Model in 1D

- We need $\boldsymbol{P}(\boldsymbol{v}$ points to $I)=$
$P(v$ points to $I)=\sum_{w \in I} \mathrm{P}(\mathrm{v} \rightarrow \mathrm{w}) \geq \sum_{w \in I} \frac{\mathrm{~d}(\mathrm{v}, \mathrm{w})^{-1}}{2 \ln n}$

$$
=\frac{1}{2 \ln n} \sum_{w \in I} \underbrace{\frac{1}{d(v, w)}}_{\substack{\text { All lems } \\ \sum 2(\overrightarrow{3}(0)}} \geq \frac{1}{2 \ln n} d \frac{2}{3 d}=\frac{1}{3 \ln n}
$$

Note:
$d(v, x)=3 d / 2$

Kleinberg's Model in 1D

- We have:
- I... interval of $d / 2$ around $t(w h e r e ~ d=\mathrm{d}(s, t))$
- P (long link of v points to $I)=1 / \ln (n)$
- In expected \# of steps $\leq \ln (n)$
you get into I, and you thus halve the distance to t
- Distance can be halved at most $\log _{2}(n)$ times, so expected time to reach t : $\mathrm{O}\left(\ln (n) \cdot \log _{2}(n)\right)=\mathbf{O}\left(\log (\boldsymbol{n})^{2}\right)$

Kleinberg's Model: Search Time

- We know:
" $\alpha=0$ (i.e., Watts-Strogatz): we need \sqrt{n} steps
- $\alpha=1$: we need $T=O\left(\log (n)^{2}\right)$ steps

Intuition: Why Search Takes Long

Small α : too many long links

Big α : too many short links

Demo: http://projects.si.umich.edu/netlearn/NetLogo4/SmallWorldSearch.html

Why Does It Work?

- How does the argument change for 2-d grid:
- $P(u \rightarrow v)>1 / Z \cdot \operatorname{size}(I) \cdot P r o b$ on each node
$\log n \quad d^{2} \quad d^{-2}$

$$
\Rightarrow \alpha=2
$$

- Why $P(u \rightarrow v) \sim d(u, v)^{-d i m}$ works?
- Approx uniform over all "scales of resolution"
- \# points at distance d grows as $d^{\text {dim }}$, prob. $d^{-d i m}$ of each edge
\rightarrow const. prob. of a link, independent of d

Different Model: Hierarchies

- $h(u, v)=$ tree-distance (height of the least common ancestor)
- $P(u \rightarrow v) \sim b^{-\alpha h(u, v)}$
- $P(u \rightarrow v)$ is approx uniform at all scales of resolution
- How many nodes are at dist. h ? $(b-1) b^{h-1} \sim b^{h}$

Nodes/Edges of the network

- So we need b^{-h} to cancel, as we wanted for distance independence
- Start at s, want to go to t
- Only see out links of node you are at
- Have knowledge of where t is in the tree

Different Model: Hierarchies

- Nodes are in the leaves of a tree:
- Departments, topics, ...
- Create k edges out of a node
- Create i-th ($i=1 . . . k$) edge out of v by choosing $v \rightarrow w$ with prob. $\sim b^{-h(v, w)}$
- Claim 1:

Node has 1 link to each direct subtree

- For any direct subtree T ' one of v 's links points to T^{\prime}
- Claim 2:
- Claim 1 guarantees efficient search
- You will prove C1 \& C2 in HW1
- Extension:
- Multiple hierarchies - geography, profession, ...
- Generate separate random graph in each hierarchy
- Superimpose the graphs
- Search algorithm:
- Choose a link that gets closest in any hierarchy
- Q: How to analyze the model?
- Simulations:
- Search works for a range of alphas
- Biggest range of searchable alphas for 2 or 3 hierarchies
- Too many hierarchies hurts

Empirical Studies of Navigation in Small-World Networks

Small-World in HP Labs

- Adamic-Adar 2005:
- HP Labs email logs (436 people)
- Link if u, v exchanged >5 emails each way
- Map of the organization hierarchy
- How many edges cross groups?

- Finding:

$$
P(u \rightarrow v) \sim 1 /(\text { social distance })^{3 / 4}
$$

- Differences from the hierarchical model:
- Data has weighted edges
- Data has people on non-leaf nodes
- Data not b-ary or uniform depth

Small-World in HP Labs

- Generalized hierar. model:
- Arbitrary tree defines "groups" = rooted subtrees
- $P(u \rightarrow v) \sim 1 /$ (smallest group containing u, v)

Prob. of link vs. distance in the hierarchy

Liben-Nowell et al. '05:

- LiveJournal data
- Blogers + zip codes
- Link prob.: $P(u, v)=\delta^{-\alpha}$
- $\alpha=$?

Link length in a network of bloggers (0.5 million bloggers, 4 million links)

- Problem:
- Not uniform population density
- Solution: Rank based friendship

Improved model

$\operatorname{rank}_{u}(v):=|\{w: d(u, w)<d(u, v)\}|$

- $P(u \rightarrow v)=\operatorname{rank}_{u}(v)^{-\alpha}$
- What is best α ?
- For equally spaced pairs: $\alpha=$ dim. of the space
- In this special case $\alpha=1$ is best for search

Rank based friendships

- Close to theoretical
optimum of $-\mathbb{1}$

The difference between the East and West coast disappears

Geographic Navigation

- Decentralized search in a LiveJournal network
- 12% searches finish, average 4.12 hops

Messenger: Prob. of Hitting Target

Fraction of paths hitting the target us. max path length

Prob. of Getting Close to Target t

Fraction of paths hitting the target us. max path length

Distribution of Getting-Close Times

Q: Why do searchable networks arise?

- Why is rank exponent close to -1?
- Why in any network? Why online?
- How robust/reproducible?
- Mechanisms that get $\alpha=1$ purely through local "rearrangements" of links
- Conjecture [Sandbeng-Clark 2007]:
- Nodes on a ring with random edges
- Process of morphing links:
- Update step: Randomly choose s, t, run decentr. search alg.
- Path compression: each node on path updates long range link to go directly to t with some small prob.
- Conjecture from simulation: $P(u \rightarrow v) \sim$ dist ${ }^{-1}$

EXTRA MATERIAL: Search in P2P Networks

Extra Material:

Algorithmic consequence of small-world:

How to find files in Peer-to-Peer networks?

Client - Server

P2P: Only Clients

Napster

- Napster existed from June ‘99 and July ‘01
- Hybrid between P2P and a centralized network
- Once lawyers got the central server to shut down the network fell apart

True P2P networks

- Networks that can't be turned "off"
- BitTorrent, ML-donkey, Kazaa, Gnutella
- Q: How to find a file in a network without a central server?
- First attempt: Freenet
- Random graph of peers who know each other
- Query: Find a file with key $x, x \in\left[0,2^{64}\right]$
- Algorithm:
- If node has it, done
- Forward query to node with a file having key y as close to x as possible: $\min _{y}|x-y|$
- If can't forward, then backtrack.
- Cut off after some \# of steps.
- Copy the key x along the path (path compression)

Protocol Chord

- Protocol Chord consistently maps key (filename) to a node:
- Keys are files we are searching for
- Computer that keeps the key can then point to the true location of the file
- Keys and nodes have m-bit IDs assigned to them:
- Node ID is a hash-code of the IP address
- Key ID is a hash-code of the file

Chord on a Cycle

- Cycle with node ids 0 to 2^{m-1}
- File (key) k is assigned to a node $a(k)$ with ID $\geq k$

- Assume we have N nodes and K keys (files) How many keys has each node?
- When a node joins/leaves the system it only needs to talk to its immediate neighbors
- When $N+1$ nodes join or leave, then only $\mathrm{O}(K / N)$ keys need to be rearranged
- Each node know the IP address of its immediate neighbor

Searching the network

- If every node knows its immediate neighbor then use sequential search

Faster search

- A node maintains a table of $m=\log (N)$ entries
- i-th entry of a node n contains the address of $\left(n+2^{i}\right)$-th neighbor
- Problem: When a node joins we violate long range pointers of all other nodes
- Many papers about how to make this work
- Search algorithm:
- Take the longest link that does not overshoot
- This way with each step we half the distance to the target

i-th entry of N has the address of $\left(\mathrm{N}+2^{\mathrm{i}}\right)$-th node

Find key with ID 54

$N_{4} 2+16=N_{1}$
$\mathrm{N}_{4} 2+32=\mathrm{N} 8$

How long does it take to find a key?

- Search for a key in the network of N nodes visits $\mathrm{O}(\log N)$ nodes
- Assume that node n queries for key k
- Let the key k reside at node t
- How many steps do we need to reach t ?

Proof

- We start the search at node n
- Let i be a number such that t is contained in interval [$n+2^{i-1}, n+2^{i}$]
- Then the table at node n contains a pointer to node $n+2^{i-1}$ - the smallest node f from the interval
- Claim: f is closer to t than n
- So, in one step we halved the distance to t
- We can do this at most $\log N$ times
- Thus, we find t in $\mathrm{O}(\log N)$ steps

