Small-World Phenomena



Recap: Network Properties & G,

10/4/2011

Degree distribution P(k)
Clustering Coefficient C
Diameter (avg. shortest path length) h

. undirected graph on n nodes where each

edge (uU,v) appears independently with prob. P
Degree distribution: Binomial(n, p) l

Clustering coefficient: C = p=5 o

n
Diameter: (next)
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Random k-Regular Graphs

2 P L)
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Definition: Expansion

Graph G(V, E) has if VSc V.
# of edges leaving S 2 a- min(|S|,|V\S])

B #edges leaving S
sev . MIN(S|,[VAS])
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Expansion: Intuition

——
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S’nodes a-S’ edges
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o
Snodes a-S edges @
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Expansion Measures Robustness

. #edges leaving S

M ings v s )

Expansion is

To disconnect | nodes, we need to cut > a- | edges

B2
L

“Communities”
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Expansion: k-Reqular Graphs

. #edges leaving S

(every node has degree K): M mings]vis)
Expansion is at most k (when S is 1 node)

Examples:
k=4: o =2n/(n%/4)—0 S

(S=n/2 x n/2 square in the center)

o —0 for|S|=(n/2)-1 @ S

For a random on N nodes, there is
some const a (a>0, independent. of n) such that w.h.p.
the expansion of the graph is > a
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Diameter of 3-Reqgular Rnd. Graph

In a graph on N nodes with expansion «a
for all pairs of nodes S and t there is a path of
O((log n) / &) edges connecting them.

Proof:
Proof strategy: S
We want to show that from any
node S there is a path of length So +—
O((log n)/a) to any other node t S, ———
Let S; be a set of all nodes Sy ¢

found within | steps of BFS from s.
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Diameter of 3-Reqgular Rnd. Graph

Proof (continued):

Let S; be a set of all nodes found within | steps of

BFS from s.
T 1 e n : Expansion S
—A—
als;
S Z‘Sj‘+T: So—
—— S| ————
Edges can
“collid 82 o
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Diameter of 3-Reqgular Rnd. Graph

PrOOf (CO ntanEd)Z In j steps, we In j steps, we Diameter = 2.

10/4/2011

reach >n/2 nodes reach >n/2 nodes

— A
Need j so that: (H%j zg S<S: z:;>t
=

klog,n

Let’S Set . j — In log(n) steps, we  In log(n) steps, we Diameter
) reach >n/2 nodes  reach >n/2 nodes = 2log(n)
a
Then:
klog, n Note

klog,n
a a n s
1+_ 22|092n =N>— (14_2) > l0gzn
K 5 :
Remembern 0, a <kthen:
if a= k:(1+l)%logzn _ 2logzn

ifa—)Othen£=X—>oo:

In O(2k/a-log n) steps |S;| grows to B(n).
SO’ and (1+)1(jxwgf5 — go%zn 5 plog:"
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“Evolution” of the G,
What happens to G,, when we vary p?




Back to Node Degrees of G,

E[Xv] — (n _1) P

So let: p=c/(n-1)
If we build random graph G,
with p=c/(n-1) we have many isolated nodes

n-1
P[v has degree 0]=(1— p)" " = (1— Ll) e
n— N—o00

n—-1 —X-C x |7¢
. C 1 ] 1 e
|nlm(1——n_lj —(1—;j —bxlm(l‘xl} =€ By definition:

. 1
1 ¢ Y e=||m(1—;j
X
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No Isolated Nodes

We know: P[v has degree 0] = e*
Event we are asking about is:

| = some node is isolated
| = U |, where |, is the event that v is isolated

P(1)= P(UHJSZP(IV):neC Unon;undA.

‘QASZM|
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No Isolated Nodes

Let’s try:
c=1Inn
c=2Ilnn

p=Inn
p=2Inn

10/4/2011

then:
then:

then
then

nec=nelnn =n-1/n=1
nez2lhhn=n4/n2 =1/n

. P() =1
: P(I)=1n—> 0 ash—>w
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“Evolution” of a Random Graph

| | | | | |
p | | | | | |

1/(n-1) c/(n-1) In(n)/(n-1) 2*In(n)/(n-1)
Giant component  Avg. deg const. Fewer isolated  No isolated nodes.
O appears Lots of isolated nodes
Empty nodes. Complete
graph graph

avg. degree k=2E/n or p=k/(n-1)
k=1-¢: all components are of size Q(In n)
k=1+¢&: 1 component of size Q2(n), others have size Q(In n)
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G,, Simulation Experiment

Fraction of nodes in largest CC
i

Fraction of nodes in the
largest component

ot (n—1)

n=100k, p(n-1)=0.5 ... 3

G

np’
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How well does G, , correspond
to real networks?




Data statistics: Total activity

- ’
¢ msn® Messenger -0Ox

Jeff (orline) ~
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Messaging as a Network

Fraction of country’s
population on MSN:
eIlceland: 35%

*Spain: 28%
*Netherlands, Canada,
Sweden, Norway: 26%
*France, UK: 18%
*USA, Brazil: 8%
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Messaging as a Network
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MSN Network: Connectivity

,

10 : ] LI ] 1 ] 1 ] 1 ] ] I| ] ] I| ] ] I| ] I || | T J_.

o ]
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MSN: Degree Distribution

Count, P(k)*n

10/4/2011

3.5e+007

3e+007 |

2.5e+007

26+007 |
156+007 |
16+007 |
5¢+006 |

. ] Degree
distribution of
the MSN looks
nothing like
the G;:

0.2}
0.15
0.1}
0.05
T234506708 5101112131415 "

0 2000 4000 6000 8000 10000

Degree, k
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MSN: Log-Log Degree Distribution

@
I N I

Degree, k

We plot the same
data as on the
previous slide,
just the axes are
logarithmic
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MSN: Clustering

10—
GC) : ........................ C oC k-ok37 :
§ ---------------------- j
T 107 E T e, E
8 E W, 00 Teaa E
o)) i 1 Avg. clustering of
= - 1 the MSN:
O] - =0.
2 10 2 = C =0.1140
S i Avg. clustering of
~= [ corresponding G
4 C=Kin=8108

= 1 [T T N |
10 1 >
10 10
k (Degree)

c .1 Sc
C,: average C; of nodes of degree k SN i
K ik =k
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Hops Nodes

n
0 1
MSN: Diameter T
2 78
3 3,96
4 8,648
5 3,299,252
1 01 . | | I | | 6 28,395,849
. . 7 79,059,497
1 01 0 [ Number of steps  — 8 52,995,778
® X between pairs of - 9 10,321,008
'g 1 UB people — 10 1,955,007
— T 11 518,410
E 1 DE —] 12 149,945
E . 13 44,616
e 1 04 — 14 13,740
E’ . 15 4,476
1 02 — 16 1,542
. 17 536
10° | | | | | S o
0 5 10 15 20 29 30 19 71
distance (hops) 20 2
21 16
22 10
23 3
24 2
25 3
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Real Networks vs. G,

10/4/2011

Average path length: ©
Clustering Coefficient: ®
Degree Distribution: ®

Degreed distribution differs from that of real networks

Giant component in most real network does NOT
emerge through a phase transition

No local structure — clustering coefficient is too low

The answer is simply: NO

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Real Networks vs. G,

10/4/2011

It is the reference model for the rest of the class.

It will help us calculate many quantities, that can
then be compared to the real data

It will help us understand to what degree is a
particular property the result of some random
process
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The Small-World



Six Degrees of Kevin Bacon

Create a network of Hollywood actors

Connect two actors if they co-
appeared in the movie

number of steps to

Kevin Bacon e ——_
As of Dec 2007, the highest (finite) SR
Bacon number reported is 8 oS 195 |
Only approx. 12% of all actors Sz Conr
cannot be linked to Bacon EERTE
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The Small-World Experiment

Can’t measure, need to probe explicitly
[Milgram '67]
Picked 300 people in Omaha, Nebraska
and Wichita, Kansas
Ask them to get a letter to a stock-

broker in Boston by passing it through
friends
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The Small-World Experiment

(i.e., 64 letters reached the target) 1s

It took 6.2 steps on the
average, thus
“6 degrees of separation”

NUMBER OF CHAINS
o

oQq
Nlﬂ.
o -
Py =
-
o
oy =
stk

1 |
-] 6
NUMBER OF INTERMEDIARIES

People what owned stock
had shortest paths to the stockbroker than
random people: 5.4 vs. 5.7

People from the Boston area have even closer
paths: 4.4
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Milgram: Further Observations

10/4/2011

. 5{-5, ,;Jbbrz}k’-meﬂ'—
'S

_____ B | '-___7%{—‘ Beoston

Funneling: =7 4

31 of 64 chains passed through 1 of 3 people
ass their final step 2>

Starting points and the target were non-random
People refused to participate (25% for Milgram)

People in the experiment
follow some strategy (e.g., geographic routing) instead
of forwarding the letter to everyone.

There are not many samples (only 64)
People might have used extra information resources
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[Dodds-Muhamad-Watts, ‘03]

Columbia Small-World Study

18 targets of various backgrounds
24,000 first steps (~1,500 per target)
65% dropout per step

384 chains completed (1.5%)

BwWor——— Avg. chain length = 4.02
E 1007
< . n(h
C so ! ] n (h): — ( )
] e [1a-r)
™32 3 4 5 8 7 8 9 10 i—0
Path length, h r..... drop-out rate at hop i
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Small-World in Email Study

15000 — o j‘.\.
] = 10000} ;k”il‘ -ik:;;
Typical path length L=7 Tl A E
Mo llotfot®
1 2 3 4 5 6 7 8 8 10

Path length, h

Some target’s friends
are more likely to be the final step.

Conjecture: High reputation/authority

Structurally why are high-status
target easier to find

Conjecture: Core-periphery net structure
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Two Questions

The chains progress from the starting
position (Omaha) to the target area
{Boston) with each remeove. Dlagram
shows the number of miles from the
target area, with the distance of each
remove averaged over completed
and uncompleted chains.

¥

STAEFTING
BosiTron

4305 pir.
—— (2% E?
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6-Degrees: Should We Be Surprised?

Assume each human is connected to 100 other people.

Step 1: reach 100 people

Step 2: reach 100*100 = 10,000 people

Step 3: reach 100*100*100 = 1,000,000 people
Step 4: reach 100*100*100*100 = 100M people
In 5 steps we can reach 10 billion people

92% of new FB friendships are to a friend-of-a-friend
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Scientific Collaborations

Viap of scientific collaborations from 2005 to 2009

_omiputed by Olivier H. Beauchesne @ Science-Metrix, Inc.

Sais fromm Scopis, wning bachs, asde joumals and peerrevdeved oamah
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Clustering Implies Edge Locality

Actor Collaborations (IMDB): 225,226 nodes, avg. degree k=61
Electrical power grid: 4,941 nodes, k=2.67
Network of neurons 282 nodes, k=14

Table 1 Empirical examples of small-world networks

/—actual lLrandom Cactual Crandom
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.2b 0.28 0.05
L ... Average shortest path length
C ... Average clustering coefficient
43
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Back to the Small-World

Short paths: O(log n)

This is the “best” we can
do if the graph has constant
degree and n nodes

Triadic closure:

Friend of a friend is my friend
How can we have both?

Triadic closure reduces growth rate
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Clustering vs. Randomness

LU R
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Small-World: How?

10/4/2011

How can we at the same time have
high clustering and small diameter?

High clustering Low clustering
High diameter Low diameter

Clustering implies edge “locality”
Randomness enables “shortcuts”

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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[Watts-Strogatz Nature ‘98]

Solution: The Small-World Model

[Watts-Strogatz ‘98]:
2 components to the model:
(1) Start with a

Has high clustering coefficient

Now introduce randomness (“shortucts”)

(2)

Add/remove edges to create
shortcuts to join remote parts
of the lattice

For each edge with prob. p move
the other end to a random node
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[Watts-Strogatz Nature ‘98]

The Small-World Model

REGULAR HETUOREK SMALL LWORLD HETLIORE RAHDOM HETLIORK

F=0 IHCREASIHG RANDOMHESS P=1
High clustering High clustering Low clustering
High diameter Low diameter Low diameter

N 3 —
h_i C_Z h:IogN C=£
loga N

Rewiring allows us to interpolate between reqular
lattice and a random graph
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The Small-World Model

l I T I_|—| =R T L I I T TTT I I T T T TT |
i NS It takes a lot of
®) randomness to ruin
N T —— mean vertex-vertex distance the clustering, but a
£ —-—- clustering coefficient very small amount
— \ to overcome locality.
I
O N i
- AN
c \
2L 5 \ ]
L \
= \
<b) \ -
o \
O \
@ — . . —_
)= Parameter region of high N,
S clustering and low diameter
4(7; I ]
5 v
O - i
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0.001 0.01 0.1 1

Prob. of rewiring, p
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Diameter of the Watts-Strogatz

Start with a square grid
Each node has 1 random long-range edge

Each node has 1 spoke. Then randomly connect them.

:'x‘zz‘:':‘:%:%:b"q: C,=2*12/(8*7) 2 0.43
RCIIXTXTXTX

.\“.‘.‘.‘.‘.‘ e
.’x\}z‘.’x‘.&"gﬁ%

p—"

i T
SOTNATNATN T AT
IIRIRIRIXIKT
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Diameter of the Watts-Strogatz

Proof:

10/4/2011

Consider a graph where we
contract 2x2 subgraphs into
supernodes

Now we have 4 edges sticking
out of each supernode

From Thm. we have short paths
between super nodes

We can turn this into a path in a
real graph by adding at most 2
steps per hop

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis
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Small-World: Summary

10/4/2011

Yes. You don’t need more than a few random links.

Provides insight on the interplay between
clustering and the small-world

Captures the structure of many realistic networks
Accounts for the high clustering of real networks
Does not lead to the correct degree distribution

Does not enable navigation (next lecture)
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How to Navigate the Network?

The chains progress from the starting
position (Omaha) to the target area
{Boston) with each remeove. Dlagram
shows the number of miles from the
target area, with the distance of each
remove averaged over completed
and uncompleted chains.

¥

STAEFTING
BosiTron

-
-‘_--------_--

4305 pir.
—— (2% E?
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