Small-World Phenomena

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Network Properties \& G_{np}

How to characterize networks?

- Degree distribution P(k)
 How to model networks?
- Erdös-Renyi Random Graph [Erdös-Renyi, ‘60]

- $G_{n, p}$: undirected graph on n nodes where each edge (u, v) appears independently with prob. P
- Degree distribution: Binomial(n, p)

- Clustering coefficient: $C \cong p=\frac{k}{n}$
- Diameter: (next)

Random k-Regular Graphs

- Assume each node has d spokes (half-edges):
- $\mathrm{k}=1$:

Graph is a set of pairs

- $\mathrm{k}=2$:

Graph is a set of cycles

Arbitrarily complicated graphs

- Randomly pair them up

Definition: Expansion

- Graph $G(V, E)$ has expansion α : if $\forall S \subseteq V$: \# of edges leaving $S \geq \alpha \cdot \min (|S|,|V| S \mid)$
- Or equivalently:

$$
\alpha=\min _{S \subseteq V} \frac{\# \text { edges leaving } S}{\min (|S|,|V \backslash S|)}
$$

Expansion: Intuition

(A big) graph with "good" expansion

Expansion Measures Robustness

$$
\alpha=\min _{S \subseteq V} \frac{\# \text { edges leaving } S}{\min (|S|,|V \backslash S|)}
$$

- Expansion is measure of robustness:
- To disconnect l nodes, we need to cut $\geq \alpha \cdot l$ edges
- Low expansion:

- High expansion:

- Social networks:
- "Communities"

Expansion: k-Regular Graphs

- k-regular graph (every node has degree k):

$$
\alpha=\min _{S \subseteq V} \frac{\# \text { edges leaving } S}{\min (|S|,|V \backslash S|)}
$$

- Expansion is at most k (when S is 1 node)
- Is there a graph on n nodes ($n \rightarrow \infty$), of fixed max deg. k , so that expansion α remains const?

Examples:

- $n \times n$ grid: $k=4: \alpha=2 n /\left(n^{2} / 4\right) \rightarrow 0$ ($\mathrm{S}=\mathrm{n} / 2 \times \mathrm{n} / 2$ square in the center)

- Complete binary tree: $\alpha \rightarrow 0$ for $|S|=(n / 2)-1$

- Fact: For a random 3-regular graph on n nodes, there is some const $\alpha(\alpha>0$, independent. of $n)$ such that w.h.p. the expansion of the graph is $\geq \alpha$

Diameter of 3-Regular Rnd. Graph

- Fact: In a graph on n nodes with expansion α for all pairs of nodes s and t there is a path of $O((\log n) / \alpha)$ edges connecting them.
- Proof:
- Proof strategy:
- We want to show that from any node s there is a path of length $O((\log n) / \alpha)$ to any other node t
- Let S_{j} be a set of all nodes

found within j steps of BFS from s.
- How does S_{j} increase as a function of j ?

Diameter of 3-Regular Rnd. Graph

- Proof (continued):
- Let S_{j} be a set of all nodes found within j steps of BFS from s.
- Then:

$$
\begin{aligned}
& \left|S_{j+1}\right| \geq\left|S_{j}\right|+\frac{\overbrace{\substack{\text { Eddes can } \\
\text { cholidet }}}^{\frac{\text { Expansion }}{\alpha\left|S_{j}\right|}}=}{\substack{\text { and }}}= \\
& =\left|S_{j}\right|\left(1+\frac{\alpha}{k}\right)=\left(1+\frac{\alpha}{k}\right)^{j+1}
\end{aligned}
$$

Diameter of 3-Regular Rnd. Graph

- Proof (continued):
- In how many steps of BFS we reach $>\mathrm{n} / 2$ nodes?
- Need j so that: $\left(1+\frac{\alpha}{k}\right)^{j} \geq \frac{n}{2}$
- Let's set: $j=\frac{k \log _{2} n}{\alpha}$
- Then:

$$
\left(1+\frac{\alpha}{k}\right)^{\frac{k \log _{2} n}{\alpha}} \geq 2^{\log _{2} n}=n>\frac{n}{2}
$$

- In $O(2 k / \alpha \cdot \log n)$ steps $\left|S_{j}\right|$ grows to $\Theta(n)$. So, the diameter of G is $O(\log (n) / \alpha)$
In j steps, we \quad In j steps, we
reach $>n / 2$ nodes reach $>n / 2$ nodes \Rightarrow Diameter $=2 \cdot j$

Note
$\left(1+\frac{\alpha}{k}\right)^{\frac{k \log _{2} n}{\alpha}} \geq 2^{\log _{2} n}$
Remember $n 0, \alpha \leq k$ then:
if $\alpha=\mathrm{k}:(1+1)^{\frac{1}{1} \log _{2} n}=2^{\log _{2} n}$
if $\alpha \rightarrow 0$ then $\frac{k}{\alpha}=x \rightarrow \infty$:
and $\left(1+\frac{1}{x}\right)^{x \log _{2} n}=e^{\log _{2} n}>2^{\log _{2} n}$

Network Properties of G_{np}

Degree distribution: $\quad P(k)=\binom{n-1}{k} p^{k}(1-p)^{n-1-k}$ Path length:
 $O(\log n)$
 Clustering coefficient: $\quad C=p=\bar{k} / n$

"Evolution" of the G_{np}

What happens to $G_{n p}$ when we vary p ?

Back to Node Degrees of G_{np}

- Remember, expected degree $E\left[X_{v}\right]=(n-1) p$
- We want $E\left[X_{\nu}\right]$ be independent of n So let: $p=c /(n-1)$
- Observation: If we build random graph $G_{n p}$ with $p=c /(n-1)$ we have many isolated nodes
- Why?

$$
\begin{aligned}
& P[v \text { has degree } 0]=(1-p)^{n-1}=\left(1-\frac{c}{n-1}\right)^{n-1} \underset{n \rightarrow \infty}{\longrightarrow} e^{-c} \\
& \begin{array}{c}
\lim _{n \rightarrow \infty}\left(1-\frac{c}{n-1}\right)^{n-1}=\left(1-\frac{1}{x}\right)^{-x \cdot c}=[\underbrace{\left[\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{x}\right.}_{e}]^{-c}=e^{-c} \\
\text { Use substitution } \frac{1}{x}=\frac{c}{n-1}
\end{array} \\
& \text { By definition: } \\
& e=\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{x}
\end{aligned}
$$

No Isolated Nodes

- How big do we have to make p before we are likely to have no isolated nodes?
- We know: $P[v$ has degree 0$]=e^{-c}$
- Event we are asking about is:
- I = some node is isolated
- $I=\bigcup_{v \in N} I_{v}$ where I_{v} is the event that v is isolated
- We have:

$$
P(I)=P\left(\bigcup_{v \in N} I_{v}\right) \leq \sum_{v \in N} P\left(I_{v}\right)=n e^{-c}
$$

No Isolated Nodes

- We just learned: $P(I)=n e^{-c}$
- Let's try:
- $c=\ln n$
- $c=2 \ln n$
- So if:
- $p=\ln n$
- $p=2 \ln n$
then: $n e^{-c}=n e^{-\ln n} \quad=n \cdot 1 / n=1$
then: $n e^{-2 \ln n}=n \cdot 1 / n^{2}=1 / n$
then: $P(I)=1$
then: $P(I)=1 / n \rightarrow 0$ as $n \rightarrow \infty$

"Evolution" of a Random Graph

- Graph structure of $G_{n p}$ as p changes:

- Emergence of a Giant Component: avg. degree $k=2 E / n$ or $p=k /(n-1)$
- $k=1-\varepsilon$: all components are of size Ω (ln n)
- $k=1+\varepsilon: 1$ component of size $\Omega(n)$, others have size $\Omega(\ln n)$

G_{np} Simulation Experiment

Fraction of nodes in the largest component

- $\mathrm{G}_{\mathrm{np}}, n=100 \mathrm{k}, p(n-1)=0.5 \ldots 3$

How well does G_{np} correspond to real networks?

Data statistics: Total activity

$-\square x$
Jeff (Online) -
\checkmark Brain Salad Surgeryythe actual - ...
\square (0) MSN Today My Space
\boxplus Coworkers (1/4)
\square Family (1/1)
al Jeff \cap E volentieri - Mediaeval B...
Friends (0/4)
\square Other Contacts (14/89)
(8) cabra loca del mama

* ${ }^{\text {M }}$ ($)$ detn8r (Away) \cap Time of your li...

B DJHyperbyte... "Hanging on the
8 greg
E Jeff \cap Brain Salad Surgery(the ...
(8) Marshall. . good basketball season...
(1) Michael (Away)

3 (C) \ddagger ア 34 (B^{a} ! Ex (Mobile)
Aamir (Mobile)

* 8 ben (Mobile)

8 Shad (Mobile)
\& Shad (Mobile)
\& Stephanie
(Mobile)

+ Add a Contact

Search the web.
Search *
msn. Messenger \qquad

- Activity in June 2006:
- 245 million users logged in
- 180 million users engaged in conversations
- More than 30 billion conversations
- More than 255 billion exchanged messages

Messaging as a Network

 -France, UK: 18\%
-USA, Brazil: 8\%

Messaging as a Network

MSN Network: Connectivity

MSN: Degree Distribution

MSN: Log-Log Degree Distribution

We plot the same data as on the previous slide, just the axes are logarithmic

MSN: Clustering

C_{k} : average C_{i} of nodes of degree $k \quad C_{k}=\frac{1}{N_{k}} \sum_{i: k_{i}=k} C_{i}$

MSN: Diameter

Avg. path length 6.6 90% of the people can be reached in <8 hops

HODS	Nodes
0	1
1	10
2	78
3	3,96
4	8,648
5	3,299,252
6	28,395,849
7	79,059,497
8	52,995,778
9	10,321,008
10	1,955,007
11	518,410
12	149,945
13	44,616
14	13,740
15	4,476
16	1,542
17	536
18	167
19	71
20	29
21	16
22	10
23	3
24	2
25	3

Real Networks vs. G_{np}

- Are real networks like random graphs?
- Average path length: :)
- Clustering Coefficient: ©
- Degree Distribution: ©
- Problems with the random network model:
- Degreed distribution differs from that of real networks
- Giant component in most real network does NOT emerge through a phase transition
- No local structure - clustering coefficient is too low
- Most important: Are real networks random?
- The answer is simply: NO

Real Networks vs. G_{np}

- If $G_{n p}$ is wrong, why did we spend time on it?
- It is the reference model for the rest of the class.
- It will help us calculate many quantities, that can then be compared to the real data
- It will help us understand to what degree is a particular property the result of some random process

So, while $G_{n p}$ is WRONG, it will turn out to be extremly USEFUL!

The Small-World

Six Degrees of Kevin Bacon

Origins of a small-world idea:

- Bacon number:
- Create a network of Hollywood actors
- Connect two actors if they coappeared in the movie
- Bacon number: number of steps to Kevin Bacon
- As of Dec 2007, the highest (finite) Bacon number reported is 8
- Only approx. 12\% of all actors cannot be linked to Bacon

Elvis Presley has a Bacon number of 2 .

Erdös numbers are small!

The Small-World Experiment

- What is the typical shortest path length between any two people?
- Experiment on the global friendship network
- Can't measure, need to probe explicitly
- Small-world experiment [Milgram '67]
- Picked 300 people in Omaha, Nebraska and Wichita, Kansas
- Ask them to get a letter to a stockbroker in Boston by passing it through friends
- How many steps did it take?

The Small-World Experiment

- 64 chains completed:
(i.e., 64 letters reached the target)
- It took 6.2 steps on the average, thus "6 degrees of separation"
- Further observations:

Milgram's small world experiment

- People what owned stock had shortest paths to the stockbroker than random people: 5.4 vs. 5.7
- People from the Boston area have even closer paths: 4.4

Milgram: Further Observations

- Boston vs. occupation networks:
- Criticism:
- Funneling:

- 31 of 64 chains passed through 1 of 3 people ass their final step \rightarrow Not all links/nodes are equal
- Starting points and the target were non-random
- People refused to participate (25% for Milgram)
- Some sort of social search: People in the experiment follow some strategy (e.g., geographic routing) instead of forwarding the letter to everyone. They are not finding the shortest path!
- There are not many samples (only 64)
- People might have used extra information resources

Columbia Small-World Study

- In 2003 Dodds, Muhamad and Watts performed the experiment using email:
- 18 targets of various backgrounds
- 24,000 first steps (${ }^{\sim} 1,500$ per target)
- 65\% dropout per step
- 384 chains completed (1.5\%)

Avg. chain length $=4.01$
Problem: People stop participating
Correction
$n^{*}(h)=\frac{n(h)}{\prod_{i=0}^{h-1}\left(1-r_{i}\right)}$
r_{i}.... drop-out rate at hop i

Small-World in Email Study

- After the correction:
- Typical path length L=7
- Some not well understood phenomena in social networks:

- Funneling effect: Some target's friends are more likely to be the final step.
- Conjecture: High reputation/authority
- Effects of target's characteristics: Structurally why are high-status target easier to find
- Conjecture: Core-periphery net structure

Two Questions

- (1) What is the structure of a social network?
- (2) Which mechanisms do people use to route and find the target?

The chains progress from the starting position (Omaha) to the target area (Boston) with each remove. Dlagram shows the number of miles from the target area, with the distance of each remove averaged over completed and uncompleted chains.

6-Degrees: Should We Be Surprised?

- Assume each human is connected to 100 other people. Then:
- Step 1: reach 100 people
- Step 2: reach $100 * 100=10,000$ people
- Step 3: reach 100*100*100 = 1,000,000 people
- Step 4: reach 100*100*100*100 = 100M people
- In 5 steps we can reach 10 billion people
- What's wrong here?
- 92\% of new FB friendships are to a friend-of-a-friend

Scientific Collaborations

Clustering Implies Edge Locality

- MSN network has 7 orders of magnitude larger clustering than the corresponding G_{np} !
- Other examples:

Actor Collaborations (IMDB): 225,226 nodes, avg. degree k=61
Electrical power grid: 4,941 nodes, $\mathrm{k}=2.67$
Network of neurons 282 nodes, $k=14$

Table 1 Empirical examples of small-world networks

	$L_{\text {actual }}$	$L_{\text {random }}$	$C_{\text {actual }}$	$C_{\text {random }}$
Film actors	3.65	2.99	0.79	0.00027
Power grid	18.7	12.4	0.080	0.005
C. elegans	2.65	2.25	0.28	0.05

L ... Average shortest path length
C ... Average clustering coefficient

Back to the Small-World

- Consequence of expansion:
- Short paths: O(log n)
- This is the "best" we can do if the graph has constant degree and n nodes
- But networks have local structure:
- Triadic closure:

Friend of a friend is my friend

- How can we have both?

Clustering vs. Randomness

Where should we place social networks?

Clustered?

Small-World: How?

- Could a network with high clustering be at the same time a small world?
- How can we at the same time have high clustering and small diameter?

- Clustering implies edge "locality"
- Randomness enables "shortcuts"

Solution: The Small-World Model

Small-world IModel [Watts-Strogatz '98]:
2 components to the model:

- (1) Start with a low-dimensional regular lattice
- Has high clustering coefficient
- Now introduce randomness ("shortucts")
- (2) Rewire:
- Add/remove edges to create shortcuts to join remote parts of the lattice
- For each edge with prob. p move the other end to a random node

The Small-World Model

High clustering High diameter

$$
h=\frac{N}{2 \bar{k}} \quad C=\frac{3}{4}
$$

$P=1$
High clustering
Low diameter

Low diameter

$$
h=\frac{\log N}{\log \alpha} \quad C=\frac{\bar{k}}{N}
$$

Rewiring allows us to interpolate between regular lattice and a random graph

The Small-World Model

Diameter of the Watts-Strogatz

- Alternative formulation of the model:
- Start with a square grid
- Each node has 1 random long-range edge
- Each node has 1 spoke. Then randomly connect them.

$$
\begin{aligned}
& C_{i} \geq 2^{*} 12 /\left(8^{*} 7\right) \geq 0.43 \\
& \text { What's the diameter? } \\
& \text { It is log(n) } \\
& \text { Why? }
\end{aligned}
$$

Diameter of the Watts-Strogatz

- Proof:
- Consider a graph where we contract 2×2 subgraphs into supernodes
- Now we have 4 edges sticking out of each supernode - 4-regular random graph!
- From Thm. we have short paths between super nodes
- We can turn this into a path in a real graph by adding at most 2 steps per hop
\Rightarrow Diameter of the model is $O(2 \log n)$

4-regular random graph

Small-World: Summary

- Could a network with high clustering be at the same time a small world?
- Yes. You don't need more than a few random links.
- The Watts Strogatz Model:
- Provides insight on the interplay between clustering and the small-world
- Captures the structure of many realistic networks
- Accounts for the high clustering of real networks
- Does not lead to the correct degree distribution
- Does not enable navigation (next lecture)

How to Navigate the Network?

- (1) What is the structure of a social network?
- (2) Which mechanisms do people use to route and find the target?

The chains progress from the starting position (Omaha) to the target area (Boston) with each remove. Dlagram shows the number of miles from the target area, with the distance of each remove averaged over completed and uncompleted chains.

4,305 mi.

