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How to characterize networks? 
 Degree distribution P(k) 
 Clustering Coefficient C 
 Diameter (avg. shortest path length) h 

How to model networks? 
 Erdös-Renyi Random Graph [Erdös-Renyi, ‘60] 
 Gn,p: undirected graph on n nodes where each  

edge (u,v) appears independently with prob. P 
 Degree distribution: Binomial(n, p) 
 Clustering coefficient: 
 Diameter: (next) 
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 Assume each node has d spokes (half-edges): 
 k=1:       

 
 
 k=2: 

 
 
 k=3: 

 
 Randomly pair them up 
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Graph is a set of pairs 

Graph is a set of cycles 

Arbitrarily complicated 
graphs 



 Graph G(V, E) has expansion α: if∀ S⊆ V:  
# of edges leaving S ≥  α⋅ min(|S|,|V\S|) 

 Or equivalently: 
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S nodes α·S edges 

S’ nodes α·S’ edges 

(A big) graph with “good” expansion 



 Expansion is measure of robustness:  
 To disconnect l nodes, we need to cut ≥ α⋅ l edges 

 Low expansion: 
  

 High expansion: 
 

 Social networks: 
 “Communities” 
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 k-regular graph (every node has degree k): 
 Expansion is at most k (when S is 1 node) 

 

 Is there a graph on n nodes (n→∞), of fixed max deg. 
k, so that expansion α remains const? 

 

 Examples: 
 n×n grid: k=4: α =2n/(n2/4)→0    

(S=n/2 × n/2 square in the center) 
 

 Complete binary tree:  
α →0  for|S|=(n/2)-1 
 

 Fact: For a random 3-regular graph on n nodes, there is 
some const α (α>0, independent. of n) such that w.h.p.  
the expansion of the graph is ≥ α 
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 Fact: In a graph on n nodes with expansion α 
for all pairs of nodes s and t there is a path of 
O((log n) / α) edges connecting them. 

 Proof: 
 Proof strategy:  
 We want to show that from any  

node s there is a path of length  
O((log n)/α) to any other node t 

 Let Sj be a set of all nodes  
found within j steps of BFS from s.  
 How does Sj increase as a function of j? 
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 Proof (continued): 
 Let Sj be a set of all nodes found within j steps of 

BFS from s.  
 Then:  
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 Proof (continued): 
 In how many steps of BFS  

we reach >n/2 nodes? 
 Need j so that: 

 

 Let’s set: 
 Then: 

 
 
 In O(2k/α·log n) steps |Sj| grows to Θ(n).  

So, the diameter of G is O(log(n)/ α) 
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Degree distribution:    

Path length:        O(log n) 

Clustering coefficient:    C=p=k/n 
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What happens to Gnp when we vary p? 



 Remember, expected degree 
 We want E[Xv] be independent of n 
 So let: p=c/(n-1) 
 Observation: If we build random graph Gnp 

with p=c/(n-1) we have many isolated nodes 
 Why? 
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 How big do we have to make p before we are 
likely to have no isolated nodes?  

 We know: P[v has degree 0] = e-c 

 Event we are asking about is: 
 I = some node is isolated 
           where Iv is the event that v is isolated 

    
 We have: 

10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 14 


Nv

vII
∈

=

( ) ( )∑
∈∈

−=≤







=

Nv
v

Nv
v

cneIPIPIP 
Union bound 

∑≤
i

i
i

i AA

Ai 



 We just learned: P(I) = n e-c 

 Let’s try: 
 c = ln n then:  n e-c = n e-ln n  =n⋅1/n= 1 
 c = 2 ln n  then:  n e-2 ln n = n⋅1/n2  = 1/n 

 

 So if:  
 p = ln n then:  P(I) = 1 
 p = 2 ln n   then:  P(I) = 1/n →  0   as n→∞ 
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 Graph structure of Gnp as p changes: 
 
 
 
 
 

 Emergence of a Giant Component:  
 avg. degree k=2E/n or p=k/(n-1) 
 k=1-ε: all components are of  size Ω(ln n) 
 k=1+ε: 1 component of  size Ω(n), others have size Ω(ln n) 
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 Gnp, n=100k, p(n-1) = 0.5 … 3 
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Fraction of nodes in the 
largest component 





 Activity in June 2006: 
 245 million users logged in 
 180 million users engaged in 

conversations 
 More than 30 billion 

conversations 
 More than 255 billion 

exchanged messages 
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Fraction of country’s 
population on MSN: 
•Iceland: 35% 
•Spain: 28% 
•Netherlands, Canada, 
Sweden, Norway: 26% 
•France, UK: 18% 
•USA, Brazil: 8% 



Buddy Conversation 
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Communication graph 
• Edge (u,v) if users u and v  

exchanged at least 1 msg 
• N=180 million people 
• E=1.3 billion edges 
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Degree 
distribution of 
the MSN looks 
nothing like 
the Gnp: 
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We plot the same 
data as on the 
previous slide, 
just the axes are 
logarithmic 
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Avg. clustering of 
the MSN: 
C = 0.1140 
 
Avg. clustering of 
corresponding Gnp: 
C = k/n ≈ 8·10-8 
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MSN Messenger network 

Number of steps 
between pairs of 

people 

Avg. path length 6.6 
90% of the people can be reached in < 8 hops 

Hops Nodes 
0 1 

1 10 

2 78 

3 3,96 

4 8,648 

5 3,299,252 

6 28,395,849 

7 79,059,497 

8 52,995,778 

9 10,321,008 

10 1,955,007 

11 518,410 

12 149,945 

13 44,616 

14 13,740 

15 4,476 

16 1,542 

17 536 

18 167 

19 71 

20 29 

21 16 

22 10 

23 3 

24 2 

25 3 



 Are real networks like random graphs? 
 Average path length:  
 Clustering Coefficient:  
 Degree Distribution:  

 Problems with the random network model: 
 Degreed distribution differs from that of real networks 
 Giant component in most real network does NOT 

emerge through a phase transition 
 No local structure – clustering coefficient is too low 

 Most important: Are real networks random? 
 The answer is simply: NO 
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 If Gnp is wrong, why did we spend time on it? 
 It is the reference model for the rest of the class.   
 It will help us calculate many quantities, that can 

then be compared to the real data 
 It will help us understand to what degree is a 

particular property the result of some random 
process 
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So, while Gnp is WRONG, it will turn out  
to be extremly USEFUL! 





Origins of a small-world idea: 
 Bacon number: 
 Create a network of Hollywood actors 
 Connect two actors if they co-

appeared in the movie 
 Bacon number: number of steps to 

Kevin Bacon 
 As of Dec 2007, the highest (finite) 

Bacon number reported is 8 
 Only approx. 12% of all actors 

cannot be linked to Bacon 
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Erdös numbers are small! 



 What is the typical shortest path 
length between any two people? 
 Experiment  on the global friendship 

network 
 Can’t measure, need to probe explicitly  

 Small-world experiment [Milgram ’67] 

 Picked 300 people in Omaha, Nebraska 
and Wichita, Kansas 
 Ask them to get a letter to a stock-

broker in Boston by passing it through 
friends 
 

 How many steps did it take? 
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 64 chains completed: 
(i.e., 64 letters reached the target) 

 It took 6.2 steps on the  
average, thus  
“6 degrees of separation” 

 Further observations: 
 People what owned stock 

had shortest paths to the stockbroker than 
random people: 5.4 vs. 5.7 
 People from the Boston area have even closer 

paths: 4.4 
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Milgram’s small world experiment 



 Boston vs. occupation networks: 
 Criticism: 
 Funneling:  
 31 of 64 chains passed through 1 of 3 people  

ass their final step  Not all links/nodes are equal 
 Starting points and the target were non-random 
 People refused to participate (25% for Milgram) 
 Some sort of social search: People in the experiment 

follow some strategy (e.g., geographic routing) instead 
of forwarding the letter to everyone. They are not 
finding the shortest path! 
 There are not many samples (only 64)  
 People might have used extra information resources 
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 In 2003 Dodds, Muhamad and Watts 
performed the experiment using email: 
 18 targets of various backgrounds 
 24,000 first steps (~1,500 per target) 
 65% dropout per step 
 384 chains completed (1.5%) 
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[Dodds-Muhamad-Watts, ’03] 

Avg. chain length = 4.01 
Problem: People stop participating 
Correction 
factor: 

Path length, h 
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 After the correction: 
 Typical path length L=7 

 

 Some not well understood  
phenomena in social networks: 
 Funneling effect: Some target’s friends  

are more likely to be the final step. 
 Conjecture: High reputation/authority 
 Effects of target’s characteristics:  

Structurally why are high-status  
target easier to find 
 Conjecture: Core-periphery net structure 
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Path length, h 

n* (h
) 



 (1) What is the structure of a social network? 
 (2) Which mechanisms do people use to 

route and find the target? 
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 Assume each human is connected to 100 other people.  
Then:  
 Step 1: reach 100 people 
 Step 2: reach 100*100 = 10,000 people 
 Step 3: reach 100*100*100 = 1,000,000 people 
 Step 4: reach 100*100*100*100 = 100M people 
 In 5 steps we can reach 10 billion people 

 What’s wrong here? 
 92% of new FB friendships are to a friend-of-a-friend 
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 MSN network has 7 orders of magnitude 
larger clustering than the corresponding Gnp! 

 Other examples: 
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L ... Average shortest path length 
C ... Average clustering coefficient 

Actor Collaborations (IMDB): 225,226 nodes, avg. degree k=61 
Electrical power grid: 4,941 nodes, k=2.67 
Network of neurons  282 nodes, k=14 



10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 44 

Pure exponential growth 

Triadic closure reduces growth rate 

 Consequence of expansion: 
 Short paths: O(log n)  
 This is the “best” we can  

do if the graph has constant  
degree and n nodes 

 But networks have  
local structure: 
 Triadic closure: 

Friend of a friend is my friend 
 How can we have both? 



10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 45 

Where should we place social networks? 

Clustered? Random? 



 Could a network with high clustering be at 
the same time a small world? 
 How can we at the same time have  

high clustering and small diameter? 
 
 
 
 
 
 Clustering implies edge “locality” 
 Randomness enables “shortcuts” 
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High clustering 
High diameter 

Low clustering 
Low diameter 



Small-world Model [Watts-Strogatz ‘98]: 
2 components to the model: 
 (1) Start with a low-dimensional regular lattice 
 Has high clustering coefficient 

 

 Now introduce randomness (“shortucts”) 
 

 (2) Rewire:  
 Add/remove edges to create  

shortcuts to join remote parts  
of the lattice 
 For each edge with prob. p move  

the other end to a random node 
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[Watts-Strogatz Nature ‘98] 
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High clustering 
High diameter 

High clustering 
Low diameter 

Low clustering 
Low diameter 

[Watts-Strogatz Nature ‘98] 
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Rewiring allows us to interpolate between regular 
lattice and a random graph 
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very small amount 
to overcome locality. 



 Alternative formulation of the model: 
 Start with a square grid 
 Each node has 1 random long-range edge 
 Each node has 1 spoke. Then randomly connect them. 
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Ci ≥ 2*12/(8*7) ≥ 0.43 
 

What’s the diameter? 
It is log(n) 
Why? 



 Proof: 
 Consider a graph where we 

contract 2x2 subgraphs into 
supernodes 
 Now we have 4 edges sticking 

out of each supernode 
 4-regular random graph! 

 From Thm. we have short paths 
between super nodes 
 We can turn this into a path in a 

real graph by adding at most 2 
steps per hop 

⇒Diameter of the model is  
 O(2 log n) 
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4-regular random 
graph 



 Could a network with high clustering be at 
the same time a small world? 
 Yes. You don’t need more than a few random links. 

 The Watts Strogatz Model: 
 Provides insight on the interplay between 

clustering and the small-world  
 Captures the structure of many realistic networks 
 Accounts for the high clustering of real networks 
 Does not lead to the correct degree distribution 
 Does not enable navigation (next lecture) 
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 (1) What is the structure of a social network? 
 (2) Which mechanisms do people use to 

route and find the target? 
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