Small-World Phenomena

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Network Properties & G_{nr}

How to characterize networks?

- Degree distribution P(k)
- Clustering Coefficient C
- Diameter (avg. shortest path length) h

How to model networks?

- Erdös-Renyi Random Graph [Erdös-Renyi, '60]
 - G_{n,p}: undirected graph on n nodes where each edge (u,v) appears independently with prob. P
 - Degree distribution: Binomial(n, p)
 - Clustering coefficient: $C \cong p = \frac{k}{r}$
 - Diameter: (next)

Random k-Regular Graphs

Assume each node has d spokes (half-edges):

Definition: Expansion

Graph G(V, E) has expansion α: if ∀S⊆V: # of edges leaving S ≥ α · min(/S/,/V\S/)
Or equivalently:

 $\alpha = \min_{S \subseteq V} \frac{\# edges \ leaving \ S}{\min(|S|, |V \setminus S|)}$

Expansion: Intuition

(A big) graph with "good" expansion

Expansion Measures Robustness

 $\alpha = \min_{S \subseteq V} \frac{\#edges \ leaving \ S}{\min(|S|, |V \setminus S|)}$

- Expansion is measure of robustness:
 - To disconnect l nodes, we need to cut $\geq \alpha \cdot l$ edges
- Low expansion:

High expansion:

- Social networks:
 - "Communities"

Expansion: k-Regular Graphs

- k-regular graph (every node has degree k):
 - Expansion is at most k (when S is 1 node)
- Is there a graph on *n* nodes $(n \rightarrow \infty)$, of fixed max deg. *k*, so that expansion α remains const?

Examples:

- **n×n grid:** $k=4: \alpha = 2n/(n^2/4) \rightarrow 0$ (S=n/2 × n/2 square in the center)
- Complete binary tree: $\alpha \rightarrow 0$ for/S/=(n/2)-1

• Fact: For a random 3-regular graph on *n* nodes, there is some const α ($\alpha > 0$, independent. of *n*) such that w.h.p. the expansion of the graph is $\geq \alpha$

#edges leaving S

 $\min(|S|, |V \setminus S|)$

 $\alpha = \min$

Diameter of 3-Regular Rnd. Graph

- Fact: In a graph on *n* nodes with expansion α for all pairs of nodes *s* and *t* there is a path of O((log n) / α) edges connecting them.
 Proof:
 - Proof strategy:
 - We want to show that from any node s there is a path of length O((log n)/α) to any other node t

- Let S_j be a set of all nodes found within j steps of BFS from s.
- How does S_i increase as a function of j?

Diameter of 3-Regular Rnd. Graph

Proof (continued):

 Let S_j be a set of all nodes found within j steps of BFS from s.

$$= \left| S_{j} \right| \left(1 + \frac{\alpha}{k} \right) = \left(1 + \frac{\alpha}{k} \right)^{j+1}$$

Diameter of 3-Regular Rnd. Graph

Proof (continued):

- In how many steps of BFS we reach >n/2 nodes?
- Need j so that: $\left(1 + \frac{\alpha}{k}\right)^{j} \ge \frac{n}{2}$
- Let's set: $j = \frac{k \log_2 n}{\alpha}$

$$\left(1+\frac{\alpha}{k}\right)^{\frac{k\log_2 n}{\alpha}} \ge 2^{\log_2 n} = n > \frac{n}{2}$$

Note $\left(1 + \frac{\alpha}{k}\right)^{\frac{k \log_2 n}{\alpha}} \ge 2^{\log_2 n}$

- Remember *n* 0, $\alpha \leq k$ then:
- if $\alpha = k : (1+1)^{1 \log_2 n} = 2^{\log_2 n}$ if $\alpha \to 0$ then $\frac{k}{\alpha} = x \to \infty$: and $\left(1 + \frac{1}{x}\right)^{x \log_2 n} = e^{\log_2 n} > 2^{\log_2 n}$

Network Properties of G_{np}

Degree distribution:

Path length:

$$P(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$

$$O(\log n)$$

Clustering coefficient:

$$C=p=\overline{k}/n$$

"Evolution" of the G_{np} What happens to G_{np} when we vary p?

Back to Node Degrees of G_{np}

- Remember, expected degree $E[X_v] = (n-1)p$
- We want *E[X_v]* be independent of *n* So let: *p*=*c*/(*n*-1)
- Observation: If we build random graph G_{np} with p=c/(n-1) we have many isolated nodes
 Why?

$$P[v \text{ has degree } 0] = (1-p)^{n-1} = \left(1 - \frac{c}{n-1}\right)^{n-1} \xrightarrow[n \to \infty]{} e^{-c}$$
$$\lim_{n \to \infty} \left(1 - \frac{c}{n-1}\right)^{n-1} = \left(1 - \frac{1}{x}\right)^{-x \cdot c} = \left[\lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^x\right]^{-c} = e^{-c}$$
By definition:
$$e = \lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^x$$
Use substitution $\frac{1}{x} = \frac{c}{n-1}$

No Isolated Nodes

- How big do we have to make p before we are likely to have no isolated nodes?
- We know: $P[v \text{ has degree } 0] = e^{-c}$
- Event we are asking about is:
 - I = some node is isolated
 - $I = \bigcup_{v \in N} I_v$ where I_v is the event that v is isolated

We have:

$$P(I) = P\left(\bigcup_{v \in N} I_v\right) \le \sum_{v \in N} P(I_v) = ne^{-c}$$

Union bound

No Isolated Nodes

- We just learned: P(I) = n e^{-c}
- Let's try:
 - $c = \ln n$ then: $n e^{-c} = n e^{-\ln n} = n \cdot 1/n = 1$
 - $c = 2 \ln n$ then: $n e^{-2 \ln n} = n \cdot 1/n^2 = 1/n$

So if:

p = ln *n* then: *P*(*I*) = 1 *p* = 2 ln *n* then: *P*(*I*) = 1/*n* → 0 as *n*→∞

"Evolution" of a Random Graph

- Emergence of a Giant Component: avg. degree k=2E/n or p=k/(n-1)
 - $k=1-\varepsilon$: all components are of size $\Omega(\ln n)$
 - $k=1+\varepsilon$: 1 component of size $\Omega(n)$, others have size $\Omega(\ln n)$

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

G_{np} Simulation Experiment

Fraction of nodes in the largest component

•
$$G_{np}$$
, $n=100k$, $p(n-1) = 0.5 \dots 3$

How well does G_{np} correspond to real networks?

Data statistics: Total activity

Activity in June 2006:

- 245 million users logged in
- 180 million users engaged in conversations
- More than 30 billion conversations
- More than 255 billion exchanged messages

Messaging as a Network

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Messaging as a Network

MSN Network: Connectivity

MSN: Degree Distribution

MSN: Log-Log Degree Distribution

MSN: Clustering

MSN: Diameter

Hops	Nodes
0	1
1	10
2	78
3	3,96
4	8,648
5	3,299,252
6	28,395,849
7	79,059,497
8	52,995,778
9	10,321,008
10	1,955,007
11	518,410
12	149,945
13	44,616
14	13,740
15	4,476
16	1,542
17	536
18	167
19	71
20	29
21	16
22	10
23	3
24	2
ed 25	3

10/4/2011

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.ec

Real Networks vs. G_{np}

Are real networks like random graphs?

- Average path length: ③
- Clustering Coefficient: S

Problems with the random network model:

- Degreed distribution differs from that of real networks
- Giant component in most real network does NOT emerge through a phase transition
- No local structure clustering coefficient is too low

Most important: Are real networks random?

The answer is simply: NO

Real Networks vs. G_{np}

If G_{np} is wrong, why did we spend time on it?

- It is the reference model for the rest of the class.
- It will help us calculate many quantities, that can then be compared to the real data
- It will help us understand to what degree is a particular property the result of some random process

So, while G_{np} is WRONG, it will turn out to be extremly USEFUL!

The Small-World

Six Degrees of Kevin Bacon

Origins of a small-world idea:Bacon number:

- Create a network of Hollywood actors
- Connect two actors if they coappeared in the movie
- Bacon number: number of steps to Kevin Bacon
- As of Dec 2007, the highest (finite) Bacon number reported is 8
- Only approx. 12% of all actors cannot be linked to Bacon

Elvis Presley has a Bacon number of 2.

Erdös numbers are small!

The Small-World Experiment

- What is the typical shortest path length between any two people?
 - Experiment on the global friendship network
 - Can't measure, need to probe explicitly
- Small-world experiment [Milgram '67]
 - Picked 300 people in Omaha, Nebraska and Wichita, Kansas
 - Ask them to get a letter to a stockbroker in Boston by passing it through friends
- How many steps did it take?

The Small-World Experiment

64 chains completed:

(i.e., 64 letters reached the target)

It took 6.2 steps on the average, thus
 "6 degrees of separation"

Further observations:

- People what owned stock had shortest paths to the stockbroker than random people: 5.4 vs. 5.7
- People from the Boston area have even closer paths: 4.4

Milgram: Further Observations

- Boston vs. occupation networks:
 Criticism:
 - Funneling:

- 31 of 64 chains passed through 1 of 3 people ass their final step → Not all links/nodes are equal
- Starting points and the target were non-random
- People refused to participate (25% for Milgram)
- Some sort of social search: People in the experiment follow some strategy (*e.g.*, geographic routing) instead of forwarding the letter to everyone. They are not finding the shortest path!
- There are not many samples (only 64)
- People might have used extra information resources

[Dodds-Muhamad-Watts, '03]

Columbia Small-World Study

- In 2003 Dodds, Muhamad and Watts performed the experiment using email:
 - 18 targets of various backgrounds
 - 24,000 first steps (~1,500 per target)
 - 65% dropout per step
 - 384 chains completed (1.5%)

Small-World in Email Study

• After the correction:

Typical path length L=7

Some not well understood phenomena in social networks:

- Funneling effect: Some target's friends are more likely to be the final step.
 - Conjecture: High reputation/authority
- Effects of target's characteristics: Structurally why are high-status target easier to find
 - <u>Conjecture</u>: Core-periphery net structure

Two Questions

(1) What is the structure of a social network?
(2) Which mechanisms do people use to route and find the target?

6-Degrees: Should We Be Surprised?

- Assume each human is connected to 100 other people.
 Then:
 - Step 1: reach 100 people
 - Step 2: reach 100*100 = 10,000 people
 - Step 3: reach 100*100*100 = 1,000,000 people
 - Step 4: reach 100*100*100*100 = 100M people
 - In 5 steps we can reach 10 billion people
- What's wrong here?
 - 92% of new FB friendships are to a friend-of-a-friend

Scientific Collaborations

VIAD OF SCIENTIFIC COllaborations from 2005 to 200 Computed by Olivier H. Beauchesne @ Science-Metrix, Inc. Sata from Scopea, using backs, tode journals and page-systemed journals

Clustering Implies Edge Locality

 MSN network has 7 orders of magnitude larger clustering than the corresponding G_{np}!
 Other examples:

Actor Collaborations (IMDB): 225,226 nodes, avg. degree k=61 Electrical power grid: 4,941 nodes, k=2.67 Network of neurons 282 nodes, k=14

Table 1 Empirical examples of small-world networks

	Lactual	Lrandom	$C_{\sf actual}$	C_{random}
Film actors	3.65	2.99	0.79	0.00027
Power grid	18.7	12.4	0.080	0.005
<i>C. elegans</i>	2.65	2.25	0.28	0.05

- L ... Average shortest path length
- C ... Average clustering coefficient

Back to the Small-World

Consequence of expansion:

- Short paths: O(log n)
 - This is the "best" we can do if the graph has constant degree and n nodes
- But networks have local structure:
 - Triadic closure:

Friend of a friend is my friend

How can we have both?

Clustering vs. Randomness

Where should we place social networks?

Small-World: How?

- Could a network with high clustering be at the same time a small world?
 - How can we at the same time have high clustering and small diameter?

- Clustering implies edge "locality"
- Randomness enables "shortcuts"

[Watts-Strogatz Nature '98]

Solution: The Small-World Model

Small-world Model [Watts-Strogatz '98]:

- 2 components to the model:
- (1) Start with a low-dimensional regular lattice
 - Has high clustering coefficient
- Now introduce randomness ("shortucts")

(2) Rewire:

- Add/remove edges to create shortcuts to join remote parts of the lattice
- For each edge with prob. p move the other end to a random node

[Watts-Strogatz Nature '98]

The Small-World Model

Rewiring allows us to interpolate between regular lattice and a random graph

The Small-World Model

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Diameter of the Watts-Strogatz

Alternative formulation of the model:

- Start with a square grid
- Each node has 1 random long-range edge
 - Each node has 1 spoke. Then randomly connect them.

 $C_i \ge 2*12/(8*7) \ge 0.43$

What's the diameter? It is *log(n)* Why?

Diameter of the Watts-Strogatz

Proof:

- Consider a graph where we contract 2x2 subgraphs into supernodes
- Now we have 4 edges sticking out of each supernode
 - 4-regular random graph!
- From Thm. we have short paths between super nodes
- We can turn this into a path in a real graph by adding at most 2 steps per hop
- $\Rightarrow Diameter of the model is$ $<math>O(2 \log n)$

Small-World: Summary

- Could a network with high clustering be at the same time a small world?
 - Yes. You don't need more than a few random links.
- The Watts Strogatz Model:
 - Provides insight on the interplay between clustering and the small-world
 - Captures the structure of many realistic networks
 - Accounts for the high clustering of real networks
 - Does not lead to the correct degree distribution
 - Does not enable navigation (next lecture)

How to Navigate the Network?

(1) What is the structure of a social network?
(2) Which mechanisms do people use to route and find the target?

