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How to characterize networks? 
 Degree distribution P(k) 
 Clustering Coefficient C 
 Diameter (avg. shortest path length) h 

How to model networks? 
 Erdös-Renyi Random Graph [Erdös-Renyi, ‘60] 
 Gn,p: undirected graph on n nodes where each  

edge (u,v) appears independently with prob. P 
 Degree distribution: Binomial(n, p) 
 Clustering coefficient: 
 Diameter: (next) 
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 Assume each node has d spokes (half-edges): 
 k=1:       

 
 
 k=2: 

 
 
 k=3: 

 
 Randomly pair them up 
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Graph is a set of pairs 

Graph is a set of cycles 

Arbitrarily complicated 
graphs 



 Graph G(V, E) has expansion α: if∀ S⊆ V:  
# of edges leaving S ≥  α⋅ min(|S|,|V\S|) 

 Or equivalently: 
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S nodes α·S edges 

S’ nodes α·S’ edges 

(A big) graph with “good” expansion 



 Expansion is measure of robustness:  
 To disconnect l nodes, we need to cut ≥ α⋅ l edges 

 Low expansion: 
  

 High expansion: 
 

 Social networks: 
 “Communities” 
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 k-regular graph (every node has degree k): 
 Expansion is at most k (when S is 1 node) 

 

 Is there a graph on n nodes (n→∞), of fixed max deg. 
k, so that expansion α remains const? 

 

 Examples: 
 n×n grid: k=4: α =2n/(n2/4)→0    

(S=n/2 × n/2 square in the center) 
 

 Complete binary tree:  
α →0  for|S|=(n/2)-1 
 

 Fact: For a random 3-regular graph on n nodes, there is 
some const α (α>0, independent. of n) such that w.h.p.  
the expansion of the graph is ≥ α 
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 Fact: In a graph on n nodes with expansion α 
for all pairs of nodes s and t there is a path of 
O((log n) / α) edges connecting them. 

 Proof: 
 Proof strategy:  
 We want to show that from any  

node s there is a path of length  
O((log n)/α) to any other node t 

 Let Sj be a set of all nodes  
found within j steps of BFS from s.  
 How does Sj increase as a function of j? 
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 Proof (continued): 
 Let Sj be a set of all nodes found within j steps of 

BFS from s.  
 Then:  
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 Proof (continued): 
 In how many steps of BFS  

we reach >n/2 nodes? 
 Need j so that: 

 

 Let’s set: 
 Then: 

 
 
 In O(2k/α·log n) steps |Sj| grows to Θ(n).  

So, the diameter of G is O(log(n)/ α) 
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In j steps, we  
reach >n/2 nodes  

In j steps, we 
reach >n/2 nodes  

⇒ Diameter = 2·j 

⇒ Diameter  
     = 2log(n) 
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Degree distribution:    

Path length:        O(log n) 

Clustering coefficient:    C=p=k/n 
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What happens to Gnp when we vary p? 



 Remember, expected degree 
 We want E[Xv] be independent of n 
 So let: p=c/(n-1) 
 Observation: If we build random graph Gnp 

with p=c/(n-1) we have many isolated nodes 
 Why? 
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 How big do we have to make p before we are 
likely to have no isolated nodes?  

 We know: P[v has degree 0] = e-c 

 Event we are asking about is: 
 I = some node is isolated 
           where Iv is the event that v is isolated 

    
 We have: 
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 We just learned: P(I) = n e-c 

 Let’s try: 
 c = ln n then:  n e-c = n e-ln n  =n⋅1/n= 1 
 c = 2 ln n  then:  n e-2 ln n = n⋅1/n2  = 1/n 

 

 So if:  
 p = ln n then:  P(I) = 1 
 p = 2 ln n   then:  P(I) = 1/n →  0   as n→∞ 
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 Graph structure of Gnp as p changes: 
 
 
 
 
 

 Emergence of a Giant Component:  
 avg. degree k=2E/n or p=k/(n-1) 
 k=1-ε: all components are of  size Ω(ln n) 
 k=1+ε: 1 component of  size Ω(n), others have size Ω(ln n) 

10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 16 

0 1 
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Empty 
graph 

Complete 
graph 



 Gnp, n=100k, p(n-1) = 0.5 … 3 
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Fraction of nodes in the 
largest component 





 Activity in June 2006: 
 245 million users logged in 
 180 million users engaged in 

conversations 
 More than 30 billion 

conversations 
 More than 255 billion 

exchanged messages 
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Fraction of country’s 
population on MSN: 
•Iceland: 35% 
•Spain: 28% 
•Netherlands, Canada, 
Sweden, Norway: 26% 
•France, UK: 18% 
•USA, Brazil: 8% 



Buddy Conversation 
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Communication graph 
• Edge (u,v) if users u and v  

exchanged at least 1 msg 
• N=180 million people 
• E=1.3 billion edges 
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Degree 
distribution of 
the MSN looks 
nothing like 
the Gnp: 
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We plot the same 
data as on the 
previous slide, 
just the axes are 
logarithmic 
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Avg. clustering of 
the MSN: 
C = 0.1140 
 
Avg. clustering of 
corresponding Gnp: 
C = k/n ≈ 8·10-8 
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MSN Messenger network 

Number of steps 
between pairs of 

people 

Avg. path length 6.6 
90% of the people can be reached in < 8 hops 

Hops Nodes 
0 1 

1 10 

2 78 

3 3,96 

4 8,648 

5 3,299,252 

6 28,395,849 

7 79,059,497 

8 52,995,778 

9 10,321,008 

10 1,955,007 

11 518,410 

12 149,945 

13 44,616 

14 13,740 

15 4,476 

16 1,542 

17 536 

18 167 

19 71 

20 29 

21 16 

22 10 

23 3 

24 2 

25 3 



 Are real networks like random graphs? 
 Average path length:  
 Clustering Coefficient:  
 Degree Distribution:  

 Problems with the random network model: 
 Degreed distribution differs from that of real networks 
 Giant component in most real network does NOT 

emerge through a phase transition 
 No local structure – clustering coefficient is too low 

 Most important: Are real networks random? 
 The answer is simply: NO 
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 If Gnp is wrong, why did we spend time on it? 
 It is the reference model for the rest of the class.   
 It will help us calculate many quantities, that can 

then be compared to the real data 
 It will help us understand to what degree is a 

particular property the result of some random 
process 
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So, while Gnp is WRONG, it will turn out  
to be extremly USEFUL! 





Origins of a small-world idea: 
 Bacon number: 
 Create a network of Hollywood actors 
 Connect two actors if they co-

appeared in the movie 
 Bacon number: number of steps to 

Kevin Bacon 
 As of Dec 2007, the highest (finite) 

Bacon number reported is 8 
 Only approx. 12% of all actors 

cannot be linked to Bacon 

10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 33 



10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 34 

Erdös numbers are small! 



 What is the typical shortest path 
length between any two people? 
 Experiment  on the global friendship 

network 
 Can’t measure, need to probe explicitly  

 Small-world experiment [Milgram ’67] 

 Picked 300 people in Omaha, Nebraska 
and Wichita, Kansas 
 Ask them to get a letter to a stock-

broker in Boston by passing it through 
friends 
 

 How many steps did it take? 
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 64 chains completed: 
(i.e., 64 letters reached the target) 

 It took 6.2 steps on the  
average, thus  
“6 degrees of separation” 

 Further observations: 
 People what owned stock 

had shortest paths to the stockbroker than 
random people: 5.4 vs. 5.7 
 People from the Boston area have even closer 

paths: 4.4 
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Milgram’s small world experiment 



 Boston vs. occupation networks: 
 Criticism: 
 Funneling:  
 31 of 64 chains passed through 1 of 3 people  

ass their final step  Not all links/nodes are equal 
 Starting points and the target were non-random 
 People refused to participate (25% for Milgram) 
 Some sort of social search: People in the experiment 

follow some strategy (e.g., geographic routing) instead 
of forwarding the letter to everyone. They are not 
finding the shortest path! 
 There are not many samples (only 64)  
 People might have used extra information resources 
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 In 2003 Dodds, Muhamad and Watts 
performed the experiment using email: 
 18 targets of various backgrounds 
 24,000 first steps (~1,500 per target) 
 65% dropout per step 
 384 chains completed (1.5%) 
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[Dodds-Muhamad-Watts, ’03] 

Avg. chain length = 4.01 
Problem: People stop participating 
Correction 
factor: 

Path length, h 
38 
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 After the correction: 
 Typical path length L=7 

 

 Some not well understood  
phenomena in social networks: 
 Funneling effect: Some target’s friends  

are more likely to be the final step. 
 Conjecture: High reputation/authority 
 Effects of target’s characteristics:  

Structurally why are high-status  
target easier to find 
 Conjecture: Core-periphery net structure 
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Path length, h 

n* (h
) 



 (1) What is the structure of a social network? 
 (2) Which mechanisms do people use to 

route and find the target? 
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 Assume each human is connected to 100 other people.  
Then:  
 Step 1: reach 100 people 
 Step 2: reach 100*100 = 10,000 people 
 Step 3: reach 100*100*100 = 1,000,000 people 
 Step 4: reach 100*100*100*100 = 100M people 
 In 5 steps we can reach 10 billion people 

 What’s wrong here? 
 92% of new FB friendships are to a friend-of-a-friend 
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 MSN network has 7 orders of magnitude 
larger clustering than the corresponding Gnp! 

 Other examples: 
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L ... Average shortest path length 
C ... Average clustering coefficient 

Actor Collaborations (IMDB): 225,226 nodes, avg. degree k=61 
Electrical power grid: 4,941 nodes, k=2.67 
Network of neurons  282 nodes, k=14 
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Pure exponential growth 

Triadic closure reduces growth rate 

 Consequence of expansion: 
 Short paths: O(log n)  
 This is the “best” we can  

do if the graph has constant  
degree and n nodes 

 But networks have  
local structure: 
 Triadic closure: 

Friend of a friend is my friend 
 How can we have both? 
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Where should we place social networks? 

Clustered? Random? 



 Could a network with high clustering be at 
the same time a small world? 
 How can we at the same time have  

high clustering and small diameter? 
 
 
 
 
 
 Clustering implies edge “locality” 
 Randomness enables “shortcuts” 
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High clustering 
High diameter 

Low clustering 
Low diameter 



Small-world Model [Watts-Strogatz ‘98]: 
2 components to the model: 
 (1) Start with a low-dimensional regular lattice 
 Has high clustering coefficient 

 

 Now introduce randomness (“shortucts”) 
 

 (2) Rewire:  
 Add/remove edges to create  

shortcuts to join remote parts  
of the lattice 
 For each edge with prob. p move  

the other end to a random node 
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[Watts-Strogatz Nature ‘98] 
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High clustering 
High diameter 

High clustering 
Low diameter 

Low clustering 
Low diameter 

[Watts-Strogatz Nature ‘98] 
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Rewiring allows us to interpolate between regular 
lattice and a random graph 
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It takes a lot of 
randomness to ruin 
the clustering, but a 
very small amount 
to overcome locality. 



 Alternative formulation of the model: 
 Start with a square grid 
 Each node has 1 random long-range edge 
 Each node has 1 spoke. Then randomly connect them. 
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Ci ≥ 2*12/(8*7) ≥ 0.43 
 

What’s the diameter? 
It is log(n) 
Why? 



 Proof: 
 Consider a graph where we 

contract 2x2 subgraphs into 
supernodes 
 Now we have 4 edges sticking 

out of each supernode 
 4-regular random graph! 

 From Thm. we have short paths 
between super nodes 
 We can turn this into a path in a 

real graph by adding at most 2 
steps per hop 

⇒Diameter of the model is  
 O(2 log n) 
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4-regular random 
graph 



 Could a network with high clustering be at 
the same time a small world? 
 Yes. You don’t need more than a few random links. 

 The Watts Strogatz Model: 
 Provides insight on the interplay between 

clustering and the small-world  
 Captures the structure of many realistic networks 
 Accounts for the high clustering of real networks 
 Does not lead to the correct degree distribution 
 Does not enable navigation (next lecture) 
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 (1) What is the structure of a social network? 
 (2) Which mechanisms do people use to 

route and find the target? 
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