
CS224W: Social and Information Network Analysis 
Jure Leskovec, Stanford University 

http://cs224w.stanford.edu 



 Review of basic probability:  
 Today, Thu 9/29 
 In Gates B01, 4-6pm 

 Review of basic linear algebra: 
 Tomorrow, Fri 9/30 
 Gates B03, 4-6pm 

 Next week: 
 Intro to SNAP (Gates B01, 4-6pm on Thu 10/6) 
 Intro to NetworkX (Gates B03, 4-6pm on Fri 10/7) 
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http://snap.stanford.edu/
http://networkx.lanl.gov/


 Recall from the last lecture: 
 1) We took a real system: the Web 
 2) We represented it as a directed graph 
 3) We used the language of graph theory 
 Strongly Connected Components 

 4) We designed a computational 
experiment: 
 Find In- and Out-components of a given node v 

 5) We learned something about the 
structure of the Web 

 This class:  
 Define basic terminology and measures 

that you can compute on networks  
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v 

Out(v) 



Undirected 
 Links: undirected 

(symmetrical) 
 
 
 
 
 

 Undirected links: 
 Collaborations 
 Friendship on Facebook 

Directed 
 Links: directed  

(arcs) 
 
 
 
 
 

 Directed links: 
 Phone calls 
 Following on Twitter 

9/29/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 4 

A 

B 

D 

C 

L 

M F 

G 

H 

I 

A 
G 

F 

B 
C 

D 

E 



9/29/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 5 

Aij=1  if there is a link between node i and j 

Aij=0  if nodes i and j are not connected to each other 
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Note that for a directed graph (right) the matrix is not symmetric.    
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Node degree: the number of 
links connected to the node 
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In directed networks we define 
an in-degree and out-degree.    
The (total) degree of a node is the 
sum of in- and out-degree. 
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The maximum number of edges in  
an undirected graph on N nodes is 

A graph with the number of edges E=Emax 
is a complete graph,  
and its average degree is N-1 



Most real-world networks are sparse 
E <<  Emax  (or k << N-1) 

 
 WWW (Stanford-Berkeley):  N=319,717   〈k〉=9.65 
 Social networks (LinkedIn): N=6,946,668  〈k〉=8.87 
 Communication (MSN IM): N=242,720,596  〈k〉=11.1 
 Coauthorships (DBLP):  N=317,080   〈k〉=6.62 
 Internet (AS-Skitter): N=1,719,037  〈k〉=14.91 
 Roads (California):  N=1,957,027  〈k〉=2.82 
 Protein (S. Cerevisiae):  N=1,870   〈k〉=2.39  
     (Source: Leskovec et al., Internet Mathematics, 2009) 

 

Consequence: Adjacency matrix is filled with zeros! 
(Density (E/N2): WWW=1.51×10-5, MSN IM = 2.27×10-8)  
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 Unweighted 
(undirected) 

 

 Weighted  
(undirected) 
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Friendships, WWW Call graph, Email graph 



 Self-edges 
(undirected) 

 Multigraph 
(undirected) 
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WWW, Email Social networks, collaboration networks 
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WWW > 
 

Facebook friendships > 
 

Citation networks > 
 

Collaboration networks > 
 

Mobile phone calls > 
 

Protein Interactions > 
 

> directed multigraph with self-interactions 
 
> undirected, unweighted 
 
> unweighted directed acyclic 
 
> undirected multigraph or weighted 
 
> directed, (weighted?) multigraph 
 
> undirected, unweighted with self-interactions 
 



 Bipartite graph is a graph whose nodes 
can be divided into two disjoint sets U and V 
such that every link connects a node in U to one 
in V; that is, U and V are independent sets.  

 

 Examples: 
 Authors-to-papers 
 Movies-to-Actors 
 Users-to-Movies 

 “Folded” networks 
 Author collaboration networks 
 Actor collaboration networks 
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U V 





 Degree distribution P(k): Probability that  
a randomly chosen node has degree k 
 Nk = # nodes with degree k 

 P(k) = Nk / N     ➔   plot 
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 A path is a sequence of nodes in which  each 
node is adjacent to the next one 
 
 

 Path can intersect itself  
and pass through the  
same edge multiple times 
 E.g.: ACBDCDEG 
 In a directed graph a path 

can only follow the direction 
of the “arrow” 

 

Pn = {i0,i1,i2,...,in}

 

Pn = {(i0 ,i1),(i1,i2 ),( i2 ,i3 ),...,( in−1,in )}
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 Number of paths between nodes u and v : 
 Length h=1: If there is a link between u and v, 

Auv=1 else Auv=0 
 Length h=2: If there is a path of length two 

between u and v then Auk Akv=1 else Auk Akv=0 
 
 

 Length h: If there is a path of length h between u 
and v then Auk .... Akv=1 else Auk .... Akv=0 
So, the no. of paths of length h between u and v is  
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 Distance (shortest path, geodesic) 
between a pair  of nodes is defined 
as the number of edges along the 
shortest path connecting the nodes. 
 *If the two nodes are disconnected, the 

distance is defined as infinite 

 In directed graphs paths need to 
follow the direction of the arrows. 

 Consequence: Distance is not 
symmetric: h(A,C) ≠ h(C,A) 
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 Breath-First Search: 
 Start with node u, mark it to be at distance hu(u)=0, 

add u to the queue 
 While queue not empty: 
 Take node v off the queue, put it’s unmarked  

neighbor w into the queue and mark hu(w)=hu(v)+1 
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 Diameter: the maximum (shortest path) 
distance between any pair of nodes in the 
graph 

 Average path length/distance for a connected 
graph (component) or a strongly connected 
(component of a) directed graph  

 
 
 Many times we compute the average only over the 

connected pairs of nodes (i.e., we ignore “infinite” paths) 
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 Clustering coefficient:  
 What portion of i’s neighbors are connected? 
 Node i with degree ki  
 Ci ∈ [0,1] 

     
 
 
 

 Average Clustering Coefficient:  
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Ci=0 Ci=1/3 Ci=1 
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where ei is the number of edges  
between the neighbors of node i 
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 Clustering coefficient:  
 What portion of i’s neighbors are connected? 
 Node i with degree ki  
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where ei is the number of edges  
between the neighbors of node i 
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kB=2,  eB=1,  CB=2/2 = 1 

kD=4,  eD=2,  CD=4/12 = 1/3 
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Degree distribution:   P(k) 

Path length:     h 

Clustering coefficient:  C 



 P(k) = δ(k-4)  k=4 for each node 
 C = ½ for each node if N>6 
 Path length: 

 
 

 

 The average path-length is  

 Constant degree, constant clustering coefficient. 
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Alternative calculation: 



 P(k) = δ(k-6)  
 k=6 for each inside node 

 C = 6/15 for inside nodes 
 Path length: 

 
 

 In general, for lattices: 

 average path-length is  

 Constant degree, constant clustering coefficient 
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 Degree: 
 k=3 for non-leaves 
 k=1 for leaves 

 C = 0 
 Path length: 

 
 

 

 Distances vary logarithmically with N.  
Constant degree, no clustering. 
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 Erdös-Renyi Random Graph [Erdös-Renyi, ‘60] 
 Two variants: 
 Gn,p: undirected graph on n nodes and each  

edge (u,v) appears i.i.d. with probability p 
 

 Gn,m : undirected  graph with n nodes, and  
m uniformly at random picked edges 
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What kinds of networks does such 
model produce? 



 n and p do not uniquely define the graph 
 We can have many different realizations.  

How many? 
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The probability of Gnp to form a particular  
graph G(N,E) is 

That is, each concrete graph 
G(N,E) appears with 
probability P(G(N,E)). 



 How many likely is a graph on E edges? 
 P(E): the probability that a given Gnp 

generates a graph on exactly E edges: 
 
 
 

 where Emax=n(n-1)/2  is the maximum  possible number of edges 
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Binomial distribution >>> 



 What is expected degree of a node? 
 Let Xv be a random var. measuring the degree 

of the node v: 
 Linearity of expectation:  
 For any random variables Y1,Y2,…,Yk 
 If Y=Y1+Y2+…Yk, then E[Y]= ∑i E[Yi] 

 Easier way:  
 Decompose Xv in Xv= Xv1+Xv2+…+Xvn-1 
 where Xvu is a {0,1}-random variable  

which tells if edge (v,u) exists or not 
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How to think about this? 
• Prob. of node u linking to node v is p 
• u can link (flips a coin) for all other (n-1) nodes 
• Thus, the expected degree of node u is: p(n-1) 
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 Degree distribution of Gnp is Binomial. 
 Let P(k) denote a fraction of nodes with 

degree k: 
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Probability of  
having k edges 
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edges 

)1)(1(2 −−= nppkσ

2/1

2/1

)1(
1

)1(
11

−
≈








−

−
=

nnp
p

k
kσ)1( −= npk

As the network size increases, the distribution becomes 
increasingly narrow—we are increasingly confident that 

the degree of a node is in the vicinity of k. 
P(

k)
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Since edges in Gnp appear i.i.d with probability p 
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Clustering coefficient of a random graph is small. 
For a fixed degree C decreases with the graph size N. 
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 Configuration model: 
 
 
 
 
 
 
 
 
 
 
 
 

 Assume a degree sequence k1, k2, … kN 
 Useful for as a “null” model of networks 
 We can compare the real network G and a 

“random” graph G’ which has the same degree 
sequence as G 
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