Basic Network Properties and the Random Graph Model

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

Announcement: Recitations

- Review of basic probability:
- Today, Thu 9/29
- In Gates B01, 4-6pm
- Review of basic linear algebra:
- Tomorrow, Fri 9/30
- Gates B03, 4-6pm
- Next week:
- Intro to SNAP (Gates B01, 4-6pm on Thu 10/6)
- Intro to NetworkX (Gates B03, 4-6pm on Fri 10/7)

Structure of Networks

- Recall from the last lecture:
- 1) We took a real system: the Web

- 2) We represented it as a directed graph
- 3) We used the language of graph theory - Strongly Connected Components
- 4) We designed a computational experiment:
- Find In- and Out-components of a given node v

- 5) We learned something about the structure of the Web
- This class:
- Define basic terminology and measures that you can compute on networks

Undirected vs. Directed Networks

Undirected

- Links: undirected
(symmetrical)

- Undirected links:
- Collaborations
- Friendship on Facebook

Directed

- Links: directed (arcs)

- Directed links:
- Phone calls
- Following on Twitter

Adjacency Matrix

$\mathbf{A}_{\mathrm{ij}}=\mathbf{1}$ if there is a link between node i and j
$\mathbf{A}_{\mathbf{i j}}=\mathbf{O}$ if nodes i and j are not connected to each other

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \quad A=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Note that for a directed graph (right) the matrix is not symmetric.

Node Degrees

Node degree: the number of links connected to the node

$$
k_{i}=4
$$

Avg. degree: $\bar{k} \equiv \frac{1}{N} \sum_{i=1}^{N} k_{i}=\frac{2 E}{N}$

Source: A node with $k^{\text {in }}=0$
Sink: A node with $k^{\text {out }}=0$
In directed networks we define an in-degree and out-degree. The (total) degree of a node is the sum of in- and out-degree.

$$
k_{C}^{\text {in }}=2 \quad k_{C}^{\text {out }}=1 \quad k_{C}=3
$$

$$
\bar{k}=\frac{E}{N}
$$

Complete Graph

The maximum number of edges in an undirected graph on N nodes is

$$
E_{\max }=\binom{N}{2}=\frac{N(N-1)}{2}
$$

A graph with the number of edges $E=E_{\text {max }}$ is a complete graph, and its average degree is $N-1$

Networks are Sparse Graphs

Most real-world networks are sparse

$$
E \ll E_{\max }(\text { or } \bar{k} \ll N-1)
$$

WWW (Stanford-Berkeley):

$\mathrm{N}=319,717$	$\langle k\rangle=9.65$
$\mathrm{~N}=6,946,668$	$\langle\mathrm{k}\rangle=8.87$
$\mathrm{~N}=242,720,596$	$\langle\mathrm{k}\rangle=11.1$
$\mathrm{~N}=317,080$	$\langle k\rangle=6.62$
$\mathrm{~N}=1,719,037$	$\langle\mathrm{k}\rangle=14.91$
$\mathrm{~N}=1,957,027$	$\langle\mathrm{k}\rangle=2.82$
$\mathrm{~N}=1,870$	$\langle\mathrm{k}\rangle=2.39$

(Source: Leskovec et al., Internet Mathematics, 2009)
Consequence: Adjacency matrix is filled with zeros! (Density $\left(E / N^{2}\right)$: WWW $=1.51 \times 10^{-5}, \mathrm{MSN}$ IM $=2.27 \times 10^{-8}$)

More Types of Graphs:

- Unweighted

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
A_{i i}=0 \\
E=\frac{1}{2} \sum_{i, j=1}^{N} A_{i j}=A_{j i} \\
\bar{k}=\frac{2 E}{N}
\end{gathered}
$$

- Weighted
(undirected)

$A_{i j}=\left(\begin{array}{cccc}0 & 2 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0\end{array}\right)$
$\begin{array}{cc}A_{i i}=0 & A_{i j}=A_{j i} \\ E=\frac{1}{2} \sum_{i, j=1}^{N} \operatorname{nonzero}\left(A_{i j}\right) & \bar{k}=\frac{2 E}{N}\end{array}$
Call graph, Email graph

More Types of Graphs:

- Self-edges
(undirected)

$A_{i j}=\left(\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$

$$
A_{i i} \neq 0 \quad A_{i j}=A_{j i}
$$

$E=\frac{1}{2} \sum_{i, j=1, i \neq j}^{N} A_{i j}+\sum_{i=1}^{N} A_{i i}$?

- Multigraph
(undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{llll}
0 & 2 & 1 & 0 \\
2 & 0 & 1 & 3 \\
1 & 1 & 0 & 0 \\
0 & 3 & 0 & 0
\end{array}\right) \\
E=\frac{1}{2} \sum_{i, j=1}^{N} \operatorname{nonzero}\left(A_{i j}\right) \\
A_{i j}=0 \\
A_{i j}=A_{j i} \\
=\frac{2 E}{N}
\end{gathered}
$$

Network Representations

WWW >> directed multigraph with self-interactions
Facebook friendships >> undirected, unweighted
Citation networks >> unweighted directed acyclic
Collaboration networks >> undirected multigraph or weighted
Mobile phone calls >> directed, (weighted?) multigraph
Protein Interactions >> undirected, unweighted with self-interactions

Bipartite Graph

- Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets.
- Examples:
- Authors-to-papers
- Movies-to-Actors
- Users-to-Movies
- "Folded" networks

U
V

- Author collaboration networks
- Actor collaboration networks

Network Properties: How to Characterize a Network?

Degree Distribution

- Degree distribution $P(k)$: Probability that a randomly chosen node has degree k $N_{k}=\#$ nodes with degree k $P(k)=N_{k} / N \quad \rightarrow$ plot

Paths in a Graph

- A path is a sequence of nodes in which each node is adjacent to the next one

$$
P_{n}=\left\{i_{0}, i_{1}, i_{2}, \ldots, i_{n}\right\} \quad P_{n}=\left\{\left(i_{0}, i_{1}\right),\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{n-1}, i_{n}\right)\right\}
$$

- Path can intersect itself and pass through the same edge multiple times
- E.g.: ACBDCDEG
- In a directed graph a path can only follow the direction
 of the "arrow"

Number of Paths

- Number of paths between nodes u and v :
- Length $h=1$: If there is a link between u and v, $A_{u v}=1$ else $A_{u v}=0$
- Length $h=2$: If there is a path of length two between u and v then $A_{u k} A_{k v}=1$ else $A_{u k} A_{k v}=0$

$$
H_{u v}^{(2)}=\sum_{k=1}^{N} A_{u k} A_{k v}=\left[A^{2}\right]_{u v}
$$

- Length h : If there is a path of length h between u and v then $A_{u k} \ldots . A_{k v}=1$ else $A_{u k} \ldots . A_{k v}=0$ So, the no. of paths of length h between u and v is

$$
H_{u v}^{(h)}=\left[A^{h}\right]_{u v}
$$

(holds for both directed and undirected graphs)

Distance in a Graph

- Distance (shortest path, geodesic) between a pair of nodes is defined as the number of edges along the shortest path connecting the nodes.
- *If the two nodes are disconnected, the distance is defined as infinite

- In directed graphs paths need to follow the direction of the arrows.
- Consequence: Distance is not symmetric: $h(A, C) \neq h(C, A)$

Finding Shortest Paths

- Breath-First Search:
- Start with node u, mark it to be at distance $h_{u}(u)=0$, add u to the queue
- While queue not empty:
- Take node v off the queue, put it's unmarked neighbor w into the queue and mark $h_{u}(w)=h_{u}(v)+1$

Network Diameter

- Diameter: the maximum (shortest path) distance between any pair of nodes in the graph
- Average path length/distance for a connected graph (component) or a strongly connected (component of a) directed graph

$$
\bar{h}=\frac{1}{2 E_{\max }} \sum_{i, j \neq i} h_{i j}
$$ where $h_{i j}$ is the distance from node i to node j

- Many times we compute the average only over the connected pairs of nodes (i.e., we ignore "infinite" paths)

Clustering Coefficient

- Clustering coefficient:
- What portion of i's neighbors are connected?
- Node i with degree k_{i}
- $C_{i} \in[0,1]$
$\square C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)} \quad \begin{aligned} & \text { where } e_{i} \text { is the number of edges } \\ & \text { between the neighbors of node } i\end{aligned}$
- Average Clustering Coefficient: $C=\frac{1}{C=1} \sum_{i}^{N} \sum_{i}^{N} C_{i}$

Clustering Coefficient

- Clustering coefficient:
- What portion of i's neighbors are connected?
- Node i with degree k_{i}
$-C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}$
where e_{i} is the number of edges
between the neighbors of node i

$$
\begin{array}{ll}
k_{B}=2, & e_{B}=1, \\
k_{D}=4, & e_{D}=2, \\
l_{D}=4 / 12=1 / 3
\end{array}
$$

Key Network Properties

Degree distribution:
 $P(k)$
 Path length:
 h

Clustering coefficient:
C

Regular Lattice: 1D

- $P(k)=\delta(k-4) \quad k=4$ for each node
- $C=1 / 2$ for each node if $N>6$
- Path length:

Alternative calculation:
$\mathrm{h}_{\max } \approx \frac{N}{2}$

$$
\sum_{h=1}^{h_{\max }} 4 \approx N \Rightarrow \mathrm{~h}_{\max } \approx \frac{N}{4}
$$

- The average path-length is $\bar{h} \approx N$
- Constant degree, constant clustering coefficient.

Regular Lattice: 2D

- $P(k)=\delta(k-6)$
- $k=6$ for each inside node
- $C=6 / 15$ for inside nodes
- Path length:
$\sum_{h=1}^{h_{\text {max }}} 6 h \approx N \Rightarrow \mathrm{~h}_{\text {max }} \propto \sqrt{N}$

- In general, for lattices:
- average path-length is $\bar{h} \approx N^{1 / D}$
- Constant degree, constant clustering coefficient

3-way Cayley Tree

- Degree: $\bar{k}=2$
- $k=3$ for non-leaves
- $k=1$ for leaves
- $C=0$
- Path length:

$$
3 \sum_{h=1}^{h_{\text {max }}} 2^{h-1} \approx N \Rightarrow \mathrm{~h}_{\max } \propto \log _{\bar{k}} N=\frac{\log N}{\log \bar{k}}
$$

$$
\begin{aligned}
& \int_{1}^{h_{\text {max }} 2^{n-1}} d x=\left.\frac{2^{h}}{h}\right|_{1} ^{m_{\text {max }}}=\frac{2^{h_{\text {max }}}}{h_{\text {max }}}-2 \approx 2^{h_{\text {max }}} \\
& 2^{h_{\text {max }}}=N h_{\text {max }}=\log _{2}
\end{aligned}
$$

- Distances vary logarithmically with N.

Constant degree, no clustering.

Erdös-Renyi Random Graph Model

Simplest model of graphs?

- Erdös-Renyi Random Graph [Erdös-Renyi, '60]
- Two variants:
- $G_{n, p}$: undirected graph on n nodes and each edge (u, v) appears i.i.d. with probability p
$\binom{G_{n, m}:$ undirected graph with n nodes, and }{m uniformly at random picked edges }

What kinds of networks does such model produce?

Random Graph Model

- n and p do not uniquely define the graph
- We can have many different realizations. How many?

The probability of $G_{n p}$ to form a particular graph $G(N, E)$ is

$$
P(G(N, E))=p^{E}(1-p)^{\frac{N(N-1)}{2}-E}
$$

$\mathrm{n}=10$
$p=1 / 6$

Random Graph Model: Edges

- How many likely is a graph on E edges?
- $P(E)$: the probability that a given $G_{n p}$ generates a graph on exactly E edges:

$$
P(E)=\binom{E^{\max }}{E} p^{E}(1-p)^{E_{\max }-E}
$$

where $E_{\text {max }}=n(n-1) / 2$ is the maximum possible number of edges

Binomial distribution >>>

Node Degrees in a Random Graph

- What is expected degree of a node?
- Let X_{v} be a random var. measuring the degree of the node $v: E\left[X_{v}\right]=\sum_{j=0}^{n-1} j P\left(X_{v}=j\right)$
- Linearity of expectation:
- For any random variables $Y_{1}, Y_{2}, \ldots, Y_{k}$
- If $Y=Y_{1}+Y_{2}+\ldots Y_{k}$, then $E[Y]=\sum_{i} E\left[Y_{i}\right]$
- Easier way:
- Decompose X_{v} in $X_{v}=X_{v 1}+X_{v 2}+\ldots+X_{v n-1}$
- where $X_{\text {vu }}$ is a $\{0,1\}$-random variable which tells if edge (v, u) exists or not

$$
E\left[X_{v}\right]=\sum_{y=1}^{n-1} E\left[X_{v u}\right]=(n-1) p
$$

Degree Distribution

- Degree distribution of $G_{n p}$ is Binomial. - Let $P(k)$ denote a fraction of nodes with degree k :

$$
\begin{aligned}
\bar{k} & =p(n-1) \\
\sigma_{k}^{2} & =p(1-p)(n-1)
\end{aligned}
$$

$$
\frac{\sigma_{k}}{\bar{k}}=\left[\frac{1-p}{p} \frac{1}{(n-1)}\right]^{1 / 2} \approx \frac{1}{(n-1)^{1 / 2}}
$$

As the network size increases, the distribution becomes increasingly narrow-we are increasingly confident that the degree of a node is in the vicinity of \bar{k}.

Clustering Coefficient of G_{np}

$$
C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}
$$

Since edges in $G_{n p}$ appear i.i.d with probability p

$$
e_{i} \cong p \frac{k_{i}\left(k_{i}-1\right)}{2} \quad C \cong p=\frac{\bar{k}}{N}
$$

Clustering coefficient of a random graph is small. For a fixed degree C decreases with the graph size N.

Side-note: Configuration Model

- Configuration model:

Nodes with spokes

Randomly pair up "mini"-nodes

Resulting graph

- Assume a degree sequence $k_{1}, k_{2}, \ldots k_{N}$
- Useful for as a "null" model of networks
- We can compare the real network G and a "random" graph G ' which has the same degree sequence as G

