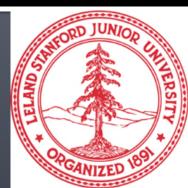
Basic Network Properties and the Random Graph Model

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu



Announcement: Recitations

Review of basic probability:

- Today, Thu 9/29
- In Gates B01, 4-6pm

Review of basic linear algebra:

- Tomorrow, Fri 9/30
- Gates B03, 4-6pm

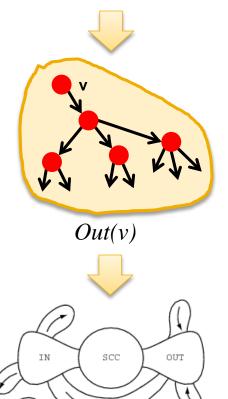
Next week:

- Intro to <u>SNAP</u> (Gates B01, 4-6pm on Thu 10/6)
- Intro to <u>NetworkX</u> (Gates B03, 4-6pm on Fri 10/7)

Structure of Networks

Recall from the last lecture:

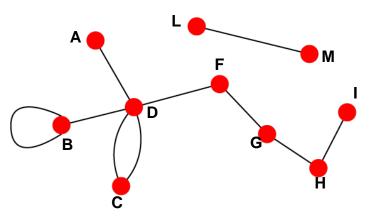
- 1) We took a real system: the Web
- 2) We represented it as a directed graph
- 3) We used the language of graph theory
 Strongly Connected Components
- 4) We designed a computational experiment:
 - Find In- and Out-components of a given node v
- 5) We learned something about the structure of the Web
- This class:
 - Define basic terminology and measures that you can compute on networks



Undirected vs. Directed Networks

Undirected

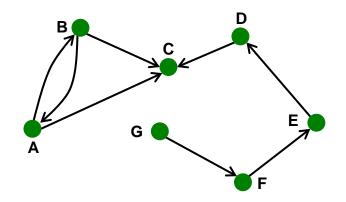
 Links: undirected (symmetrical)



- Undirected links:
 - Collaborations
 - Friendship on Facebook

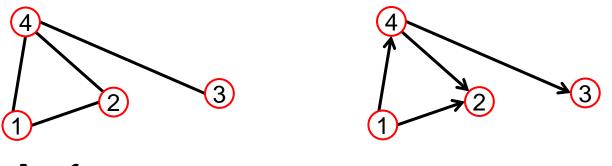
Directed

 Links: directed (arcs)



- Directed links:
 - Phone calls
 - Following on Twitter

Adjacency Matrix

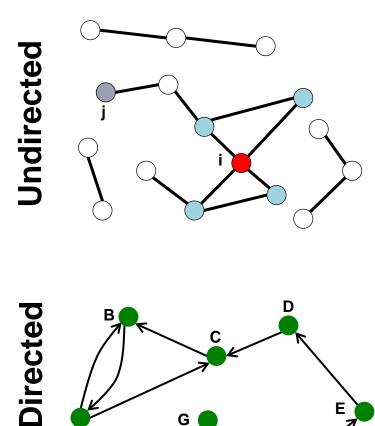


 $A_{ij}=1$ if there is a link between node *i* and *j* $A_{ij}=0$ if nodes *i* and *j* are not connected to each other

A =	(0)	1	0	1	(0)	0	0	1
	1	0	0	1	1	0	0	0
	0	0	0	1	$A = \begin{bmatrix} 0 \end{bmatrix}$	0	0	0
	$\left(1\right)$	1	1	0)	$A = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$	1	1	0)

Note that for a directed graph (right) the matrix is not symmetric.

Node Degrees



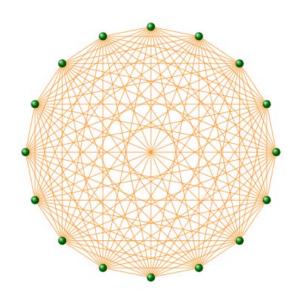
Source: A node with $k^{in} = 0$ Sink: A node with $k^{out} = 0$ Node degree: the number of links connected to the node $k_i = 4$ Avg. degree: $\overline{k} \equiv \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2E}{N}$

In directed networks we define an in-degree and out-degree. The (total) degree of a node is the sum of in- and out-degree.

$$k_{C}^{in} = 2 \qquad k_{C}^{out} = 1 \qquad k_{C} = 3$$
$$\overline{k} = \frac{E}{N} \qquad \overline{k}^{in} = \overline{k}^{out}$$

The maximum number of edges in an undirected graph on *N* nodes is

$$E_{\max} = \binom{N}{2} = \frac{N(N-1)}{2}$$



A graph with the number of edges $E=E_{max}$ is a **complete graph**, and its average degree is N-1

Networks are Sparse Graphs

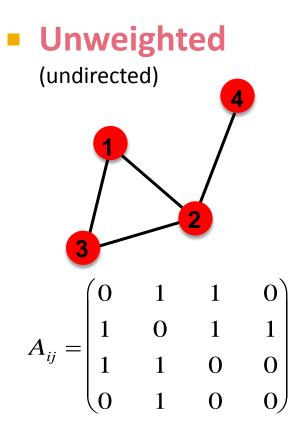
Most real-world networks are sparse $E \ll E_{max}$ (or $\overline{k} \ll N-1$)

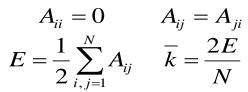
WWW (Stanford-Berkeley):	N=319,717	⟨k⟩=9.65
Social networks (LinkedIn):	N=6,946,668	$\langle k \rangle = 8.87$
Communication (MSN IM):	N=242,720,596	$\langle k \rangle = 11.1$
Coauthorships (DBLP):	N=317,080	⟨k⟩=6.62
Internet (AS-Skitter):	N=1,719,037	⟨k⟩=14.91
Roads (California):	N=1,957,027	$\langle k \rangle = 2.82$
Protein (S. Cerevisiae):	N=1,870	⟨k⟩=2.39

(Source: Leskovec et al., Internet Mathematics, 2009)

Consequence: Adjacency matrix is filled with zeros! (Density (E/N^2): WWW=1.51×10⁻⁵, MSN IM = 2.27×10⁻⁸)

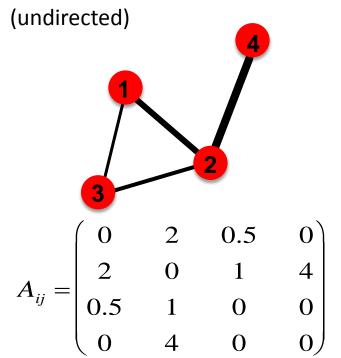
More Types of Graphs:





Friendships, WWW

Weighted

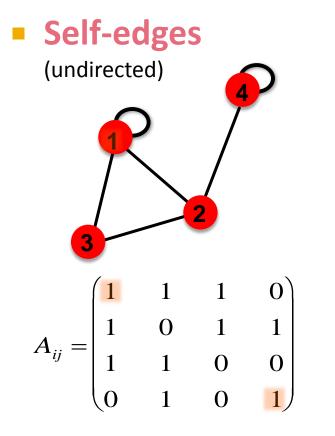


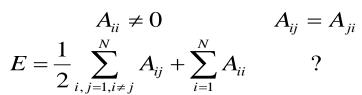
$$A_{ii} = 0 \qquad A_{ij} = A_{ji}$$
$$E = \frac{1}{2} \sum_{i, j=1}^{N} nonzero(A_{ij}) \qquad \overline{k} = \frac{2E}{N}$$

Call graph, Email graph

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

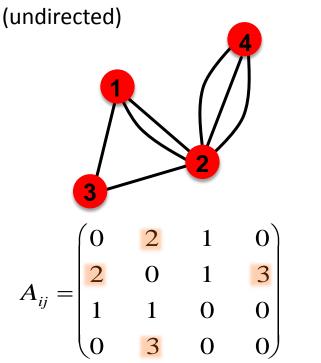
More Types of Graphs:





WWW, Email

Multigraph



$$A_{ii} = 0 \qquad A_{ij} = A_{ji}$$
$$E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij}) \qquad \overline{k} = \frac{2E}{N}$$

Social networks, collaboration networks

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

WWW >> directed multigraph with self-interactions

Facebook friendships >> undirected, unweighted

Citation networks >> unweighted directed acyclic

Collaboration networks >> undirected multigraph or weighted

Mobile phone calls >> directed, (weighted?) multigraph

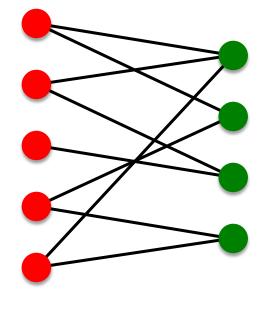
Protein Interactions >> undirected, unweighted with self-interactions

Bipartite Graph

Bipartite graph is a graph whose nodes can be divided into two disjoint sets *U* and *V* such that every link connects a node in *U* to one in *V*; that is, *U* and *V* are independent sets.

Examples:

- Authors-to-papers
- Movies-to-Actors
- Users-to-Movies
- "Folded" networks
 - Author collaboration networks
 - Actor collaboration networks



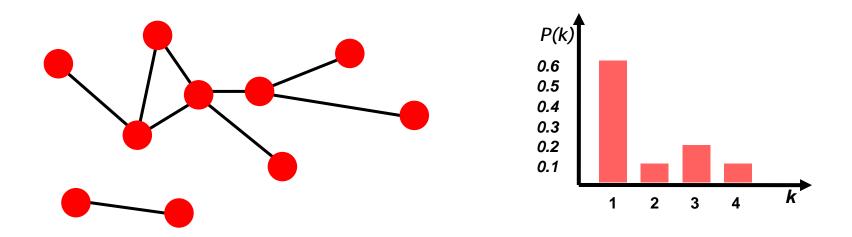
II

9/29/2011

Network Properties: How to Characterize a Network?

Degree Distribution

■ Degree distribution P(k): Probability that a randomly chosen node has degree k $N_k = \#$ nodes with degree k $P(k) = N_k / N \rightarrow \text{plot}$

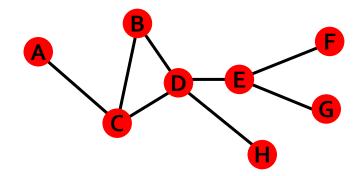


Paths in a Graph

A path is a sequence of nodes in which each node is adjacent to the next one

 $P_n = \{i_0, i_1, i_2, \dots, i_n\} \qquad P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), \dots, (i_{n-1}, i_n)\}$

- Path can intersect itself and pass through the same edge multiple times
 - E.g.: ACBDCDEG
 - In a directed graph a path can only follow the direction of the "arrow"



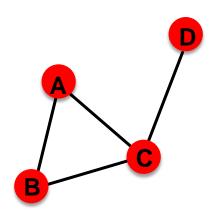
Number of Paths

- Number of paths between nodes u and v :
 - Length h=1: If there is a link between u and v, $A_{uv}=1$ else $A_{uv}=0$
 - Length *h=2*: If there is a path of length two between *u* and *v* then *A_{uk}A_{kv}=1* else *A_{uk}A_{kv}=0 H*⁽²⁾_{uv} = ∑^N_{k=1} *A_{uk}A_{kv} = [A²]_{uv}*Length *h*: If there is a path of length *h* between *u* and *v* then *A_{uk}*.... *A_{kv}=1* else *A_{uk}*.... *A_{kv}=0* So, the no. of paths of length *h* between *u* and *v* is

$$H_{uv}^{(h)} = \left[A^{h}\right]_{uv}$$

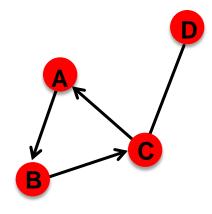
(holds for both directed and undirected graphs)

Distance in a Graph



Distance (shortest path, geodesic) between a pair of nodes is defined as the number of edges along the shortest path connecting the nodes.

*If the two nodes are disconnected, the distance is defined as infinite



 In directed graphs paths need to follow the direction of the arrows.

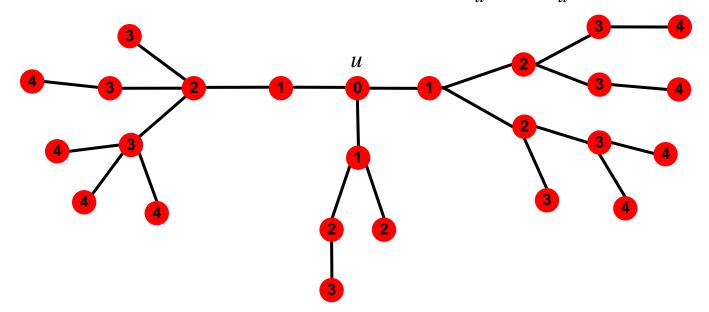
Consequence: Distance is not

symmetric: $h(A, C) \neq h(C, A)$

Finding Shortest Paths

Breath-First Search:

- Start with node u, mark it to be at distance h_u(u)=0, add u to the queue
- While queue not empty:
 - Take node v off the queue, put it's unmarked neighbor w into the queue and mark $h_u(w)=h_u(v)+1$



Network Diameter

- Diameter: the maximum (shortest path) distance between any pair of nodes in the graph
- Average path length/distance for a connected graph (component) or a strongly connected (component of a) directed graph

$$\overline{h} = \frac{1}{2E_{\max}} \sum_{i, j \neq i} h_{ij}$$

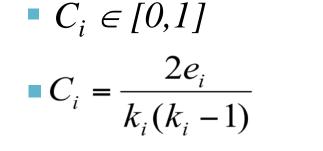
where h_{ij} is the distance from node *i* to node *j*

 Many times we compute the average only over the connected pairs of nodes (*i.e.*, we ignore "infinite" paths)

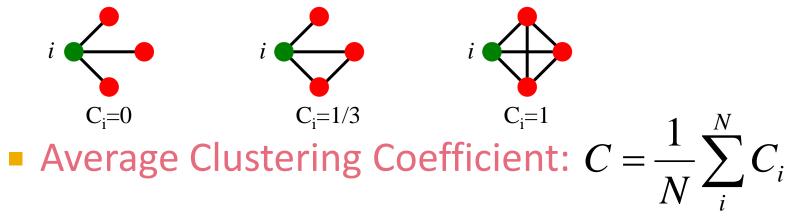
Clustering Coefficient

Clustering coefficient:

- What portion of *i*'s neighbors are connected?
- Node *i* with degree k_i



where e_i is the number of edges between the neighbors of node i



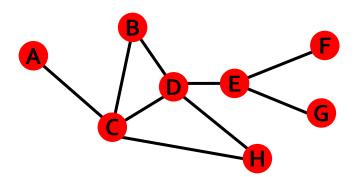
Clustering Coefficient

Clustering coefficient:

- What portion of *i*'s neighbors are connected?
- Node *i* with degree k_i

$$\Box C_i = \frac{2e_i}{k_i(k_i - 1)}$$

where e_i is the number of edges between the neighbors of node i

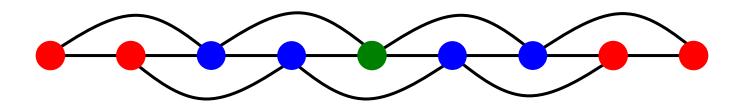


 $k_B = 2$, $e_B = 1$, $C_B = 2/2 = 1$ $k_D = 4$, $e_D = 2$, $C_D = 4/12 = 1/3$

Key Network Properties

Degree distribution:P(k)Path length:hClustering coefficient:C

Regular Lattice: 1D



- $P(k) = \delta(k-4)$ k=4 for each node
- $C = \frac{1}{2}$ for each node if N > 6
- Path length:

 $h_{max} \approx \frac{N}{2}$

Alternative calculation:

$$\sum_{h=1}^{h_{\max}} 4 \approx N \implies h_{\max} \approx \frac{N}{4}$$

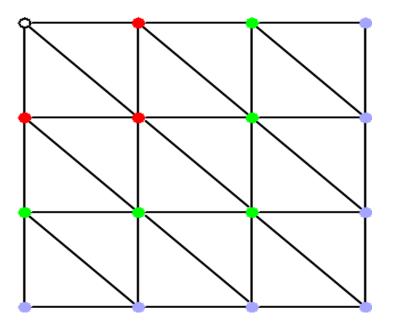
- The average path-length is $h \approx N$
- Constant degree, constant clustering coefficient.

Regular Lattice: 2D

$$P(k) = \delta(k-6)$$

- k=6 for each inside node
- C = 6/15 for inside nodes
- Path length:

$$\sum_{h=1}^{h_{\max}} 6h \approx N \implies h_{\max} \propto \sqrt{N}$$

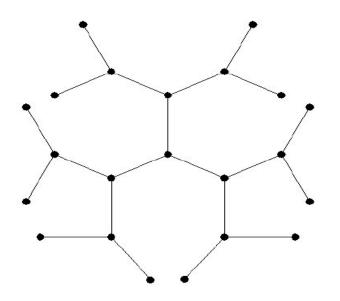


- In general, for lattices:
 - average path-length is $\overline{h} \approx N^{1/D}$
 - Constant degree, constant clustering coefficient

3-way Cayley Tree

• Degree:
$$k = 2$$

- k=3 for non-leaves
- *k*=1 for leaves
- C = 0
- Path length:



1 1 hman

$$3\sum_{h=1}^{h_{\max}} 2^{h-1} \approx N \implies h_{\max} \propto \log_{\overline{k}} N = \frac{\log N}{\log \overline{k}}$$

$$\int_{1}^{h_{\max}} 2^{h-1} dx = \frac{2^{h}}{h} \Big|_{1}^{h_{\max}} = \frac{2^{h_{\max}}}{h_{\max}} - 2 \approx 2^{h_{\max}}$$
$$2^{h_{\max}} = N \Longrightarrow h_{\max} = \log_2 N$$

- Distances vary logarithmically with N.
 - Constant degree, no clustering.

Erdös-Renyi Random Graph Model

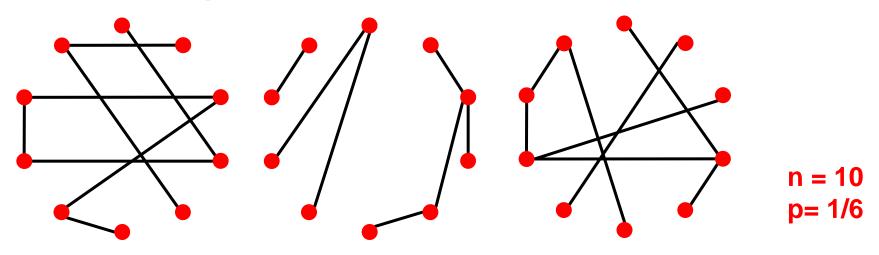
Simplest model of graphs?

- Erdös-Renyi Random Graph [Erdös-Renyi, '60]
- Two variants:
 - G_{n,p}: undirected graph on n nodes and each edge (u,v) appears i.i.d. with probability p
 - $\begin{bmatrix} G_{n,m} : undirected graph with$ *n*nodes, and*m* $uniformly at random picked edges \end{bmatrix}$

What kinds of networks does such model produce?

Random Graph Model

- n and p do not uniquely define the graph
- We can have many different realizations. How many?



The probability of G_{np} to form a *particular* graph G(N,E) is

$$P(G(N,E)) = p^{E}(1-p)^{\frac{N(N-1)}{2}-E}$$

That is, each concrete graph **G(N,E)** appears with probability **P(G(N,E))**.

Random Graph Model: Edges

- How many likely is a graph on E edges?
- P(E): the probability that a given G_{np} generates a graph on exactly E edges:

$$P(E) = \begin{pmatrix} E^{\max} \\ E \end{pmatrix} p^{E} (1-p)^{E_{\max}-E}$$

where $E_{max} = n(n-1)/2$ is the maximum possible number of edges

Node Degrees in a Random Graph

- What is expected degree of a node?
- Let X_v be a random var. measuring the degree of the node v: $E[X_v] = \sum_{j=1}^{n-1} j P(X_v = j)$
 - Linearity of expectation:
 - For any random variables Y₁, Y₂,..., Y_k
- If $Y=Y_1+Y_2+...Y_k$, then $E[Y]=\sum_i E[Y_i]$ • Easier way:
 - Decompose X_v in $X_v = X_{v1} + X_{v2} + ... + X_{vn-1}$
 - where X_{vu} is a $\{0,1\}$ -random variable which tells if edge (v,u) exists or not

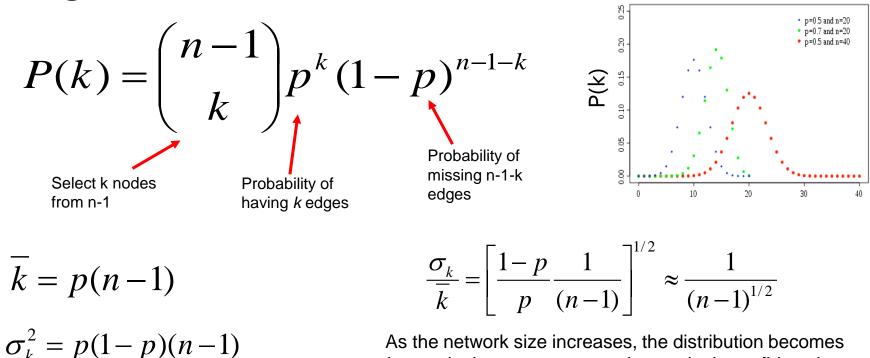
$$E[X_{v}] = \sum_{y=1}^{n-1} E[X_{vu}] = (n-1)p$$

How to think about this?

- Prob. of node *u* linking to node v is *p*
- *u* can link (flips a coin) for all other (*n*-1) nodes
- Thus, the expected degree of node *u* is: *p*(*n*-1)

Degree Distribution

- Degree distribution of G_{np} is Binomial.
- Let P(k) denote a fraction of nodes with degree k:



As the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of \overline{k} .

Clustering Coefficient of G_{np}

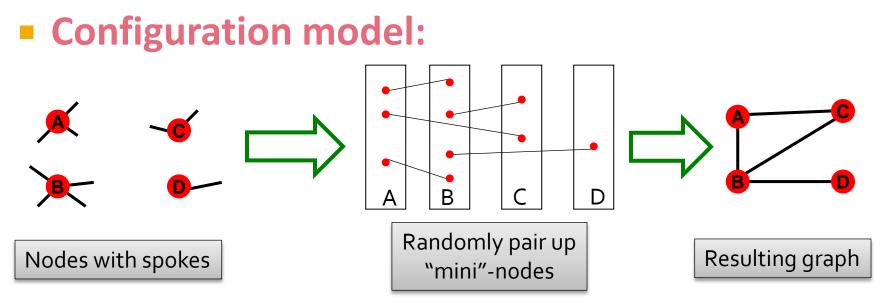
$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

Since edges in G_{np} appear i.i.d with probability p

$$e_i \cong p \frac{k_i(k_i - 1)}{2} \quad \square \searrow \quad C \cong p = \frac{k}{N}$$

Clustering coefficient of a random graph is small. For a fixed degree C decreases with the graph size N.

Side-note: Configuration Model



- Assume a degree sequence k₁, k₂, ... k_N
 Useful for as a "null" model of networks
 - We can compare the real network G and a "random" graph G' which has the same degree sequence as G