Basic Network Properties and the Random Graph Model
Review of basic probability:
- Today, Thu 9/29
- In Gates B01, 4-6pm

Review of basic linear algebra:
- Tomorrow, Fri 9/30
- Gates B03, 4-6pm

Next week:
- Intro to SNAP (Gates B01, 4-6pm on Thu 10/6)
- Intro to NetworkX (Gates B03, 4-6pm on Fri 10/7)
Recall from the last lecture:

1) We took a real system: the Web
2) We represented it as a directed graph
3) We used the language of graph theory
 - Strongly Connected Components
4) We designed a computational experiment:
 - Find In- and Out-components of a given node \(v \)
5) We learned something about the structure of the Web

This class:

- Define basic terminology and measures that you can compute on networks
Undirected vs. Directed Networks

Undirected
- Links: undirected (symmetrical)
 - Undirected links:
 - Collaborations
 - Friendship on Facebook

Directed
- Links: directed (arcs)
 - Directed links:
 - Phone calls
 - Following on Twitter
Adjacency Matrix

$A_{ij} = 1$ if there is a link between node i and j

$A_{ij} = 0$ if nodes i and j are not connected to each other

\[
A = \begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{pmatrix}
\]

Note that for a directed graph (right) the matrix is not symmetric.
Node Degrees

Undirected

Node degree: the number of links connected to the node

\[k_i = 4 \]

Avg. degree: \[\bar{k} = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2E}{N} \]

Directed

In directed networks we define an in-degree and out-degree. The (total) degree of a node is the sum of in- and out-degree.

\[k^\text{in}_C = 2 \quad k^\text{out}_C = 1 \quad k_C = 3 \]

Source: A node with \(k^\text{in} = 0 \)
Sink: A node with \(k^\text{out} = 0 \)
The maximum number of edges in an undirected graph on N nodes is

$$E_{\text{max}} = \binom{N}{2} = \frac{N(N-1)}{2}$$

A graph with the number of edges $E = E_{\text{max}}$ is a complete graph, and its average degree is $N-1$.
Most real-world networks are sparse

\[E \ll E_{\text{max}} \quad \text{or} \quad \bar{k} \ll N-1 \]

<table>
<thead>
<tr>
<th>Network Type</th>
<th>N</th>
<th>\langle k \rangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW (Stanford-Berkeley)</td>
<td>319,717</td>
<td>9.65</td>
</tr>
<tr>
<td>Social networks (LinkedIn)</td>
<td>6,946,668</td>
<td>8.87</td>
</tr>
<tr>
<td>Communication (MSN IM)</td>
<td>242,720,596</td>
<td>11.1</td>
</tr>
<tr>
<td>Coauthorships (DBLP)</td>
<td>317,080</td>
<td>6.62</td>
</tr>
<tr>
<td>Internet (AS-Skitter)</td>
<td>1,719,037</td>
<td>14.91</td>
</tr>
<tr>
<td>Roads (California)</td>
<td>1,957,027</td>
<td>2.82</td>
</tr>
<tr>
<td>Protein (S. Cerevisia)</td>
<td>1,870</td>
<td>2.39</td>
</tr>
</tbody>
</table>

(Source: Leskovec et al., Internet Mathematics, 2009)

Consequence: Adjacency matrix is filled with zeros!

(Density \(E/N^2\): WWW = 1.51 \times 10^{-5}, MSN IM = 2.27 \times 10^{-8})
More Types of Graphs:

- **Unweighted** (undirected)

 \[A_{ij} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \]

 \[A_{ii} = 0 \quad A_{ij} = A_{ji} \]

 \[E = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij} \quad \bar{k} = \frac{2E}{N} \]

 Friendships, WWW

- **Weighted** (undirected)

 \[A_{ij} = \begin{pmatrix} 0 & 2 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix} \]

 \[A_{ii} = 0 \quad A_{ij} = A_{ji} \]

 \[E = \frac{1}{2} \sum_{i,j=1}^{N} \text{nonzero}(A_{ij}) \quad \bar{k} = \frac{2E}{N} \]

 Call graph, Email graph
More Types of Graphs:

- **Self-edges**
 (undirected)

 \[
 A_{ij} = \begin{pmatrix}
 1 & 1 & 1 & 0 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 0 & 0 \\
 0 & 1 & 0 & 1
 \end{pmatrix}
 \]

 \[E = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij} + \sum_{i=1}^{N} A_{ii}\]

- **Multigraph**
 (undirected)

 \[
 A_{ij} = \begin{pmatrix}
 0 & 2 & 1 & 0 \\
 2 & 0 & 1 & 3 \\
 1 & 1 & 0 & 0 \\
 0 & 3 & 0 & 0
 \end{pmatrix}
 \]

 \[E = \frac{1}{2} \sum_{i,j=1}^{N} \text{nonzero}(A_{ij})\]

 \[k = \frac{2E}{N}\]

WWW, Email

Social networks, collaboration networks
Network Representations

WWW >> directed multigraph with self-interactions

Facebook friendships >> undirected, unweighted

Citation networks >> unweighted directed acyclic

Collaboration networks >> undirected multigraph or weighted

Mobile phone calls >> directed, (weighted?) multigraph

Protein Interactions >> undirected, unweighted with self-interactions
Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets.

Examples:
- Authors-to-papers
- Movies-to-Actors
- Users-to-Movies

“Folded” networks
- Author collaboration networks
- Actor collaboration networks
Network Properties: How to Characterize a Network?
Degree Distribution

- **Degree distribution** $P(k)$: Probability that a randomly chosen node has degree k

 $N_k = \# \text{ nodes with degree } k$

 $P(k) = \frac{N_k}{N}$ → plot
A path is a sequence of nodes in which each node is adjacent to the next one

\[P_n = \{i_0, i_1, i_2, \ldots, i_n\} \]

Path can intersect itself and pass through the same edge multiple times

- E.g.: ACBDCDEG
- In a directed graph a path can only follow the direction of the “arrow”
Number of Paths

- **Number of paths between nodes \(u \) and \(v \):**
 - **Length \(h=1 \):** If there is a link between \(u \) and \(v \),
 \[A_{uv} = 1 \text{ else } A_{uv} = 0 \]
 - **Length \(h=2 \):** If there is a path of length two
 between \(u \) and \(v \) then \(A_{uk} A_{kv} = 1 \text{ else } A_{uk} A_{kv} = 0 \)
 \[H^{(2)}_{uv} = \sum_{k=1}^{N} A_{uk} A_{kv} = [A^2]_{uv} \]
 - **Length \(h \):** If there is a path of length \(h \) between \(u \) and \(v \) then
 \(A_{uk} \ldots A_{kv} = 1 \text{ else } A_{uk} \ldots A_{kv} = 0 \)
 So, the no. of paths of length \(h \) between \(u \) and \(v \) is
 \[H^{(h)}_{uv} = [A^h]_{uv} \]
 (holds for both directed and undirected graphs)
Distance (shortest path, geodesic) between a pair of nodes is defined as the number of edges along the shortest path connecting the nodes.

- If the two nodes are disconnected, the distance is defined as infinite.

In directed graphs paths need to follow the direction of the arrows.

- Consequence: Distance is not symmetric: $h(A, C) \neq h(C, A)$
Finding Shortest Paths

- **Breath-First Search:**
 - Start with node u, mark it to be at distance $h_u(u)=0$, add u to the queue
 - While queue not empty:
 - Take node v off the queue, put its unmarked neighbor w into the queue and mark $h_u(w)=h_u(v)+1$
Network Diameter

- **Diameter**: the maximum (shortest path) distance between any pair of nodes in the graph
- **Average path length/distance** for a connected graph (component) or a strongly connected (component of a) directed graph

\[
\bar{h} = \frac{1}{2E_{\text{max}}} \sum_{i,j \neq i} h_{ij}
\]

where \(h_{ij} \) is the distance from node \(i \) to node \(j \)

- Many times we compute the average only over the connected pairs of nodes (i.e., we ignore “infinite” paths)
Clustering Coefficient

- **Clustering coefficient:**
 - What portion of i’s neighbors are connected?
 - Node i with degree k_i
 - $C_i \in [0,1]$

- $C_i = \frac{2e_i}{k_i(k_i-1)}$ where e_i is the number of edges between the neighbors of node i

- **Average Clustering Coefficient:** $C = \frac{1}{N} \sum_{i}^{N} C_i$
Clustering Coefficient

Clustering coefficient:

- What portion of i’s neighbors are connected?
- Node i with degree k_i

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

where e_i is the number of edges between the neighbors of node i

$k_B = 2, \quad e_B = 1, \quad C_B = 2/2 = 1$

$k_D = 4, \quad e_D = 2, \quad C_D = 4/12 = 1/3$
Key Network Properties

Degree distribution: $P(k)$

Path length: h

Clustering coefficient: C
Regular Lattice: 1D

- \(P(k) = \delta(k-4) \quad k=4 \) for each node
- \(C = \frac{1}{2} \) for each node if \(N > 6 \)
- Path length:

 \[h_{\text{max}} \approx \frac{N}{2} \]

 Alternative calculation:

 \[\sum_{h=1}^{h_{\text{max}}} 4 \approx N \quad \Rightarrow \quad h_{\text{max}} \approx \frac{N}{4} \]

- The average path-length is \(\bar{h} \approx N \)
- Constant degree, constant clustering coefficient.
Regular Lattice: 2D

- $P(k) = \delta(k-6)$
 - $k=6$ for each inside node
- $C = 6/15$ for inside nodes
- Path length:

 $\sum_{h=1}^{h_{\text{max}}} 6h \approx N \Rightarrow h_{\text{max}} \propto \sqrt{N}$

- In general, for lattices:
 - average path-length is $\bar{h} \approx N^{1/D}$
 - Constant degree, constant clustering coefficient
3-way Cayley Tree

- **Degree:** \(\bar{k} = 2 \)
 - \(k=3 \) for non-leaves
 - \(k=1 \) for leaves
- **\(C = 0 \)**
- **Path length:**

\[
3 \sum_{h=1}^{h_{\text{max}}} 2^{h-1} \approx N \quad \Rightarrow \quad h_{\text{max}} \propto \log_{\bar{k}} N = \frac{\log N}{\log \bar{k}}
\]

- Distances vary logarithmically with \(N \).

Constant degree, no clustering.
Erdös-Rényi Random Graph Model
Erdös-Renyi Random Graph [Erdös-Renyi, ‘60]

Two variants:

- $G_{n,p}$: undirected graph on n nodes and each edge (u,v) appears i.i.d. with probability p
- $G_{n,m}$: undirected graph with n nodes, and m uniformly at random picked edges

What kinds of networks does such model produce?
Random Graph Model

- n and p do not uniquely define the graph
- We can have many different realizations. How many?

The probability of G_{np} to form a particular graph $G(N,E)$ is

$$P(G(N,E)) = p^E (1-p)^{N(N-1)/2-E}$$

That is, each concrete graph $G(N,E)$ appears with probability $P(G(N,E))$.

$n = 10$
p = 1/6
How many likely is a graph on E edges?

$P(E)$: the probability that a given G_{np} generates a graph on exactly E edges:

$$P(E) = \binom{E_{\text{max}}}{E} p^E (1-p)^{E_{\text{max}}-E}$$

where $E_{\text{max}} = n(n-1)/2$ is the maximum possible number of edges

Binomial distribution >>>>
What is expected degree of a node?

Let X_v be a random var. measuring the degree of the node v:
$$E[X_v] = \sum_{j=0}^{n-1} j P(X_v = j)$$

- **Linearity of expectation:**
 - For any random variables Y_1, Y_2, \ldots, Y_k
 - If $Y=Y_1+Y_2+\ldots+Y_k$, then $E[Y] = \sum_i E[Y_i]$

Easier way:

- Decompose X_v in $X_v = X_{v1} + X_{v2} + \ldots + X_{vn-1}$
 - where X_{vu} is a $\{0,1\}$-random variable which tells if edge (v,u) exists or not

$$E[X_v] = \sum_{y=1}^{n-1} E[X_{vu}] = (n-1)p$$

How to think about this?
- Prob. of node u linking to node v is p
- u can link (flips a coin) for all other $(n-1)$ nodes
- Thus, the expected degree of node u is $p(n-1)$
Degree Distribution

- Degree distribution of G_{np} is Binomial.
- Let $P(k)$ denote a fraction of nodes with degree k:

$$P(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$

Select k nodes from $n-1$

Probability of having k edges

Probability of missing $n-1-k$ edges

$$\bar{k} = p(n-1)$$

$$\sigma_k^2 = p(1-p)(n-1)$$

$$\frac{\sigma_k}{\bar{k}} = \left[\frac{1-p}{p} \frac{1}{(n-1)} \right]^{1/2} \approx \frac{1}{(n-1)^{1/2}}$$

As the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of \bar{k}.

9/29/2011

35
Since edges in G_{np} appear i.i.d with probability p

$$e_i \approx p \frac{k_i(k_i - 1)}{2} \quad \Rightarrow \quad C \approx p = \frac{\bar{k}}{N}$$

Clustering coefficient of a random graph is small. For a fixed degree C decreases with the graph size N.

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$
Configuration model:

- Assume a degree sequence k_1, k_2, \ldots, k_N
- Useful for as a “null” model of networks
 - We can compare the real network G and a “random” graph G' which has the same degree sequence as G