CS224w: Social and Information Network Analysis

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

Networks & Complex Systems

- We are surrounded by hopelessly complex systems:
 - Society is a collection of six billion individuals
 - Communication systems link electronic devices
 - Information and knowledge is organized and linked
 - Thousands of genes in our cells work together in a seamless fashion
 - Our thoughts are hidden in the connections between billions of neurons in our brain
- These systems, random looking at first, display signatures of order and self-organization

Networks

Each such system can be represented as a network, that defines the interactions between the components

Networks: Communication

Graph of the Internet (Autonomous Systems)

Networks: Information

Connections between political blogs

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis

Networks: Technology

Return to the starting point by traveling each link of the graph once and only once.

London Underground

Networks: Organizations

9/27/2011

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis

Networks: Economy

Bio-tech companies, 1991

Networks: Brain

Human brain has between 10-100 billion neurons

Networks: Cells

Protein-Protein Interaction Networks:

Nodes: Proteins Edges: 'physical' interactoins Metabolic networks: Nodes: Metabolites and enzymes Edges: Chemical reactions

Behind each such system there is an intricate wiring diagram, a network, that defines the interactions between the components

We will never understand a complex system unless we understand the networks behind it

Reasoning about Networks

How do we reason about networks

- Empirical: Study network data to find organizational principles
- Mathematical models: Probabilistic, graph theory
- Algorithms for analyzing graphs
- What do we hope to achieve from models of networks?
 - Patterns and statistical properties of network data
 - Design principles and models
 - Understand why networks are organized the way they are (Predict behavior of networked systems)

Networks: Structure & Process

What do we study in networks?

- Structure and evolution:
 - What is the structure of a network?
 - Why and how did it became to have such structure?
- Processes and dynamics:
 - Networks provide "skeleton" for spreading of information, behavior, diseases

Networks: Why Now?

Age and size of networks

Networks: Why Now?

Networks: Why Now?

Why Networks? Why Now?

Why is the role of networks expanding?

- Data availability
 - Rise of the Web 2.0 and Social media
- Universality
 - Networks from various domains of science, nature, and technology are more similar than one would expect
- Shared vocabulary between fields
 - Computer Science, Social science, Physics, Economics, Statistics, Biology

Intelligence and fighting (cyber) terrorism

Predicting epidemics

Real

Predicted

Interactions of human diseaseDrug design

Networks Really Matter

- If you were to understand the spread of diseases, can you do it without networks?
- If you were to understand the WWW structure and information, hopeless without invoking the Web's topology.
- If you want to understand human diseases, it is hopeless without considering the wiring diagram of the cell.

Course Logistics

Course Syllabus

 Covers a wide range of network analysis techniques – from basic to state-of-the-art
 You will learn about things you heard about:

Six degrees of separation, small-world, page rank, network effects, P2P networks, network evolution, spectral graph theory, virus propagation, link prediction, power-laws, scale free networks, core-periphery, network communities, hubs and authorities, bipartite cores, information cascades, influence maximization, ...

Covers algorithms, theory and applications
It's going to be fun ^(C)

Prerequisites

Good background in:

- Algorithms
- Graph theory
- Probability and Statistics
- Linear algebra
- Programming:
 - You should be able to write non-trivial programs
- 4 recitation sessions:
 - 2 to review basic mathematical concepts
 - 2 to review programming tools (SNAP, NetworkX)

Course website:

http://cs224w.stanford.edu

- Slides posted at least 30 min before the class
- Required readings:
 - Mostly chapters from Easley&Kleinberg book
 - Papers
- Optional readings:
 - Papers and pointers to additional literature
 - This will be very useful for reaction paper and project proposal

Text Books

Recommended textbook:

- D. Easley, J. Kleinberg: Networks, Crowds, and Markets: Reasoning About a Highly Connected World
- Freely available at: <u>http://www.cs.cornell.edu/home/kleinber/networks-book/</u>

Optional books:

- Matthew Jackson: Social and Economic Networks
- Mark Newman: Networks: An introduction

Work for the Course

Assignment	Due on
Homework 1	October 13
Reaction paper	October 20
Project proposal	October 27
Homework 2	November 3
Competition	November 10
Project milestone	November 17
Project write-up	December 11 (no late days!)
Project poster presentation	December 16 12:15-3;15pm

Grading

• Final grade will be composed of:

- 2 homeworks: 15% each
- Reaction paper: 10%

Substantial class project: 60%

- Proposal: 15%
- Project milestone: 15%
- Final report: 60%
- Poster session: 10%

Homeworks, Write-ups, Reports

- Assignments (homeworks, write-ups, reports) take time. Start early!
- How to submit?
 - Paper: Box outside the class and in Gates basement
 - We will grade on paper!
 - You should also submit electronic copy:
 - I PDF/ZIP file (writeups, experimental results, code)
 - Submission website: <u>http://www.stanford.edu/class/cs224w/submit/</u>
- SCPD: Only submit electronic copy & send us email
 7 late days for the quarter:
 - Max 4 late days per assignment

Course Projects

Substantial course project:

- Experimental evaluation of algorithms and models on an interesting network dataset
- A theoretical project that considers a model, an algorithm and derives a rigorous result about it
- An in-depth critical survey of one of the course topics and offering a novel perspective on the area
- Performed in groups of (exactly) 3 students

Project is the main work for the class

Course Assistants

Borja Peleato (head TA)

Chenguang Zhu

Evan Rosen

Dakan Wang

Communication

Piazza Q&A website:

- http://piazza.com/stanford/fall2011/cs224w
 - If you don't have @stanford.edu email address, send us email and we will register you to Piazza
- For e-mailing course staff, always use:
 - <u>cs224w-aut1112-staff@lists.stanford.edu</u>
- For course announcements subscribe to:
 <u>cs224w-aut1112-all@lists.stanford.edu</u>

Sitting-in & Auditing

- You are welcome to sit-in and audit the class
 - Please send us email saying that you will be auditing the class
- To receive announcements, subscribe to the mailing list:
 - <u>cs224w-aut1112-all@lists.stanford.edu</u>

Starter Topic: Structure of Networks

Structure of Networks?

Network is a collection of objects where some pairs of objects are connected by links What is the structure of the network?

Components of a Network

Objects: nodes, vertices
Interactions: links, edges
System: network, graph

NEG(N,E)

Networks or Graphs?

- Network often refers to real systems
 Web, Social network, Metabolic network
 Language: Network, node, link
- Graph: mathematical representation of a network
 - Web graph, Social graph (a Facebook term)
 Language: Graph, vertex, edge

We will try to make this distinction whenever it is appropriate, but in most cases we will use the two terms interchangeably

Networks: Common Language

Choosing Proper Representation

- Choice of the proper network representation determines our ability to use networks successfully:
 - In some cases there is a unique, unambiguous representation
 - In other cases, the representation is by no means unique
 - The way you assign links will determine the nature of the question you can study

Choosing Proper Representation

- If you connect individuals that work with each other, you will explore a professional network
- If you connect those that have a sexual relationship, you will be exploring sexual networks
- If you connect scientific papers that cite each other, you will be studying the citation network

If you connect all papers with the same word in the title, you will be exploring what? It is a network, nevertheless

Undirected vs. Directed Networks

Undirected

 Links: undirected (symmetrical)

- Undirected links:
 - Collaborations
 - Friendship on Facebook

Directed

 Links: directed (arcs)

- Directed links:
 - Phone calls
 - Following on Twitter

Connectivity of Graphs

Connected (undirected) graph:

- Any two vertices can be joined by a path.
- A disconnected graph is made up by two or more connected components

Bridge edge: If we erase it, the graph becomes disconnected. Articulation point: If we erase it, the graph becomes disconnected.

Connectivity of Directed Graphs

Strongly connected directed graph

- has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)
- Weakly connected directed graph
 - is connected if we disregard the edge directions

Graph on the left is not strongly connected.

Web as a Graph

Q: What does Web "look like" at a global level?Web as a graph:

- Nodes = pages
- Edges = hyperlinks
- What is a node?
 - Problems:
 - Dynamic pages created on the fly
 - "dark matter" inaccessible database generated pages

The Web as a Graph

The Web as a Graph

In early days of the Web links were navigational
 Today many links are transactional

Other Information Networks

Citations

References in an Encyclopedia

Web as a Directed Graph

How does the Web look like?

- How is the Web linked?
- What is the "map" of the Web?

Web as a <u>directed graph</u> [Broder et al. 2000]:

- Given node v, what can v reach?
- What other nodes can reach v?

 $In(A) = \{B,C,E,G\}$ $Out(A)=\{B,C,D,F\}$

Directed Graphs

- Two types of directed graphs:
 - Strongly connected:
 - Any node can reach any node via a directed path In(A)=Out(A)={A,B,C,D,E}
 - DAG Directed Acyclic Graph:
 - Has no cycles: if u can reach v, then v can not reach u

Any directed graph can be expressed in terms of these two types

Strongly Connected Component

- Strongly connected component (SCC) is a set of nodes S so that:
 - Every pair of nodes in S can reach each other
 - There is no larger set containing S with this property

Strongly connected components of the graph: {A,B,C,G}, {D}, {E}, {F}

Strongly Connected Component

Fact: Every directed graph is a DAG on its SCCs

- (1) SCCs partitions the nodes of G
 - Each node is in exactly one SCC
- (2) If we build a graph G' whose nodes are SCCs, and with an edge between nodes of G' if there is an edge between corresponding SCCs in G, then G' is a DAG

(1) Strongly connected components of graph G: {A,B,C,G}, {D}, {E}, {F}
(2) G' is a DAG:

Proof

- Why is (1) true? SCCs partitions the nodes of G.
 - Suppose node v is a member of 2 SCCs S and S'.
 - Then $S \cup S'$ is one large SCC:

- Why is (2) true? G' (graph of SCCs) is a DAG
 - If G' is not a DAG, then we have a directed cycle.
 - Now all nodes on the cycle are mutually reachable, and all are part of the same SCC.

Now {A,B,C,G,E,F} is a SCC

Graph Structure of the Web

- Take a large snapshot of the Web and try to understand how it's SCCs "fit together" as a DAG
- Computational issue:
 - Want to find SCC containing node v?
 - Observation:
 - Out(v) ... nodes that can be reached from v
 - SCC containing v is: $Out(v) \cap In(v)$
 - $= Out(v,G) \cap Out(v,G)$, where \overline{G} is G with all edge directions flipped

[Broder et al., 'oo]

Graph structure of the Web

- There is a giant SCC
- There won't be 2 giant SCCs:
 - Just takes 1 page from one SCC to link to the other SCC
 - If the components have millions of pages the likelihood of this is very large

[Broder et al., 'oo] Bow-tie structure of the Web

250 million pages, 1.5 billion links

What did We Learn/Not Learn ?

Learn:

- Some conceptual organization of the Web (i.e., bowtie)
- Not learn:
 - Treats all pages as equal
 - Google's homepage == my homepage
 - What are the most important pages
 - How many pages have k in-links as a function of k? The degree distribution: ~1/k^{2+ε}
 - Link analysis ranking -- as done by search engines (PageRank)
 - Internal structure inside giant SCC
 - Clusters, implicit communities?
 - How far apart are nodes in the giant SCC:
 - Distance = # of edges in shortest path
 - Avg = 16 [Broder et al.]