CS224W Project Report

Margaret Fu
December 11, 2011

1 Introduction

Recommendation system has become very popular in many aspects in real social networks,
such as e-commerce services Amazon.com, movie rating website IMDB, and DVD rental
service company Netflix. This project focuses on signed link prediction of recommending
movies. Movie rating data has become largely accessible via the Internet. Most rating
systems are designed to have 5 score choices from 1 to 5. However, in finding a potential
interesting movie for a certain user, there is really not much difference between score 4 and
5. What I care about is wether or not I will like the movie. In fact, this is a classification
problem on predicting the category of a movie that has not been watched by the user. So
instead of a specific score, we are more concerned with whether the movie is below 3 or
above 3, which will be interpreted as “like” and “dislike”. A score 3 will be considered
undetermined or “indifference”.

Another important motivation for this project is to build a social recommendation system.
The idea comes from recommendations we get from our friends in everyday life. It is quite
common that we tend to value more about reviews given by our friends than those from
other strangers. In this project, a user_graph is built, based on movie watching history, to
help determine whose opinions to consider when making up a new recommendation. But if
real social network data of all users are available, we can use that to assign different weights
when calculating a score of the recommendation.

2 Prior Work

In [2], Benchetta et al. examined a bipartite graph model. Graph structures are carefully
analyzed using different metrics, such as Common Neighbors, Jaccard’s coefficient and Pref-
erential Attachment. They also learned the topological structure of the projected graphs.
Link prediction in the projected graph is mentioned using statistics of the graph.

In [3], Huang et al. introduced why collaborative filtering algorithm would work in recom-
mendation system. Topological attributes of the bipartite graph are studied by introducing
concepts of 4-node clustering coefficients and 6-node clustering coefficients. Results from a
basic CF algorithm using statistical correlation are shown for predicting potential interest.

However, no detailed learning algorithms and models are explained in the above two
papers. In the rest of this report, a detailed supervised learning algorithms Naive Bayes will
be presented. Prediction results are shown at the end. We use the same measurements used
in previous papers to evaluate the model.

3 Model

3.1 Graph Structure Analysis

This user-movie network can be modeled as a bipartite graph G =< U, M, E >, where U
and M are two mutually exclusive sets of users and movies. F is a set of edges of G and also
a subset of U x M. Each e = (u,m) € E indicates an existing rating from a user u € U to a
movie m € M. Also a set of weights W is associated with edges in E such that +1 and —1
are used to represent “like” or “dislike”. This is the signed weighted bipartite graph we use
for the movie recommendation system. Some basic analysis of the structure of this bipartite
graph are studied, such as clustering coefficients and degree distribution. Furthermore, we
calculate Jaccard’s coefficients and cycle clustering coefficients.

1.

|7 (1) N 7(us)]

|7 (u1) U T (uz)|

7(u;) denotes for the neighbors of w; for ¢ = 1,2. Here it refers to the ratio of the
number of movies they have both rated over the number of movies that have been
rated by either one.

Jaccard’s coefficients (of u; and ug in U) =

2. In [3], the author introduced 4-node and 6-node bipartite clustering coefficient defined

as
4 x (number of 4-node cycles in the bipartite graph)

Cy =

number of 4-node paths

Here for the convenience of computation, we consider a cycle clustering coefficient of
two user nodes, which can be viewed as an approximation to the above definition.

of actual shared neighbors [7(u;) N 7(uy)|

Clur, uz) = # of possible shared numbers | M|

Note that every pair of shared neighbors can create a 4-node cycle in the bipartite
graph.

Jaccard’s coefficient and cycle clustering coefficient both describe how thoroughly that users
are associated with movies. The higher the coefficients, the more movies that have been
rated by the same subgroup of users. And thus, when we predict the sign of an non-existing
link between a user and a movie, we can extract more useful and correlated information
between that user and his neighbors in the user_graph.

Moreover, to examine how users are correlated to each other when making recommenda-
tions, we project the bipartite graph onto the user nodes U. So the user_graph are built
over all the users. There is an edge between two users if and only if they share a common
neighbor in the bipartite graph, i.e. they have both rated the same movie. In addition, each
edge e = (uy,uy) is associated with a weight w defined as

of agreements

W, u2) = # of disagreements

In particular, among the subset of movies 7(u;) N7 (ug) that both users have rated before, we
count how many times their ratings agree with each other, i.e. both “like” or “dislike” the
same movie, and how many times they disagree, i.e. one “like” and one “dislike”. The higher
the weight, the more common taste that the two users share. So if we want to calculate a
recommendation for u;, we would value more of the opinions from his high weight neighbors
and less of the opinions from his low weight neighbors. And of course, weights are mutual
to the two end-point users.

3.2 Naive Bayes Learning Algorithm

Naive Bayes algorithm computes the conditional probability

oCH|Fr - Fy) = p(Cy) - p(Fy, -+ FlCy) p(Cy) TTimy p(E3|C5)
e p(F, e F) p(Fy, e Fy)
where C; denotes the categories in the classification problem and (Fi,--- , F,) is the feature
vector we define to describe an item. Usually, we want features to be independent with each
other so that the likelihood probability p(Fi,--- , F,|C;) can be calculated by the product
of conditional probability of each feature p(F;|C}).

In this project, our C;’s are categories of “like” and “dislike” for j = 1,2. Given a certain
user u and movie m, we want to predict the sign of the link e = (u,m). In order to do so,
we need help from the ratings toward m from other users. We consider neighbors of u in
the user_graph, i.e. the users N(u; m) who have rated common movies with u before and
have also rated movie m. Therefore, we define the features F; of m to be the ratings of
u; € N(u; m). For example,

F(m) = H_L +17 _17 +17 _17]

among neighbors of u who have watched movie m, user 1, 2 and 4 like it, and user 3 and 5
dislike it, and etc.

The prior probability p(C};) is the fraction of movies that have already been rated by u
in each category, i.e.

o) = p(“like”) = # of “like”s by u _ # of “like”s by u
! # of rated movies by u |7 (u)]
L # of “dislike”s by u # of “dislike”s by u
— “d 1 k 27 — —
p(C2) p(“dislike”) # of rated movies by u |7 ()]

3

The likelihood of each feature p(F;|C}) is the fraction, among movies in category C;, of
those having the same rating as m by u; € N(u;m), i.e.

of movies u and u; both “like”

Fi=+1]Cy) = .
M 1) # of “like”s by u
of movies u “like” but u; “dislike”
p(‘FZ:_l | Cl) = # AR)
of “like”s by u
of movies u “dislike” but u; “like”
Fi=+11Cy) = : ,
p(F=+1]C) 7 of “dislike”s by u
of movies v and u; both “dislike”
p(E:_1’CQ) == # 1 11
of “dislike”s by u
The evidence p(F}, - - -, F},) is the fraction of movies among all movies that have the same
rating as m by these uq, us, - - -, u, people.

After defining each of these features and conditional probabilities, Naive Bayes naturally
computes the posterior probability of movie m belonging to “like” or “dislike”. The category
with the higher posterior will be our prediction of the sign of this non-existing link e = (u, m)
in the bipartite graph.

3.3 Implementation

The algorithm takes in a pair of specified user u and movie m (usually not neighbors in the
bipartite graph) and predicts the signed weight of e = (u, m). There are several places that
need attention during implementation.

1. Since we compute posteriors for each category to compare which category has the
highest probability, we do not normalize all the posteriors by dividing p(Fi,--- , F},).
For one thing, given a specified movie m, this value is the same for all posteriors of
different categories. No effect would be made on the comparison. For another, this is
usually an extremely small number, relative computational error of which can be huge.

2. Now we are only concerned with p(C) [, p(Fi|C). Since we are multiplying a series
of probabilities, the product gets very small. Actually, at the end of calculation, they
are always beyond machine accuracy and are rounded to 0. To reduce computational
error, we use log probability instead, i.e.

logp(C;) + Y log p(Fi|C).

=1

3. To incorporate the posterior score with users’ weight, we multiply each feature like-
lihood p(F;|C) by the weight of (u,u;) in the user_graph, w(u,u;). Remember that
w(u, u;) describes the similarity of two users taste, i.e. the ratio of their agreements
over disagreements. And since our features are defined in terms of u;’s, it totally makes
sense to assign user weight to the feature likelihood when computing the posterior score.

4

However, the exact method of adding weights to feature probabilities remains uncer-
tain. We experiment with two ways shown below

logp(Cy) + > [log w(u, u;) + log p(F;|C))]

i=1

log p(C5) + > w(u,w,) - log p(E|C).

i=1
There is no conclusive results. Detailed analysis will be shown in Section 4.

4. Sometimes we need to smooth out zeros when counting different situations, by adding
1 to both denominator and numerator.

4 Results

In this project, datasets come from GroupLens Research Data Sets [1]. Three datasets of
different sizes are provided, each of which consists of at least 0.1 million ratings from over
1000 users on more than 1700 movies. Within each dataset, there is a partition of 80% for
model training and 20% for model testing. The data has been preprocessed such that each
user has rated at least 20 movies. Ratings are from 1 to 5. Here is a sample rating formatted
as user id, item id, rating and timestamp:

1 43 4 878542869,

i.e. user 1 gives movie 43 a rating of 4 out of 5. The time stamps are unix seconds since
1/1/1970 UTC.

Also for each movie, there is a binary vector showing which type the movie belongs to
among the total 19 categories such as action, comedy, drama and etc.

4.1 Graph Analysis

The experiments we carried out only use dataset of size 100k, which includes 943 users, 1682
movies and 100,000 ratings (due to computing power limit). We first examine how well are
the communications among users, i.e. if they have rated common movies, based on bipartite
clustering coefficients, Jaccard’s coefficients and cycle clustering coefficients. The histograms
are shown below.

120 T T T T

Figure 1: Clustering coefficients

30000 T T T T T

0.4 0.5 0.6

Figure 2: Jaccard’s coeflicients

140000

120000

100000

80000

60000

40000

20000

&00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Figure 3: Cycle clustering coefficients

From the statistics above we can see that Jaccard’s coefficients and cycle clustering coeffi-
cients are mostly small, Jaccard’s € [0.0013793, 0.6] and cycle clustering € [0.00059453, 0.14447],
which may indicate that different users do not share lots of common movies. Thus, it is un-
clear how well one user’s taste or preference can be revealed from his neighbors tastes.

4.2 Learning Results

We use 5 pairs of datasets provided by GroupLens Research [1], each of which is a disjoint
partition of 80% for model training and 20% for model testing. After learning and predicting,
we count the true positives, real positives, predicted positives and errors from our learning
algorithm. Note that “real positive” are the actual positives in the testing set and “true
positive” are both actual positives in testing set and are predicted to be positive as well.
“predicted positive” is self-explanatory. The statistics of 5 tests are shown below.

True Positive | Real Positive | Predicted Positive | Error
Test 1 (weighted) | 4766 8090 8352 6910
Test 1 3741 8090 6746 7354
Test 2 (weighted) | 5619 8089 9425 6276
Test 2 4564 8089 7812 6773
Test 3 (weighted) | 5757 8194 9683 6363
Test 3 4684 8194 8028 6854
Test 4 (weighted) | 5571 7880 9580 6318
Test 4 4469 7880 7897 6839
Test 5 (weighted) | 5376 7857 9451 6556
Test 5 4354 7857 7819 6968

The table above shows the results of both weighted Naive Bayes and unweighted as
discussed in Section 3.3. We said there were two ways of adding weights to feature likelihoods.
It turns out that adding log-weight to the posterior score makes approximately no difference
than unweighted algorithm. So results of log-weight algorithm are omitted.

At first glance, it seems that weighted algorithm has a significantly higher “True Positive”,
which is preferable. However, if we examine carefully, we notice that it also has a higher
“Predicted Positive”, which indicates that weighted algorithm tend to recommend more
movies than unweighted algorithm, regardless of correctness. To evaluate which of the two
models is better, we introduce the classic set of metrics commonly used [2].

True positive examples

Precison =
Predicted positive examples
True positive examples
Recall = —
Real positive examples
Precision x Recall
F-measure = 2 X

Precision + Recall’

The results of the two models are re-calculated as followed. Note that total number of
ratings in the testing set is 20,000. We also compute the error rate as Errors over 20,000.

Precision | Recall | F-measure | Error Rate
Test 1 (weighted) | 0.57 0.59 0.58 0.34
Test 1 0.55 0.46 0.50 0.37
Test 2 (weighted) | 0.60 0.69 | 0.64 0.31
Test 2 0.58 0.56 0.57 0.34
Test 3 (weighted) | 0.59 0.70 | 0.64 0.32
Test 3 0.58 0.57 0.57 0.34
Test 4 (weighted) | 0.58 0.71 | 0.64 0.31
Test 4 0.56 0.57 0.56 0.34
Test 5 (weighted) | 0.57 0.68 0.62 0.32
Test 5 0.55 0.55 0.55 0.35

From this table, we can see that even though the differences are not much, weighted algorithm
always has a better precision, recall and F-measure and a smaller error rate than the plain
unweighted algorithm. This indicates that neighbors with common tastes do have a positive
effect on predicting recommendations. Moreover, the error rates of all tests lie between .30
to .35 which means up to 70% of all our predictions of both “like” and “dislike” are correct.
This seems to be a satisfying result.

5 Further Discussion

In this section, we discuss a few thoughts about this project. The original motivation of this
project was to predict “likes” or “dislikes” based on users social network. Friends’ ratings will
be assigned higher weights than strangers’. However, most of the movie rating data available
do not involve users personal social network. Thus, in order to assign weights appropriately
to different user opinions, we build a weighted user_graph based on users’ movie watching
history and common ratings. And hopefully, our neighbors on the user_graph could provide
enough information on our own tastes or preference.

1. In Section 4.1, we show the histograms of Jaccard’s coefficients and cycle clustering
coefficients. These statistics are defined to reveal how much overlap of movies that
different users have both rated. The more overlap in the data, the more we think that
users have communicated via common movies they watch and thus, the more desirable
to our model idea. However, histograms show that these coefficients are quite low.
Thus, it is possible that the dataset we use is not sufficient enough for predicting one
user’s taste from other users.

2. Since we aim to find out potential interesting movies based on other people’s opinion,
we care less about the attributes of the movie itself, such as type, cast or production.
It is quite possible that we share difference opinion with our friends towards a certain
movie. In this case, if a movie is liked by me but hated by several friends, this model
would tend to give a “dislike” to it. This would also cause errors in Section 4.2, because
the model does not take into account how I actually think about the movie. Therefore,
this model is meant for a movie that I have not seen before. Thus, the predictability
is limited in that we design our feature vectors only based on other people’s opinions.
To fix this, adding more features about the movie’s intrinsic attributes may provide a
more precise prediction.

3. Adding weight to Naive Bayes helps the correctness of prediction. One possible im-
provement is to find another way to add those weights so that they can have more
influence on the scores.

4. When preprocessing the dataset, we simply cut all ratings by the threshold 3, higher to
be “like” and lower to be “dislike”. Ratings of 3 are discarded. One situation happens
is that some users show more mercy and biased opinions over all movies, i.e. they tend
to give very few “dislike”s (rating of 1 or 2) and a lot more “like”s (rating of 4 or 5).
For these users, threshold 3 is probably not their “indifferent” level of attitude. To
make it more sophisticated, regarding each user, we compute his average rating and
set his average to be his threshold. Thus, each user has his own threshold for “like”
and “dislike”. This should also help the precision of prediction.

References

[1] http://www.grouplens.org/taxonomy/term/14

[2] N. Benchetta, R. Kanawati, and C. Rouveirol, Supervised machine learning applied to
link prediction in bipartite social network. Social Network Analysis and Mining. Inter-
national Conference on Advances in, 2010.

[3] Z. Huang and D. Zeng, Why does collaborative filtering work? - Recommendation model
validation and selection by analyzing bipartite random graphs. Workshop of Information
Technologies and Systems, Las Vegas, NV, 2005

[4] J. Leskovec, D. Huttenlocher, J. Kleinberg. Signed networks in social media. In Proc.
CHI, 2010.

[5] J. Leskovec, D. HuttenLocher, J. Kleinberg. Predicting positive and negative links in
online social networks. In Proc. WWW_ 2010.

10

