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Abstract

In this paper, we employ various learning algorithms to develop an efficient

link prediction model based on social and demographic attributes.
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1 Introduction

Link prediction in complex network is an active area of research in network

analysis. This task is complicated by the fact that shape dynamics of the

network is constantly changing, and it is difficult to define which inherent

factors drive this change. In this paper, we will complement an existing

algorithm by considering social, geographic, and demographic features to

enhance the outcome of link predictions.

1.1 Related Work

Backstrom and Leskovec [4] devised a link prediction model based on fea-

tures involving personal attributes and network topology. This algorithm,

however, may be infeasible in many cases due to limitations in acquiring per-

sonal attributes. With a heightened awareness towards privacy issues, it has

become more difficult to collect personal information.

The model introduced by Liben-Nowell and Keinberg [3] predicts possible

connections between nodes in a social network based on graph theoretic mea-

sures. Although this algorithm is effective in making predictions on existing

nodes, we do not have the same assurance for newly formed nodes since they

do not hold any network topological information.

The main idea in the prediction model proposed by Scellato [5] is to

incorporate geographic features such as physical distance and check-in data.

This is a promising approach which demonstrates how features other than

network topology and social attributes can be relevant in link prediction.

We believe that there are new ways to render such geographic information

to improve prediction results.

1.2 Problem Formulation

We want to develop a robust algorithm that can make accurate predictions

for both existing and newly formed nodes. Some graph theoretic measures,

such as the Adamic-Adar score, play a crucial role in link prediction, and

they often yield outstanding results for existing nodes. We will certainly

incorporate these features in building a new prediction model.

As mentioned above, however, it is difficult to make predictions for newly

formed nodes by solely analyzing the graph theoretic properties. We run

into similar obstacles when predicting possible links between a pair of nodes

with distance greater than 2. It is easy to see how conventional notions of
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topology might be insufficient for a meaningful prediction. To address such

limitations, we complement topological features by employing new features

of social, geographic, and demographic flavor.

2 Data Rendering

In this paper, we consider two types of data sets, namely social network and

geographic data. We obtained the first data set from Gowalla, an online

location-based social network owned by Facebook. The second data set is

the 2000 United States Census, which consists of demographics for each ZIP

code area.

2.1 Social Network Data

For the first data set, we have friendship snapshots taken at July of 2010

and October of 2010, and public check-in history on February of 2009 and

October of 2010 for users worldwide.

Not only is the size of the first data set massive, but the demographic

information from the second data set is restricted to the United States. We

therefore extract information on the set of users with at least one check-in

point in the United States. The following table shows the size of the reduced

data set.

Time of snapshot Number of nodes Number of edges

July of 2010 26,989 115,495

October of 2010 36,231 178,791

As for the check-in history, there are 3,742,003 locations for the two time

frames combined.

For simplicity, let t1 and t2 denote the time, in chronological order, at

which friendship snapshots were taken. We will also refer to users as nodes.

Each node is uniquely assigned to a nonnegative integer.

Since the adjacency matrix for the reduced data set is extremely sparse,

we only consider the set A of nodes incident to an edge that is present at t2
but not at t1. In other words, A consists of active nodes. We further define

A1 as the subset of A with nodes present only at t1, and set A2 = A\A1.

Hence, A2 is the set of newly formed nodes. Note also that A1 and A2 are

disjoint subsets of A.
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Let u, v, and w be nodes in A. The degree of u is denoted deg u. We

write w ∼ {u, v} when w is adjacent to both u and v. The distance between

u and v is written as d(u, v).

The set of all check-in locations for both time frames will be denoted by

Λ. Hence, we do not distinguish between check-in points visited in different

time frames. We also define λ(u) to be the set of all check-in locations of

u ∈ A. Note that Λ is the disjoint union of λ(u) for all u ∈ A.

Furthermore, we select subsets of A×A from which we plan to build the

training examples.

S2 = {(u, v) ∈ A1 ×A1 : d(u, v) = 2 with u > v}
S3 = {(u, v) ∈ A1 ×A1 : d(u, v) = 3 with u > v}
S∞ = {(u, v) ∈ A1 ×A2 : u ∼ v}.

We use S2 to consider the case when we can use topological, geometric, and

social features. As for S3, we want to investigate the performance of the

prediction model when we cannot make use of the information provided by

the network topology. Finally, by examining the case of X∞, we will be able to

test link predictions for newly formed nodes. Hence, by taking into account,

various training examples, we hope to demonstrate that the prediction model

performs well under certain limitations.

2.2 Demographic Data

The second data set consists of 19 fields for various demographical attributes.

The following table lists some of these features relevant to link prediction.

ZIP code Area code

Population Total population

Population density Population per unit area

Geographic area Urban, suburban, farm, non-farm

Race White, black, Asian, Indian, Hawaiian, other

Age Age groups

Education Education level of population over 18

Household income Median household income

Per capita income Median income per person

House value Average value of homes

Housing density Number of houses per unit area

For consistency, the check-in locations in the first data set are converted into

an area code by using the Geo-postal Service provided by Nuestar.
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3 Feature Selection

The features we define can be classified into three categories depending on

whether they are relevant to topological, geographic, or social attributes.

We then carry out feature selection by computing the Kullback-Leibler di-

vergence of each feature.

3.1 Topological Features

The topological features are by far the most important features as they retain

information on the graph theoretical properties of the network. The most

natural topological feature is the number of common nodes, denoted τn. That

is, given u ∈ A and v ∈ A,

τn(u, v) =
∑

w/∈{u,v}

1(w ∼ {u, v}).

Observe that this feature does not take into account the fact that users

corresponding to nodes with higher degree are more likely to be friends with

a larger group of users.

The cosine similarity τc of u, v ∈ A is defined as

τc(u, v) =
τn(u, v)

deg u · deg v
.

By incorporating this feature into the prediction model, we lend less signifi-

cance to a pair of nodes with higher degree since users corresponding to these

two nodes are more likely to have common friends.

The Adamic-Adar score τa of u, v ∈ A is given by

τa(u, v) =
∑

w∼{u,v}

1

log (degw)
.

We employ this feature to downgrade the effect of common nodes with higher

degree since users corresponding to these nodes are more likely to be friends

with a larger group of users.

We also define the preferential attachment τp of u ∈ A and v ∈ A as

τp(u, v) = deg u · deg v.

This feature captures more active users corresponding to nodes with higher

degree.
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3.2 Geograhpic Features

We now define a set of geographic features based on the check-in history.

Each check-in point is a physical location which can be written in the geo-

graphic coordinate system, that is, for x ∈ λ(u) for some u ∈ A,

γp(x) = (θ, φ),

where θ and φ are the latitude and longditude of x, respectively.

The mode γm of u ∈ A is given by

γm(u) = arg max
x∈λ(u)

P(x(u)),

that is, the check-in location of u that occurs most frequently.

Similarly, the sample mean γs of u ∈ A is defined in the usual way as

γs(u) =

∑
x∈λ(u) x∑

x∈Λ 1(x ∈ λ(u))
,

that is, the arithmetic mean of the check-in locations of u.

We would also like to define a feature that captures the intuition of com-

munities within a network. To do this, we repeatedly apply k-means cluster-

ing to form a binary decision tree for each λ(u). Among the leaf clusters from

the decision tree, we choose the cluster with the most check-in locations, and

denote its mean as µ(u). Then the clustering distance between u ∈ A and

v ∈ A is defined as

γc(u, v) = ‖µ(u)− µ(v)‖2,

that is, the Euclidean distance between the mean of the largest leaf clusters

in each decision tree.

3.3 Social Features

Although 27 social features are considered in the prediction model, we only

discuss a few of the important ones as the rest are defined similarly. We

write N(u) to denote the total population of the area code for u ∈ A.

We define the housing density σh of u ∈ A as

σh(u) =
H(u)

A(u)
,

where H(u) is the number of houses in the area code for u.
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The density of white population σw for u ∈ A is given by

σw(u) =
W (u)

N(u)
,

where W (u) is the white population of the area code for u.

We write the per capita income σp of u ∈ A as

σp(u) =
I(u)

N(u)
,

where I(u) is the net income of residents in the area code for u.

Finally, the urban population density σu of u ∈ A is defined as

σu(u) =
U(u)

N(u)
,

where U(u) is the population living in urban areas within the area code for

u.

3.4 Chi-square Score

We compute the chi-square score for each feature, and then, enumerate these

features in descending order.

Feature χ2 Score Feature χ2 Score Feature χ2 Score

τn 549.07 γp 1,995.87 σh 680.34

τc 614.85 γm 4,076.83 σw 659.14

τa 2,484.30 γs 2,965.92 σp 522.94

τp 4,429.33 γc 4,210.23 σu 661.89

According to this table, the preferential attachment τp has the highest chi-

square score. This may be due to the fact that Gowalla was at its early stage

at the time the data was collected.

Another interesting observation to make is that the mode γm and the

clustering distance γc are ranked second and third, respectively. This appears

to reflect the fact that geographical features for newly formed nodes are

highly correlated to their respective labels with respect to its adjacent nodes.

We also observe that the social feature have significant chi-squre scores, which

indicate that they will enhance the prediction results.

Scellato[5] uses a prediction model based on geographic features such as

the mode and mean of check-in locations. We devised a new distance metric,

namely γc, by using decision-tree clustering. As we can see in the χ2 score

table, clustering distance feature shows better performance than γm and γs.
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4 Supervised Learning Results

In this section, we build training sets X2, X3, and X∞ based on S2, S3,

and S∞, respectively. By then apply learning algorithms on these traing

sets, and make link predictions. By considering these three cases, we hope

to demonstrate that this model is able to make meaningful predictions for

newly formed nodes when graph theoretic features are not available. We will

also verify that the geographical and social features play an important role

when network topological information is not available.

4.1 Training Examples

We defined S2, S3, and S∞ in Section 2. Now let τ , γ, and σ, resepctively,

denote the set of topological, geographical, and social features discussed in

Section 3. Then we define the training sets X2, X3, and X∞ as

X2 = S2 ∪ τ ∪ γ ∪ σ
X3 = S3 ∪ {τp} ∪ γ ∪ σ
X∞ = S∞ ∪ {τp} ∪ γ ∪ σ

We note that X3 and X∞ are independent of τ , the set of graph theoretic

features.

Since d(u, v) = 2 for u, v ∈ S2, we can make use of features in τ when

learning X2. In contrast, we cannot take advantage of features in τ when

learning X3 and X∞ except for τp. This is because, for u, v ∈ S3, we have

that d(u, v) = 3, and so, we do not have any common neighbors for u and v.

As for S∞, we are dealing with newly formed nodes, and so, we cannot use

features in τ , which are based on topological information at t1.

Hence, by considering the three training examples, we want to see if the

prediction model can overcome the following obstacles.

X2 When all features τ, γ, σ are available

X3 When we cannot use τ\{τp}
X∞ When users are newly added in the social network

We now investigate these three cases separately.

4.2 Prediction Results on X2

Before we run learning algorithms on the entire training set X2, we want to

observe how addition of geographical and social features enhances prediction
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results. Hence, we will consider the following subsets of the trainset X2.

X ′′2 = S2 ∪ τ and X ′2 = S2 ∪ τ ∪ γ.

We will learn in the order of X ′′2 , X ′2, and X2, and see how adding a new set

of features improves the performance of the overal prediction algorithm.

Learning set Random forest Decision tree J48 Adaboost M1

X ′′2 70.60% 71.80% 66.80%

X ′2 77.50% 78.00% 73.60%

X2 80.20% 78.60% 75.90%

(F1 score)

The results in the table shows that the addition of τ and γ into the training

set improves prediction performance for all machine-learning classifiers. For

the random forest classifier, the F1 score increases from 70.6% on X ′′2 to 77.5%

on X ′2, which is a 6.9% improvement. This demonstrates that geographical

features play an important role when making link predictions. Finally, for

X2, the F1 score is 80.2%, which is 10% and 2.5% greater than the case of

X ′′2 and X ′2, respectively.

4.3 Prediction Results on X3

As in the previous section, we gradually increase the size of the training set.

We will consider the following subset of X3.

X ′′3 = S3 ∪ {τp} and X ′3 = S3 ∪ {τp} ∪ γ.

Hence, we run learning algorithms on X ′′3 , X ′3, and X3, in chronological order.

Note that, since we are considering pairs of nodes of distance 3, we do not

incorporate topological features such as the Adamic-Adar score and cosine

similarity. We only consider τp ∈ τ .

Learning set Random forest Decision tree J48 Adaboost M1

X ′′3 65.30% 56.60% 57.60%

X ′3 70.90% 71.70% 64.80%

X3 71.30% 70.00% 64.90%

(F1 score)

When running random forest classifier, there is a improvement of approxi-

mately 5% in the F1 score when training on X ′3 instead of X ′′3 , that is, by
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addition of geographic features γ. Furthurmore, the F1 score on X3 is 71.3%,

and so, by adding the social features σ, the F1 score increases by 6%. This

is a remarkable result since we are hardly relying on topological features to

train the prediction algorithm. We see that in the absence of topological

features, geographic and social features play an important role in enhancing

the prediction results. We note that, since we cannot make use of important

features of τ such as the Adamic-Adar score, we see that the overall result

for X3 is slightly lower than that of X2.

4.4 Prediction Results on X∞
We now investigate the results for X∞ by first running the learning algorithms

on the following subsets.

X ′′∞ = S∞ ∪ {τp} and X ′∞ = S∞ ∪ {τp} ∪ γ.

We will consider X ′′∞, X ′∞ and X∞ in chronological order. This is a particu-

larly important case since we are testing the performance of the prediction

model on newly formed nodes.

Learning set Random forest Decision tree J48 Adaboost M1

X ′′∞ 47.20% 31.00% 31.10%

X ′∞ 66.40% 63.10% 65.00%

X∞ 82.80% 79.90% 81.20%

(F1 score)

As with the first two cases, we see an increase in F1 score for all three learn-

ing classifiers. For the random forest classifer in specific, we see that the F1

scores increases from 47.20% on X ′′∞ to 66.40% on X ′∞, which is a 19.20%

increase. We have an F1 score of 82.80% on X2 which is a 16.40% increase.

Surprisingly, the results on X∞ are generally better than that of X2 and X3.

This abnormality may be explained by the fact that the friendship snapshots

were taken soon after the launch of Gowalla. Nonetheless, this demonstrates

that geographic, demographic, and social features play a critical role in im-

proving link prediction performance.

4.5 Conclusion

In defining geographic features, we defined a new feature, namely γc, which is

the clustering mean based on the decision tree. By computing the chi-square
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scores of the features, we were able to verify that γc had higher scores than

other geometric features. We also devised a new way of incorporating social

features by making use of the United States Census data.

As we can see from the table below, the prediction model performs better

on X ′′2 compared to X ′′3 and X ′′∞. However, we see that the F1 scores for

X2, X3, and X∞ are comparable. Note also that, by comparing F1 scores

on X ′′∞ and X∞, we see that geographic, demographic, and social features

are a powerful tool in making link predictions for newly formed nodes. This

shows that geographic, demographic, and social features can make up for the

shortcoming of network topological features.

Learning set X2 X3 X∞
X ′′ 70.60% 65.30% 47.20%

X 80.20% 71.30% 82.80%

(F1 score on random forest classifier)

Observe that there is approximately a 10% improvement from X ′′2 to X2. This

implies that geographic and social features plays an important role even when

graph theoretic information is not available. Heuristically, it appears that γ

and σ are nearly “orthogonal” to τ in the sense that the addition of γ and σ

into the training example greatly increases the F1 score. We can infer from

this that γ and σ provide meaningful information vastly different from that

provided by τ .
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