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Abstract

The classification of economic communities is a critical aspect of modern
investment management. Sector and industry groupings are commonly used
in portfolio risk management, relative valuations, and peer-group analysis.
Companies within these groups are expected to observe relatively similar
comovement in stock returns, a concept defined in previous financial
literature as homogeneity. This research addresses the same classification
problem, but introduces a distinctly different approach. Community detection
algorithms are applied to an evolving, complex economic network — a map in
which links are determined by customer-supplier revenue flows. Empirical
tests indicate that Clauset-Newman-Moore greedy modularity optimization,
applied in monthly intervals from 2003 to 2009, consistently predicts intra-
group homogeneity. Preliminary results also show that community detection
techniques are informationally additive to the S&P/MSCI Global Industry
Classification System (GICS). The interplay between economic sectors and
network communities is further explored with modern, force-directed

visualization techniques.

*Special thanks Navneet Arora, Alex Ornatsky, and Keith Siilats
for encouragement and insight throughout the duration my research.
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1 Introduction

1.1 New Approach to an Old Problem

The classification of economic communities is a
critical aspect of modern investment management.
Investors often construct strategies that identify
asset mispricing relative to company peer groups.
Homogenous stock groupings are also commonly
used to control systematic risks in actively managed
portfolios.

A variety of classification systems have been
introduced to the marketplace. Examples include
the Global Industry Classification System (GICS),
the Industry Classification Benchmark (ICB), and
the Thomson

(TRBC).

Reuters Business Classification

The teams behind such methodologies analyze
companies individually in order to assess principal
business activity. Revenues, earnings, and market
perception are all recognized as relevant factors in
the formation process. Similar companies are then
essentially  building  the

grouped  together,

classification system from the bottom-up.

This research addresses the same classification
problem, but in a very different way: community
detection algorithms are applied to an evolving,
large-scale economic network — a map in which links
are determined by customer-supplier revenue flows.
This systematic, top-down approach iteratively
partitions the economic network into groups that

exhibit dense inter-company relationships.

1.2  Empirical Validation

In a 2007 paper titled Industry Classifications and
Chan, Lakonishok,
Swaminathan formulate a process to quantify the
“If market
participants consider a set of companies closely
should

Return ~ Comovement, and

efficacy of a classification system [1]:

related, then stocks within the group
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experience coincident movements in their stock
The comovement in their returns with
should be
weaker” Accordingly, a classification system’s ability

returns.
stocks outside the group relatively
to produce homogenous groupings can be judged by
the
correlations between a stock and all others within
Wic)

correlations between that same stock and all others

comparing magnitude of forward return

the same group ( and the magnitude of

outside its group (Oy).

Within Group
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where,
i, 7 individual securities
Py correlation of monthly returns between individual
securities 7 and j over subsequent 24 months

G set of stocks within the same group G
N total number of securities in G
K total number of securities in the dataset

W and O represent the average within-group
correlations and average out-group correlations,
respectively, across the universe of securities. By
comparing W and O, one can assess how well
groupings predicatively distinguish between similar
and dissimilar stocks. In this paper, I define (and
heavily reference) the homogeneity coefficient, hC:

hWo=W-0

2 Input Data

2.1 Network Data

In the customer-supplier network, nodes represent
individual businesses and edges represent business

relationships.  These relationships form an



unweighted directed graph, with revenues traveling

from customers (out-degrees) to suppliers (in-

degrees).

As an example, the node defined by Apple Inc. has
incoming edges from its customers (which include
Best Buy, Wal-Mart, and AT&T) and outgoing
edges to its suppliers (which include Intel and a
variety of international hardware/circuit designers).
Apple’s neighbors, of course, have their own distinct
sets of customers and suppliers, thus forming a

complex network of economic activity.

Data is pulled from the Revere Relationships ™
data feed via FTP. The network covers more than
95,000 5,800 U.S.-traded
companies, and is archived back to 2003 on a daily

relationships, over

basis. Revere constructed their relationship index by

mining financial statements, press-releases,
interviews, and websites. It includes direct
relationships  (those defined by the selected

company), as well as indirect relationships (those
named by other companies about the selected

company).

2.2 Financial Data

Through Thomson Reuters’ MarketQA querying
platform, the following financial items are collected
for each company in the network: market
capitalization, CUSIP, ticker, S&P/MSCI GICS
sector membership, Russell 3000 Index membership,
and monthly total returns — returns adjusted for
dividends and corporate actions.

In preparation for the validation steps covered in
1.2,
forward returns are computed for every combination
of stocks in the Russell 3000, from April 2003 to
June 2009 (totaling roughly 340 million individual

rolling 24-month pair-wise correlations of

correlation calculations). Forward returns are used
so as to gauge how well a grouping methodology
predicts homogeneity.
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Note: The analysis stops in June 2009 because
correlations require no less than two years of
forward returns for each company and date.

2.3 Data Merging and Cleanup

CUSIPs and Date serve as unique identifiers in
merging the two datasets. A slew of cleanup
procedures are conducted to address common issues
including missing and corrupt data, extreme
outliers, and mismatched identifiers between varying
data sources. Once the data is properly cleaned and
merged, each of the network’s nodes is assigned

relevant financial attributes.

2.4 Additional Technical Information

Key software packages include:

o

Thomson Reuters’ MarketQA (financial
data querying platform)

R (data management, scripting, exploratory
analysis)

R idgraph library (network analysis)

Gephi (network visualization)

3 Network Properties

The purpose of this section is to gain statistical
familiarity with the customer-supplier dataset.
Degree distributions and the presence of power laws
are also explored, both independently and in
Though this

section occasionally veers from the subject of

relation to market capitalizations.

community detection, it is intended to provide
greater context surrounding the network and also
form a backdrop for future research ideas.

3.1 Network Statistics

Subsequent statistics represent Revere’s economic
network after being merged with company specific
financial information. Results are tabulated for 75



monthly iterations of the network from April 2003
to June 2009.

Figure 1: Time-Varying Network Properties
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On average, the graph contains roughly 4,500 nodes,
and 25,000 edges, approximating to 11 business
relationships per company (since each edge counts
in the degree of two vertices, a graph’s average
degree = 2*|E|/|V]).

Network properties are relatively stable over the
sample time period, with no extreme jumps from
month to month. Edges decrease at a faster rate
than nodes from 2005 to 2007, leading to a less
clustered graph over that time period. Subsequently,
nodes begin to drop off, causing the cluster
coefficient to eventually return to earlier levels of

roughly 0.045 [Figure 1].

It is difficult to isolate the drivers behind trends in
Figure 1. Turns in the economic cycle, changes in
merger-acquisition activity, and even inconsistencies
in Revere’'s data aggregation processes are all
possibilities. For purposes of this analysis, however,
nothing about the network’s evolution is cause for
significant concern (to my knowledge).
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3.2 Power Laws and

Economic Networks

A discrete power law distribution is mathematically

defined as,
P(X =1)=Cr “,

where x is the observed value, C a normalization
constant, and o the scaling constant. When applied
to networks, x refers to the degree of a given node.
Networks following power laws contain a relatively
number of nodes that account for

small a

disproportionately large number links (i.e. hubs).

These distributions have attracted a great deal of
attention from the scientific community. Power laws
have been observed across a wide range of real
world networks, from web-page topology to airline
hubs to academic citation networks. One common
explanation for power laws is  preferential
attachment — the mechanism by which having many
links predisposes a node to attract even more links.
In this section, I briefly cover power laws in our

customer-supplier network.

3.2.1 Log-Log Plots

A preliminary test for power law properties can be
constructed by simply plotting degree distributions
in log-log scale. A negatively sloped straight line is a
loose indication (though no guarantee) of a power
law distribution [2].

Figure 2: Network Degree Distribution
(Captured on 5/31/2011)
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that node in the

customer-supplier network appear to follow a power

Figure 2 suggests degrees
law distribution. In conjecturing why the dataset
exhibits such properties, it is important to note that
power laws are not unfamiliar concepts to finance,
A
relatively small number of businesses account for a
of the U.S.
economy. In fact, for all companies in the network
(as of 5/31/2011), the top 10% in account for nearly

73% of aggregate market cap.

particularly with respect to company size.

disproportionately large portion

For this reason, it is of interest to explore the
relationship between degree and company size
before making any assertions about the causality of

power laws in customer-supplier networks.

3.2.2 Degree Distribution and
Market Capitalizations

In Figure 3 we observe the same log-log distribution
plot as in Figure 2, with one exception: dots are
sized by the degree’s average market cap. Formally,

this is described by

Dies, marketCap;
Ny

size, =

where S, is the set of stocks with degrees equal to £,
and N is the number of stocks in S,.

Figure 3: Degree Distribution and Market Capitalizations
(Captured on 5/31/2011)
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Clearly, there exists a strong positive correlation
between company size and number of business
From 2003 to 2009, the average
monthly Spearman’s

relationships.
rank correlation between

degree and market cap is 0.67.

These results are rather intuitive: the bigger the
supplier, the more likely it is connected to multiple
(and The
underlying these power law distributions is less

customers vice  versa). causality

Potential lines of future research include
the
contemporaneous, or if one is predictive of the
other.

clear.

testing whether degree-size relationship is

4 Community Detection

4.1  Modularity

Complex networks exhibiting community structure
are said to have greater edge density within groups
One of
community structure is modularity — the fraction of

than between them. such measure
edges that fall within a group minus what would be
expected by a random distribution. Modularity, @,
is formally defined by

1 A keka
Q= g 2, [ =] O
w

where m is the number of edges in the graph, A is
the graph’s adjacency matrix, k, is the degree of
node v, ¢, indicates that v belongs to community c,
and the membership function é(c,¢, ) is 1 if ¢, = c,,
and 0 otherwise.

Modularity ranges from -1 to 1, and anything
between 0.3 and 0.7 is considered to exhibit strong
community structure[3].

4.2  Modularity Optimization

Many modern community detection techniques aim
to maximize () efficiently and accurately. One of the



fastest approaches, and the basis for subsequent

results, is Clauset-Newman-Moore greedy
modularity optimization, which solves the problem
using an agglomerative hierarchal clustering
algorithm [3]. Figure 4 illustrates how @ grows over
the course of the algorithm as nodes are iteratively
joined into increasingly differentiated groups. Once
the process is complete, the specific iteration which
produced the maximum modularity is identified and
the clusters at that point

retrieved.

Figure 4: Modularity Over Course of Algorithm
(Captured on 5/31/2011)

Max Modularity: 0.63
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implemented on a monthly basis, from April 2003 to
June 2009 (for each of the 75 evolving iterations of
the Results that
modularity does not drop below 0.55, or rise above

network). show maximum
0.63 [Figure 5]. Both the magnitude and consistency
of these findings are encouraging: the level of
that

structure exists in the customer-supplier dataset,

roughly 0.6 indicates strong community
while the consistency provides further evidence that

network structure is stable over the sample.

Figure 5: Maximum Modularity

in the process are
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5 Empirical Results

Modularity optimization algorithms have clustered
groups such that dense edges exist within groups
and sparse edges exist between groups. The next
step in this research is to empirically validate the
efficacy of those groups with stock market data.
Network-derived communities are first evaluated in
isolation, then against GICS sector classifications,
and finally, in combination with GICS.

5.1 Homogeneity Coefficients

Recall from section 1.2 that the

coefficient (hC) measures how well a grouping

homogeneity

methodology distinguishes between similar and
dissimilar companies (wherein similarity is defined
by stock

returns).

subsequent 24-month correlations in

Figure 6: Efficacy of Community Detection Based Groupings
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When

community detection algorithms produce groupings

applied to customer-supplier networks,
with distinguishable signs of homogeneity [Figure 6].
The average hC over the tested time period is
3.56%, with a standard deviation of 0.8%. hC is

positive for all of the 75 testable months.

5.2 GICS Sectors as a Benchmark

The S&P/MSCI Global Industry Classification
System (GICS) is the world’s most commonly used
industry and sector taxonomy. It forms the basis for
a wide variety of Exchange Traded Funds (ETES),
investment processes. GICS
by MSCI
researchers and, like the customer-supplier network,

risk models, and

classifications are reviewed annually
employ revenues as a key input in the formation
process. For these reasons, GICS serves as a natural
(and formidable) benchmark by which to compare
results.

Note: The 10 GICS economic sectors are Energy,
Materials, Industrials, Consumer Staples, Health
Care, Consumer Discretionary, Financials, Utilities,
and Information

Telecommunication  Services,

Technology.

Figure 7: Efficacy of Community Detection

against GICS Sector Classifications
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In stand-alone tests of homogeneity, the Clauset-
Newman-Moore agglomerative clustering algorithm
did not surpass GICS sector groupings [Figure 7. In
2003, GICS classifications achieved an hC of around
10%, declining to 6% by 2009. This roughly doubles

the hC of groups formed through community
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detection, which fluctuates about 4% for most of the
sample.

5.3 Presence of Additive Information

The
potentially

results in section 5.2 do not preclude

combining the two methodologies,
assuming that the customer-supplier dataset is
informationally additive to GICS in the first place.
The following experiment aims to validate that

assumption.

5.3.1 Experiment Formulation

Generate two subsets of GICS sector groupings: The
first of which randomly removes companies from
each sector; the second of which removes companies
that tend to belong to different communities (c¢)
than those of their sector (s) relatives. Take the
remaining subsets in both formulations and compare
their If the
produces consistently higher levels than the first,

homogeneity coefficients. second
then the community-driven input will have achieved
a non-random, additive effect on the accuracy of

GICS.

Group 1 (gicsR): Within each GICS sector s,
randomly remove 20% of the companies. Formally,
0.2 * N, companies are drawn from a uniform
distribution defined by:

P(X = x) = 1/ N,

Where, N, represents the number of companies in
sector s. Let gicsR, represent the remaining subset

of companies.

For each GICS sector
randomly draw 0.2 * N, companies using the

Group 2 (gicsC):

S,

following probability distribution:
P(X = X‘s() =1- Nb(‘/ Ns

Where N, represents the number of companies in
sector s that belong to community ¢, and N,



represents the total number of companies in sector

S.

In other words, the probability that a company is
removed is inversely proportional to its community’s
This deliberate
construction eliminates “stragglers” — companies

frequency in a given sector.
with few community peers — thus forming a bias
Let gicsC,

represent the remaining subset of companies.

towards sector-community agreement.

Note: There are random elements inherent to the
construction of gicsC and ¢gicsR. To protect against
outliers, each of the groups is constructed twenty
different times (on each date) resulting in twenty
values of hC, of which the median is recorded.

5.3.2 Evaluating Results
On average, GICS groupings with community
detection input (gicsC) improve the homogeneity
coefficients of those with arbitrary input(gicsR) by
0.54, a 7.3% increase [Figure §|. The results are
remarkably consistent: the network data adds value
to GICS in 73 of the 75 tested months [Figure 9. Tt
is no surprise then that these results are statistically
significant by an extremely wide margin (a one-
tailed t-test for [AC,..c — hC,.p > 0 yields a t-stat
of nearly 20).

Figure 8: Excess Homogeneity Coefficient
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Figure 9: Histogram of Excess Homogeneity Coefficient
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It is still unclear whether these results imply any
substantial economic impact when applied to risk
Another
consideration is that, though community detection
additive to GICS
groupings, the same conclusion may not hold for

models and investment  processes.

is  informationally sector
more granular classifications like industries and sub-
industries. Those are topics to address in future
this
preliminary evidence that community detection

research. For now, experiment provides
algorithms are informationally additive to GICS

sector groupings.

6 Visualizing the Corporate
Ecosystem

Thus far, this paper has

networks in a purely quantitative manner.

analysed economic
To
supplement that research and provide a broader
understanding of the customer-supplier dataset, I

apply  modern  graphing  algorithms  that

aesthetically illustrate network clusters.

6.1 Fruchterman-Reingold Force-
Directed Graphing Algorithm

The Fruchterman-Reingold force-directed spring

algorithm is often cited as an effective approach for
visualizing networks with community structure[4].

In this methodology, attraction and repulsion



between nodes is proportional to the distance
between them. The graph is simulated as though it
were a physical system, ultimately converging to a
state of equilibrium.

Applying the Fruchterman-Reingold graphing
algorithm to customer-supplier networks opens the
research up for greater qualitative analysis. Nodes
are intuitively spaced and, if the algorithm is
calibrated that

illuminates from

appropriately, form a graph

relationships  not  obvious

traditional statistics [5].

6.2 Graph Formulation

Figure 10 presents a graph that employs a high-
of the
This is
accomplished through Gephi — graphing software
with the
properties. The final layout in Figure 10 does not

powered, extremely flexible derivative

aforementioned force-directed algorithm.

flexibility to finely calibrate spatial

use any information beyond the network’s nodes
and edges.

Context
financial dimensions: each node is labelled by its

is added to the map along multiple

stock ticker, which is sized in proportion to the

company’s market capitalization (standardized
within each sector). Nodes are designated with one
of ten colors, based on sector memberships.

Together, the force-directed layout and financial
attributes provide a multi-dimensional view of a
complex economic ecosystem.

6.3 Qualitative Observations

Within it
fascinating to observe where companies are aligned

and across economic clusters, is
along the network map and in relation to their

peers.

(AAPL), a hardware
manufacturer for most of its existence, resides along

Notice that Apple Inc.

the fringe of a massive technology cluster (bottom
right of map). It is drawn away from its tech peers
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by an adjacent cluster of telecommunication
companies, such as AT&T (T), Verizon (VZ), and
Vodafone (VOD), who serve as intermediaries to
content and media providers, such as Disney (DIS),
Comcast (CMCSA), and Time-Warner (TWX).
There is no question, of course, that Apple has
vastly expanded beyond its early hardware
beginnings and now also acts as a massive media

distribution hub.

The
dynamic is just one example of how economic
Notice that
financial companies — JP Morgan (JPM), Wells
Fargo (WFC), HBC, etc. — sit near the center of
the map, presumably because they help partner and

aforementioned  Technology-Telecom-Media

clusters interact with one another.

finance companies in just about every other sector,
thus exhibiting high betweeness-centrality.

7 Issues and Future

Enhancements

As is generally the case with interesting datasets,
research inputs can be messy and problematic. The
benefit, of course, is that identifying such issues can
only help improve future research insights. This
section identifies key problems and offers potential

enhancements for future research.

7.1  Unknown Edge weights

As discussed in section 2.1, this economic network
contains unweighted edges, which means that the
amount of revenue travelling between any two
companies is ignored. This is an unfortunate
discrepancy. For example, if a company has 30
customers, one of which represents 80% of its
revenue, its principal business activity is clearly
more closely tied to that customer than the 29

others.

To be sure, Revere’s dataset contains revenue

information for 11% of its business relationships,



which at least provides a starting point to build
from. There exist a variety of methodologies (of
dubious accuracy) for estimating missing values,
iterative proportional fitting being one such
approach. There is no question that further research
— community detection, or otherwise — would be
greatly enhanced by assigning reasonably accurate
revenue estimates to the missing edge weights.

7.2 Sector Biases

Another issue pertains to the varying number of
customer-supplier relationships across different
economic sectors. This dataset only captures
business-to-business  activity.  Companies that
interface with individual consumers will tend to
have less links than those that do not. In some
cases, this issue could ultimately lead to inaccurate
conclusions. This fundamental obstacle is not easy
to overcome, but should certainly be kept in mind
during future projects.

7.3  Accounting for Systematic Risk

There exist many systematic factors that explain
the comovement of stock returns beyond sector or
community groupings. This issue is particularly
relevant to section 5.3, which provides preliminary
evidence that network derived communities are
informationally additive to GICS sector groupings.
A variety of common risk factors could ostensibly be
constructed in a way that is additive to GICS
groupings. For example, one could create “beta
communities,” in which companies are grouped

based on beta deciles.

For this reason, and since the homogeneity
coefficient is calculated wusing total return
correlations, results could be made more robust by
neutralizing returns against common risk factors

(i.e. using specific returns).

8 Conclusion

Despite all the issues highlighted in the previous
section, applying community detection algorithms to
customer-supplier networks still provides
encouraging preliminary results. This study showed
that there exist distinct signs of future return
comovement within groups that are partitioned
using modularity optimization algorithms.
Moreover, these groups appear to be informationally

additive to GICS sector groupings.

This paper focused on topics commonly associated
with risk modelling, but the underlying dataset is
certainly applicable to many other aspects of
modern investment management (note the research
performed in [6]). More broadly, customer-supplier
networks offer an exciting platform for many forms
of econometric and quantitative analysis.

The force-directed map in Figure 10 illustrates just
how complex a network of this scale can be, while a
brief overview of power laws showed that network
analysis alone, without any financial context, can
lead to misguided conclusions. The multi-faceted
challenges of this research, an amalgamation of
network analysis and modern finance, is exactly
what makes it so promising: in combining these two
traditionally unrelated subjects, we begin to uncover

new questions and, in time, new answers.
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The Corporate Ecosystem

Figure 10: Visualizing the Customer-Supplier Network. Constructed in Gephi. Data Captured on 5/31/2011.
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return predictability across assets. Relevance: Used as an example of how the customer-supplier network can be applied in ways beyond

community detection.
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