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2 METHODS

1 Introduction
The microblogging service Twitter today encompasses more than 200 million users, who sendmore than a billion tweets every week. A tweet is a short message that contains at most140 characters. It can include one or several hashtags such as “#CS224W”. The hashtagsenable to easily search messages on a content, look at trends, or precise the topic of a givenmessage. Given the short length of messages, these hashtags indeed provide an insightfulinformation on the topic of a tweet.In order to characterize user habits and interests, one can try to identify what are thehashtags that best describe him, and more generally what hashtags he is likely to use.The goal of our project is to predict what hashtags are likely to be used and analyze theinfluence of hashtag categories in this prediction. More precisely, our project has consistedin: • building a bipartite graph between users and the hashtags that they have used• implementing a link prediction algorithm on the bipartite graph between users andgraph• implementing a clustering algorithm on the hashtag graph, obtained by projecting theinitial bipartite graph on the hashtag nodes• combining the hashtag clustering with the link prediction and observing how thisaffects the link prediction precision• analyzing the link prediction precision on the bipartite graph between users andhashtag clustersAs an application of our results, one could predict the trends of hashtags and hashtagcategories, i.e. forecast what are the hashtags that people are the most likely to use in thefuture.

2 Methods

2.1 Data preparationThe data on which we will be working will be extracted from a collection of Tweets, containingthe time, sender name and tweet, collected from June 2009 by J. Yang and J. Leskovec [1].
1. We modeled our dataset on Twitter into a bipartite weighted graph with U user nodesand H hashtag nodes. An edge (u, h) in U ×H has a weight equal to the number oftimes the user u has sent a tweet containing the hashtag h.2. We preprocessed hashtags by removing special characters, and deleting hashtagswhose lengths are below 2.3. Instead of considering all hashtags, we limited our dataset to the 1,000 most senthashtags for several reasons:
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• the top sent hashtags reflect general trends of interest among users• most hashtags do not have any english meaning, and can be considered as noise• if we were an advertising company who would try to extract information fromTwitter, focusing our attention on the most mentioned subjects makes more sense.4. Then we reduced our set of users to the top 10,000 senders of these 1,000 hashtagsin the past. Again, it makes no sense to consider users who never used our set ofhashtags, and in order to reduce computational cost, we focused only on the top 10,000senders.5. From this choice of hashtags and users, we derive three smaller datasets:• 100 hashtags; 1,182 users; 10,047 edges; 361 missing edges;• 100 hashtags; 2,571 users; 30,081 edges; 1,154 missing edges;• 1000 hashtags, 1,967 users; 30,001 edges; 1,240 missing edges;6. For each data set, we removed the edges that appeared the most recently. Our linkprediction algorithm works on predicting these removed edges.

Figure 1: Number of different hashtags posted by users.
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Figure 2: Degree distribution of the users.
2.2 Link PredictionGiven the dataset, our analysis then focused on Link Prediction. In other words, the problemthat we addressed can be stated as: given a set of previous edges (user, hashtag), what arethe most likely hashtags to be tweeted and by who?

2.2.1 Prior workThe link prediction problem has been widely studied and our analysis relied on this legacy.In particular, our approach combined methods from [2] and [3], as we explain below.In Liben-Nowel & Kleinberg’s article [2], the authors predict links that are likely to appearin the future using different manners to measure the proximity of nodes in a network. Moreprecisely, they assign scores to every possible link and these links are then ranked by theirscore in decreasing order. Only the edges with the best score will form the set of predictededges.Unfortunately, their approach cannot be transposed to our study, as the tests andexperiments of this paper are done on large co-authorship networks, and not on a bipartite
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graph as in our case. For that reason, we analyzed the method presented in [3], whichpresent a link prediction approach to bipartite graphs called collaborative filtering.It consists in computing a score between a user u and a hashtag h, for every pair (u, h).The score is based on the neighbors of u (which belong to the set of hashtags) and theirsimilarity to h, as we will describe later.However, the algorithm presented in [3] is used for a recommendation problem, whereaswe would like our algorithm to address a link prediction problem. Therefore, we had tocombine the two approaches presented in [2] and [3]. Furthermore, both of these articlesdeal with unweighted graph and, for that reason, we developed our own way of predictingedges in a weighted graph.
2.2.2 Our modelBuilding on the articles previously presented, the method we developed consists of thedifferent steps below:1. Compute the projection of the bipartite graph in the set of hashtags. The result, called

projection matrix, indicates the similarity between hashtags2. Compute the score of every (user, hashtag) edge, based on the similarity between ahashtag with the hashtags already linked to a user3. Computing the weight associated with each of these scores4. Ranking the edges by decreasing weight and output the best k edges.We will now present each of these points more in depth.
2.2.3 Hashtag similarityThe similarity between two hashtags is inferred by projecting the bipartite graph betweenusers and hashtags into a graph with hashtag nodes. The method is presented in [3] andconsists in computing a weight between two hashtags according to a certain score.More precisely, the weight may be defined as the number of (top) neighbors that twohashtags u and v have in common in the bipartite graph. This weight is called the summetrics and is defined as:

σ (u, v ) = |N(u) ∩ N(v )|.Besides, we have also used the Jaccard coefficent, presented in [2]:
γ(u, v ) = |N(u) ∩ N(v )|

|N(u) ∪ N(v )| .
2.2.4 Score of user-hashtag pairIf the similarity between two hashtags is defined as ω, the score between a user u and ahashtag h is then:

S(u, h) = ∑
i∈N(u)ω(h, i).
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2.2.5 Weight of predicted linksThe next step consists in computing a weight associated with a specific edge. We have takentwo approaches:1. Uniform weight of 12. Linear function of the score:
weight = max(1, ba1 ∗ score + a0c),

where a0 and a1 are parameters.The rationale behind the second approach is that, as we are using a multi-edge graph, a(user, hashtag, score) tuple with a very high score is likely to correspond to an edge usedmultiple times. The need for such a method comes from the fact that the score can differ byseveral orders of magnitudes, and because, as presented below, the predicted edges oftenhave a weight larger than 1.
2.3 ClusteringClustering hashtags could bring improvement to our predictions in two ways. First, if weconsider a hashtag h and a cluster C in which it appears, a link between h and a user ismore likely to appear if the user has used several hashtags from C before. Secondly, insteadof evaluating scores for every edge from h, we would preferably consider edges with userswho have sent hashtags that are in C .

2.3.1 Prior workThe problem of graph clustering, intuitive at first sight, is actually not well defined. Themain elements of the problem themselves, i.e. the concepts of community and partition, arenot rigorously defined, and require some degree of arbitrariness and/or common sense. Inthe literature, we can see two main trends for defining communities: local and global.
Local Communities are parts of the graph with a few ties with the rest of the system.To some extent, they can be considered as separate entities with their own autonomy. So, itmakes sense to evaluate them independently of the graph as a whole. Local definitions focuson the subgraph under study, including possibly its immediate neighborhood, but neglectingthe rest of the graph.
Global definition Communities can also be defined with respect to the graph as a whole.This is reasonable in those cases in which clusters are essential parts of the graph, whichcan not be taken apart without seriously affecting the functioning of the system, which is thecase in social networks. The literature offers many global criteria to identify communities.The most popular model, the modularity, has been introduced by Girvan and Newman [4]. Itis based on the idea that a random network is not expected to have community structure, sothe possible existence of community structure of a given network is revealed by comparisonbetween the number of intra-community edges in this given network and that number in a
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random network. Though modularity suffers from the resolution limit problem, it has beenwidely accepted as a de facto standard. The modularity is defined by:
Q = 12m ∑

i,j
(Aij − Pij )δ(Ci, Cj ),

where A is the adjacency matrix, m the number of edges, Pij the expected number of edgesbetween the vertices i and j in the null model, and where δ is the Kronecker symbol (whichequals 1 if Ci = Cj , i.e. i and j are in the same community, and 0 else). Then, the modularitycan be understood as a function that evaluates the goodness of partitions of a graph intoclusters.However, testing an algorithm essentially means applying it to a specific problem whosesolution is known and comparing such solution with that delivered by the algorithm. In thecase of graph clustering, a problem with a well-defined solution is a graph with a clearcommunity structure. This concept is not trivial, however. Many clustering algorithms arebased on similar intuitive notions of what a community is, but different implementations. Forthat reason, it is hard to check the relevance of our clustering algorithm on our dataset inparticular.Then, when dealing with real networks, it is useful to solve their community structurewith different clustering techniques, to cross-check the results and make sure that theyare consistent with each other, as in some cases the answer may strongly depend on thespecific algorithm adopted. However, one has to keep in mind that there is no guarantee that“reasonable” communities, defined on the basis of non-structural information, must coincidewith those detected by methods based only on the graph structure.
2.3.2 Method & AlgorithmAs we couldn’t reasonably expect to implement a significant number of different clusteringalgorithms to verify the relevance of our clusterisation, we intend to implement the FastModularity Optimization that we saw in class. Indeed, after reviewing the performance ofseveral clustering algorithms on a range of datasets, the Fast Modularity Algorithm appearsto be the one that performs best in general; moreover, the bigger the graph is, the widerthe gap is between this algorithm and the others. On top of that, due to the complexity ofother algorithms (for example, the Girvan-Newman algorithm is O(n3)) this optimization iscurrently one of the few algorithms that can be used to estimate the modularity maximumon such large graphs: its complexity is O(n2 logn). All in all, the Fast Modularity Algorithmseemed to be the more relevant to use here.

Fast Modularity AlgorithmBefore running the algorithm, we have to calculate the Modularity Matrix of the graphwe want to cluster. As we would use the projected graph of hashtags (which is a multigraph),we had to take into account the weight/number of edges in the adjacency matrix. Thus, thecoeficients of the Modularity Matrix B were given by:
Bij = Aij −

sisj2W ,
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Where sk represents the strength of the vertex k (i.e. the sum of the weights of edgesadjacent to the vertex) and W is the sum of all weights.The Fast Modularity Algorithm is a recursive algorithm: it starts on the whole graph,tries to divide it into two clusters and, if this division is relevant—i.e. if the total modularityis increased—, starts the process on each one of these two clusters. The only argumentneeded is then the indices of B that belong to the current cluster we are working on (i.e. weare trying to divide into two smaller clusters).Here is the algorithm, where a is an array of indices and B[a, a] represents the submatrixof B made with the lines and the columns whose indices are in a.1 f as tModu lar i ty (a )2 B′ = B[a, a]3 c a l c u l a t e the e igenvec to r u o f B′ assoc ia ted to the greates te igenvalue with the power method4 f o r i = 1 to length (a )5 i f u(i) > 06 add the value ai i n the array a+7 else8 add the value ai i n the array a−9 X = ∑
i,j∈a Bij10 Y = ∑
i,j∈a+ Bij + ∑

i,j∈a− Bij11 i f Y > X12 c l u s t e r s = [ fas tModu lar i ty (B , a+ ) , f as tModu lar i ty (B , a− ) ]13 else14 c l u s t e r s = a

RunThe Fast Modularity Algorithm was run on two adjacency matrices of the projected graph(sum and Jaccard), and we present the results in the following section.
2.3.3 ResultsAs we have seen above, it is difficult to measure the accuracy of a clustering algorithm. Wetried to verify the performance of our algorithm with empirical measures: check manuallythe clusters on small datasets, and plot the distribution of the size of the clusters.To do that, we used the smaller dataset (100 hashtags and 10,000 edges) we had andstudied the results of the clustering algorithm over the two hashtag projections (sum andJaccard).
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Sum JaccardNumber of clusters 23 16Maximum size of a cluster 20 13Minimum size of a cluster 1 1Average size of a cluster 4.30 6.19Median size 2 6
Table 1: Cluster statistics

Figure 3: Cluster size distribution on sum projected hashtags.
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Figure 4: Cluster size distribution on Jaccard projected hashtags.
In both cases, we have encouraging results about the hashtags gathered in the differentclusters. For instance, we have the cluster {free, firefox, web, blog, photoshop, webdesign,photog, mac, media, linux, film, science} with the Jaccard Adjacency Matrix 1. However,and it seems (empirically) that the Jaccard Adjacency Matrix outperforms a bit the SumAdjacency Matrix: its clusters seem to be more relevant.We can also notice that in both cases, the distribution of the sizes of the clusters isbroad (cf. Figures 3 and 4), and we can see that there are more clusters with a small sizethan with a bigger size. Also, the bigger cluster appears only once in both cases. This isconsistent with what is observed in social networks. Social networks are usually made ofone big cluster and several peripheral elements with a smaller size. Taking into accountthat the hashtags used by the users of a social network are likely to be representative ofthe social network in itself, our clustering distribution makes sense.All in all, it seems that our clustering algorithm produced fairly good results on thehashtag network. This accuracy cannot be measured in a systematic manner but empiricalmeasurements are satisfying.

2.4 Combining Link Prediction and ClusteringIn order to combine Link Prediction and Clustering, we want to favour hashtags that belongto the same cluster. We then create the Clustering Matrix C where Cij = 1 if i and j belongto the same cluster and Cij = 0 else. We then have to add this Clustering Matrix to the
1For further details about the clustering, please refer to our Excel document in the ZIP file.

10



3 RESULTS AND ANALYSIS

projected Adjacency Matrix when computing the LP algorithm. We can adjust the weight ofthis matrix with a β coefficient such that:
A′ = A+ βC.

We evaluate a credible value for β by assessing the average edge weight in A and themedian value: β is chosen in order to have the same order of magnitude as the numbers in
A. In order to assess the value of β that gives the best value, we also run a benchmark over
β given the previous statistics.

3 Results and Analysis

3.1 Link prediction
3.1.1 Training parametersIn the section 2.2.5 on page 6, we explained that instead of assigning a uniform weight of 1to all the predicted edges, we considered a method using a linear function of the score asthe weight of the predicted edge:

weight = max(1, ba1 ∗ score + a0c)
In order to determine the parameters a0 and a1, we have run the algorithm on a trainingset and determined the optimum parameters with a benchmark. The optimum parametersthat we have found for the smallest dataset in the case of the Jaccard sum are: a1 = 0.06and a0 = 0.2.The following plot (Figure 5 on page 12) shows the scores against the future (real) weightamong the predicted edges. Although it may not be obvious in the plot, using a linearfunction of the score does improve the precision, as shown in the precision results. Besides,this plot also illustrates the high propotion of false positives, i.e. edges predicted by ouralgorithm which aren’t actually appearing in the future.

3.1.2 Precision resultsWe present in this section the precision of our methods on the different datasets
Uniform weight of 1 Linear function of scoreSum 27.4% 30.2%Jaccard 29.1% 36%

Table 2: Precision results on the dataset with: 1,182 users; 100 hashtags; 10,047 edges; 361missing edges.
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Figure 5: Scores by the future weight among the predicted edges the dataset with 100hashtags and 361 missing edges. Out of the 196 distinct predicted edges, only 74 areactually future edges
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Uniform weight of 1 Linear function of scoreSum 23.3% 34.7%Jaccard 24.5% 40.7%
Table 3: Precision results on the dataset with: 2,571 users; 100 hashtags; 30,081 edges;1,154 missing edges.

Uniform weight of 1 Linear function of scoreSum 17.3% 24.6%
Table 4: Precision results on the dataset with 1,967 users; 1,000 hashtags; 30,001 edges;1,240 missing edges.

Our results are encouraging. Our approach in computing the predicted edge weights isvalidated by the fact that it does improve the precision, in some cases by 15%.
3.2 Link Prediction combined with ClusteringWe computed, for various values of β, the accuracy of the link prediction helped by clusteringinformation.

Figure 6: Precision of the Link Prediction algorithm combined with clustering. The x-axis isthe coefficient.
13
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From the past observations, we draw the conclusion that the clustering is very inefficientin increasing link prediction accuracy. We can give several interpretations to this unfortunateconclusion.First all of, the way we add the clustering matrix to the projected matrix has the effect ofchanging hashtag neighborhood. But, the following histogram (Figure 7) shows that hashtagneighborhood before and after clustering are not significantly changed. Given the fact thatthe edge cost calculation between a user and a hashtag relies on the hashtag neighborhood,we can expect only a small difference in the final edge cost ranking.

Figure 7: Ratio between the size of the neighbourhood ∪ cluster and the size of theneighborhood (step: 1000).
Because clustering brings minor changes to hashtag neighborhood in the projected matrix,we can conclude that clustering information is redundant with the information brought by ourprojection matrix. Besides, we even loose information, because all our clustering coefficient,

i.e. the bonus to the edge cost between two hashtags, brought by the fact that they are inthe same cluster, is constant, and do not change from one cluster to another. A further studywould consist of keeping bonuses depending on the cluster sizes.In our dataset, users send preferably hashtags in the same clusters. Therefore, we canassume that there is a preferential attachment phenomenon, where users tend to send
14
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more hashtags from the cluster they used before. As a consequence, clustering may bemore efficient for a recommendation problem. When we add clustering information to ourprojected matrix, we emphasise on links between a user and hashtags from the user preferredclusters. This reasoning would perfectly fit in a recommendation problem. However, in a linkprediction problem, our current clustering information does not help us to decide betweenusers. Because we think that keeping the symmetry between user and hashtags could bepreferable in a link prediction problem, we consider computing a clustering algorithm onusers, thanks to the network provided by tweet references and subscribtions.Finally, we think that the degree distribution in our data set is not appropriate to benefitfrom all the information brought by hashtag clustering. Because more than 80% of our usersare using less than two different hashtags, our network information is concentrated in edgemultiplicities. We think that hashtag clustering would bring more information to a densernetwork, where most edges have the same weight.
3.3 Link Prediction on ClustersThe final part of our report presents the results of link prediction on clusters. Instead ofconsidering edges between users and hashtags, we have merged all the hashtags from thesame cluster in a single node. Therefore, we now consider edges from users to clusters, andtry to predict which edges will appear next, i.e. to which clusters users will be more likelyto post tweets.Our results are the following:Data set with: 1,182 users; 100 hashtags; 10,000 edges; 361 missing edges:• a = 0, b = 0: 30.2%• a = 0.06, b = 0.2: 36.0%Dataset with: 2,571 users; 100 hashtags; 30,081 edges, 1,154 missing edges• a = 0, b = 0: 25.0%• a = 0.06, b = 0.2: 41.0%Dataset with: 1,976 users; 1,000 hashtags; 30,001 edges, 1,240 missing edges• a = 0, b = 0: 21.2%• a = 0.06, b = 0.2: 37.0%Because accuracy in both case (link prediction on hashtags and clusters) are really closeto each other, we can draw the conclusion that cluster brings only little information on linkprediction. Basically, we managed to improve, given a user, which edges he will be morelikely to use in the future, but hashtag clustering does not bring any information on how toselect among users the ones that will actually send a new tweet (and therefore create anedge we want to predict). The results of link prediction on clusters confirm the fact that, inorder to improve accuracy, we need also more information about users.We have saturated our algorithms with information on hashtags. But because linkprediction does not make any difference between users and hashtags, we also need moreinformation about users to improve link prediction accuracy.
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4 Conclusion
The goal of our project was to predict the hashtags likely to be used in the Twitter networkand test if the information from our hashtag clustering would increase the link predictionaccuracy.We firstly reduced the large graph of Twitter to a smaller set of interesting hashtags,and corresponding users. Then, we have separately run the link prediction over this set, andthe fast modularity algorithm, to come up with a hashtag clustering.Our prior results are encouraging. We managed to reach a satisfying level of accuracyfor our different link predictions, and the clusters we get from the modularity algorithm tendto divide hashtags in pertinent topics.Then, we tried to include the information brought by the hashtag clustering to the linkprediction algorithm. In this case, our results were a little disappointing: the accuracy doesnot significantly increase when the hashtag clusters are taken into account.The network structure and the fact that the clustering information might be redundantare reasons that could explain our results.As an improvement to our current work on link prediction in the Twitter network, wewould therefore consider the following additional studies:

• Try hashtag recommendation on a larger dataset (with more hashtags).• Take into account the information on the user network: we could for example addclustering on users, whether thanks to the follower/followee graph or thanks to aprojected graph of @-mentions in the tweets.• Try different measures for the projected graph since we have seen that Jaccard measureperformed significantly better than the naive one.• Try not to add a constant bonus to edges in the projected graph. For example, thebonus could depend on clusters (cluster size being the most straighforward parameter).• Compute clusters with overlapping hashtags: we saw that our cluster algorithmproduced good results in itself but was not very efficient for the combination with thslink prediction. Maybe a different clustering method would change the effect on linkprediction.
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