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1 Introduction

The problem of decentralized search has been stud-
ied for many years, beginning with Milgram’s original
social experiment [7]. Participants in the study were
asked to forward a letter to some target in Boston,
Massachusetts (choosing the person they considered
most likely to know the target), and the number of
steps that each letter took was observed. Milgram
found that, for letters that eventually reached the tar-
get, it took only about 6 steps on average to get there,
despite the fact that each person in the network had
only a localized view (i.e. their acquaintances). Since
then, there have been a number of studies investigat-
ing what properties of a network make it navigable,
i.e.searchable in a small number of steps with only
localized information. We call such a process decen-
tralized search because it has no central view of the
network.

One observation about Milgram’s study is that the
participants were not always able to optimize their
forwarding according to the criterion given to them,
which was to forward the letter to the acquaintance
who was most likely to know the target. That is, the
decentralized search was not “perfect” according to
the metric with which it was performed. This fact has
not been reflected in the theoretical studies, however,
which for the most part assume the search process
they specify is executed perfectly. We are interested
in evaluating how an imperfect decentralized search
affects network navigability, as this would provide a
more realistic simulation of how people in social net-
works would perform such a search.

2 Related Work

Watts et al.[8] explain network navigability via de-
centralized search in large graphs by representing
people’s identities as a set of hierarchies (H total).
Each hierarchy is a tree (e.g.breakdown of univer-
sity into schools, departments, groups, etc.), and each
person is assigned a coordinate in the hierarchy which
is a leaf of the tree. This corresponds to the group
that the individual is in with respect to that hierar-
chy. In their model, within any single hierarchy, the

probability of a link existing between any two people
is a power law distribution dependent on the height
of the least common ancestor (LCA) of the two peo-
ple in the hierarchy (which is equivalent to choosing
a height 2 with probability p(x) = ce™** and then
choosing a random node at that height). This is to
capture the idea that people who are similar along a
certain dimension, e.g.occupation or geographic lo-
cation, are more likely to be connected. Watts et
al. consider only hierarchies which are identical in
size; then the distance between any two people is de-
fined to be the minimum height of the LCA across
all hierarchies. To perform decentralized search in
the network, the adjacent node which minimizes the
distance to the destination is chosen. They present
findings which indicate that there exists a broad re-
gion in the space of (o, H) for which the network is
navigable, hinting at an explanation of why it may
be in real social networks.

Clauset and Moore [3] consider a network which is
based on a finite d-dimensional lattice in which each
node is adjacent to its neighbors in the lattice and
also has a single long-range link. They simulate a
rewiring process where a node performs a decentral-
ized search to a destination, but if the search takes
more than a threshold number of steps, they rewire
the single long-range link to where the search reached.
Interestingly, this process leads to a distribution of
edges which follows a power law, i.e.l® where [ is
the Manhattan distance between nodes in the lattice,
which is similar to the model proposed by Kleinberg
[5] that was shown to be navigable.

Chandra and Arora [2] apply the abstract notion of
decentralized search to the field of networking in an
attempt to produce scale-free peer-to-peer networks.
A peer-to-peer network consists of a large number
of computers, each with different sets of content to
distribute. The authors showed that it was possi-
ble to use decentralized search (instead of having a
centralized tracking server) to effectively search the
network. The success of this search required a varia-
tion of the rewiring process discussed in Clauset and
Moore [3] - so when a computer performed an unsuc-
cessful search, it would rewire one of its connections
to the computer at which the search terminated.



We did not find any studies that empirically or
theoretically discussed the subject of imperfect de-
centralized search.

3 Hierarchical Networks

The primary model of interest is the one presented in
Watts et al., which is constructed by creating a set
of H hierarchies and using the heuristic measure of
minimum distance between the two nodes within any
hierarchy, where distance in a hierarchy is defined as
the height of the least common ancestor (LCA) of
the nodes. A hierarchy is defined by a tree of height
I and branching factor b where each leaf corresponds
to a group of nodes all of which have the same co-
ordinate within that hierarchy. The edges are ran-
domly created according to a power law distribution
based on the heuristic measure. Watts et al. showed
that this network is searchable using perfect decen-
tralized search for various parameters. Two limita-
tions of their model we will address are the network
size and the degree of each node. Our results are
generalizable to very large networks closer in scale to
real social networks, and we use a more flexible way
of choosing the degree of each node. We believe that
these modifications to the model capture a fairly re-
alistic representation of real-world hierarchies to test
decentralized search on.

3.1 Generating Random Hierarchical
Networks

There are a number of parameters that control a ran-
domly generated a hierarchical network:

e H, the number of hierarchies,

e [, the number of levels in each hierarchy,

b, the branching factor of each hierarchy,

g, the average number of nodes in each hierarchy
coordinate group,

«, the rate parameter of the exponential distri-
bution over LCA height,

e d(x), the degree distribution of the nodes.

The resulting network G(V, E) has |V| = gb' nodes
and the expected number of edges is |E| = |V] -
E[d(z)]. For each node, we choose the coordinates
for each hierarchy randomly from the interval [0, b')
corresponding to the leaf in the hierarchy tree that
the node is in the group of. Hence g is not a fixed
group size as in Watts et al. but the expected number
of nodes in each group, and the actual distribution

will be binomial. We choose this method of assign-
ing coordinates because it is more realistic without
complicating the structure of the network.

For generating edges, we consider each node s in-
dividually. We choose a degree d; randomly from the
distribution d(x) and proceed to generate ds edges
s — t by the following procedure:

1. choose a random hierarchy h;

2. choose a distance x from the distribution p(z)

3. choose t uniformly at random among all nodes
whose LCA in hierarchy h with s has height x
(if = 0, ensure s # t).

Doing this explicitly, however, takes O(|E|-|V|) time
because for each edge we need to sample across po-
tentially all |V| nodes. This is impractical because
we would like to experiment with |V| > 107 at least
to address the issue of scale that was not sufficiently
investigated in Watts et al. As such, we describe an
improved algorithm that allows us to generate ran-
dom hierarchical networks much more efficiently.

The idea is to exploit the hierarchy structure to
do the second step of the algorithm more efficiently
than in O(|V]) time. When choosing hierarchy co-
ordinates for each of the nodes in the graph, we
also maintain some extra information about how the
nodes are distributed in each hierarchy. Let HL(h,1)
be the list of nodes with coordinate ¢ in hierarchy h
and HC(h,i,7) be the number of nodes under sub-
tree j of level i in hierarchy h (levels are numbered
from bottom to top and subtrees are numbered from
left to right). For example, HC(h,[,0) = |V| is the
count of all nodes in the graph, while HC(h,l—1,0)
through HC'(h,l—1,b—1) count the nodes according
to the first branch. Lastly, HC'(h,0,%) is the number
of nodes with coordinate ¢ in hierarchy h.

Using these precomputed values, we can improve
the time it takes to select a random node at distance
x significantly. If x = 0, then just choose ¢t randomly
from HL(h,sp), where s, is the coordinate of s in hi-
erarchy h. Otherwise, let u be the z-th ancestor of s
in hierarchy h, i.e. the hierarchy node at level z that is
an ancestor of s. Similarly, let v be the (z —1)-th an-
cestor of s in hierarchy h. Then ¢ should be randomly
chosen from nodes in the subtree of w but not in the
subtree of v, since these have distance less than z.
From here, we choose a random index between 0 (in-
clusive) and HC (h, z,u)— HC(h,z—1,v) (exclusive).
Given this index and the HC values, we can decide
which child of u to traverse and which index within
that child’s subtree t is, effectively recursing one level
down the hierarchy. Thus choosing ¢ will only take
O(1b) time since at each level we decide among the b



children to traverse, and once we reach the bottom
level of the hierarchy we just choose a node randomly
from the corresponding H L. Since |V| = gb', this is a
substantial improvement in efficiency that allows us
to generate much larger networks. In particular, it
brings the total run-time of hierarchical graph gener-
ation to O(|E|lb).

3.2 Implementation

We originally used NetworkX as our graph library
for its simplicity, which was convenient for prototyp-
ing. We quickly found out, however, that it was not
possible to scale NetworkX easily to 107 nodes due
to memory limitations. Because scale is a significant
aspect of our project, we ported the Python code to
C++ using our own custom hierarchical network rep-
resentation. Since we do not actually need a lot of
general network functionality provided by NetworkX
and SNAP, it was easiest and most efficient to do it
this way. As a result, we are able to handle networks
of over 100x the size as we were able to in NetworkX
with similar improvements in speed as well. It takes
about 30 minutes to generate a graph with 25 mil-
lion nodes and 2.5 billion edges on an 8-core 2.7GHz
processor with 32GB of RAM.

4 Modeling Imperfect Decen-
tralized Search

Let G(V, E) be a network and metric h: V xV — R
be heuristic measure of distance between two nodes in
the network (e.g.lowest LCA in hierarchy, Manhat-
tan distance, or probability of being adjacent). Let
Ay : V xV =V be a decentralized search algorithm
based on heuristic A which outputs the next step in
a decentralized search (arguments are current node
and target node). In previous models of decentral-
ized search, e.g. Watts et al., they have always used

Ah(S) =

argmin h(v,t)
vi(s,w)EE

where t is the target node, i.e. choose the neighbor of s
which minimizes the heuristic distance to the target.

We would like to model an imperfect decentralized
search mechanism, where a neighbor v is chosen with
probability proportional to p(h(v,t)) for some func-
tion p. That is, for all v such that (s,v) € E,

Pr[An(s) = v] x p(h(v,t)).

In general, we would like p to be a decreasing func-
tion, indicating that the probability of traversing
that edge decreases as the heuristic distance between
v and t increases. It also controls the degree to

which a difference in the heuristic distance affects
the probability of choosing that edge. We observe
that we can approximate the perfect search by tak-
ing p(v) = ce PP (for normalization constant c)
and letting 8 — oo (softmax function), and we can
simulate a uniform distribution over all neighbors by
choosing 5 = 0. This function seems general enough
that we can just vary § and determine whether the
results found in previous work still hold.

5 Navigability

Here we discuss the issue of what it means for a net-
work to be navigable. One possible definition is pre-
sented in Watts et al. [8], which is as follows. Let p
be a probability that any step in the decentralized
search will fail, e.g.in the case of Milgram’s experi-
ment, the letter is not forwarded. Then the average
path length L should be such that the probability of
a search reaching the target is at least some value r,
ie. (1 —p)l > r. They use a fixed p, r, and thus
threshold of L regardless of the network size, which
seems unrealistic. This is also why their regions of
navigability (with respect to a and H) shrink as the
network size increases, a somewhat counterintuitive
result.

In this work we avoid the issue of absolute naviga-
bility because it is more or less arbitrary in nature
(based on choices of p and r). Instead, we run de-
centralized search with some probability of failure at
each step and simply observe the fraction of these
which are successful, i.e.reach the target. The suc-
cess rate of the perfect search is the benchmark that
we compare imperfect search against. We call the
ratio of these success rates the relative navigability
of a decentralized search algorithm on a particular
network. Previous work suggests that perfect decen-
tralized search produces absolute navigability on a
wide range of hierarchical networks so high relative
navigability should be indicative of a good search al-
gorithm.

6 Experiments and Results

We performed a number of experiments on both per-
fect and imperfect decentralized search using the hi-
erarchical graph model. The primary aim is to un-
derstand how the parameters of hierarchical graph
generation and imperfect search affect relative navi-
gability, but we consider a couple of other interesting
aspects of the networks as well.
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Figure 1: Relative navigability for imperfect decen-
tralized search.

6.1 Varying [ in Imperfect Search

One of the initial questions we want to explore is how
the choice of B - the degree to which decentralized
search is imperfect - affects the overall performance
of search. We use a network which is similar pa-
rameters to those used in Watts et al. with H = 2
hierarchies, a branching factor b = 2, [ = 13 lev-
els in hierarchies, groups of expected size g = 100,
rate parameter @ = 1, and constant node degree of
d(z) = 99 friends. Note that our graph contains
213 . 100 = 819,200 nodes, twice that of the largest
network in Watts et al.’s experiments.

For each value of 3, for 100,000 random pairs of
points, we performed decentralized search with p =
0.25 chance of terminating at each step. We recorded
the relative navigability observed across these exper-
iments in Figure 1. As we expect, the success rate
has an upward trend as we increase [, approaching
that of perfect decentralized search. We note, how-
ever, that even for modest values of 3, e.g. 8 = 1.5 or
B = 2, the relative navigability is over 50%. To put
this in context, 8 = 1.5 means the search process is
only e!® ~ 4.5 times more likely to choose a node at
distance d over a node at distance d + 1, so there is
considerable room for error (with respect to perfect
search). When § = 5, the ratio of these probabili-
ties becomes e® ~ 150 which means that the imper-
fect search will very closely approximate the perfect
search, so we see the relative navigability approach
one.

6.2 Network Size

In this experiment, we generated networks with the
same parameters as Section 6.1 except letting the
number of levels in the hierarchy range from [ = 11
(204,800 nodes) to I = 17 (13,107,200 nodes) in or-
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Figure 2: Imperfect Search for varying network sizes
(p fixed).

der to observe how relative navigability is affected by
network size. We let 3 take the values 0.5,1,2,3,5
which provides a representative set of data points. In
general, larger networks lead to lower absolute suc-
cess rates and longer average path lengths, but in
fact relative navigability appears to be unaffected (see
Figure 2(a)). We consider this a strength of imper-
fect decentralized search, and it suggests that such
an algorithm can still be effective for large real-world
networks.

One of our criticisms with the work of Watts et
al. was that they fixed the path length irrespective of
network size, so we would like to address the growth
rate of the path length as the network gets larger.
The average path lengths of the successful searches
for each network size are shown in Figure 2(b), for
each value of 8 as well as perfect search. We omit
B = 0.5 here because the path lengths are noisy due
to very low absolute success rates (on the order of
10~*), and we see that 3 = 1 already displays high
variance. Overall these grow logarithmically, empha-
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Figure 3: Imperfect Search for varying network sizes
(p adjusted).

sizing the small diameter aspect of real-world net-
works. We note, however, that there is a hidden vari-
able p, the probability of failure at each step of the
search. In practice, p determines an upper bound on
the average path length because long paths have a
very low probability of succeeding.

In order to normalize for this effect, we ran an-
other experiment where we adjusted p so that the
success rate of the perfect search was constant and
observed the resulting average path lengths. The re-
sults are shown in Figure 3(b) with the z-axis scaled
so that the data points lie on a line. Since the value
of p decreases as the network size grows to compen-
sate for it being harder to find the target node, the
average path length naturally increases. In fact, we
observed that it grows as O((log N)®) with a linear
fit of 72 = 0.9966 in the graph shown. While this is
much faster than the growth with a fixed value of p,
it is still polylogarithmic and thus confirms our belief
that path lengths grow slowly with network size.
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Figure 4: Relative navigability for varying branching
factors.

6.3 Hierarchy Branching Factor

While the results above show that the size N of the
network does not seem to affect the performance of
imperfect search, this says nothing about how im-
perfect search is affected by changes in the network
structure. One parameter that adjusts the structure
of the network is the branching factor b - and all ex-
periments performed thus far have fixed b = 2. By
using the same parameters used in Section 6.1 ex-
cept growing b exponentially while decreasing [ ex-
ponentially (to hold the network size N = 409600
constant), we can see how this change in structure
affects the performance of imperfect search.

As we can see in Figure 4, increases in the branch-
ing factor b has a noticeably detrimental effect on the
relative navigability for imperfect search. While this
seems fairly abstract, these results are actually a use-
ful confirmation of network search intuition. Essen-
tially, the branching factor represents how granular
the hierarchies are in the network being searched. To
see this, consider the following trivial example. If we
have N = 16 and a branching factor of 4 (group size of
g = 1), then a given node has 3 neighbors at distance
1, and 12 neighbors at distance 2. But if we lower b
to 2 (while keeping N = 16,9 = 1), then suddenly a
node has 1 neighbor at distance 1, 2 neighbors at dis-
tance 2, 4 neighbors at distance 3, and 8 neighbors at
distance 4. This demonstrates how a lower branching
factor represents a more granular search heuristic.

6.4 Degree Distribution

The work of Watts et al. made the assumption that
the degree distribution of nodes in the hierarchical
network was constant. Since this is far from the
case in real social networks, we believe it is valu-
able to consider a more realistic degree distribution
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Figure 5: Relative navigability for power law degree
distribution.

to see how both perfect and imperfect decentralized
search perform. We use a power law degree distribu-
tion d(x) o< 77 with v = 2.5 to emulate real-world
networks [4]. There have been a number of previ-
ous studies which use power law degree distributions
(e.g.[2], [6]) in the context of decentralized search
with different networks and heuristics, so we believe
it is valuable for us to consider. We bound the degrees
such that 40 < d(z) < 1500 so that E[d(x)] ~ 99, al-
lowing us to compare the results to those of Section
6.1. Other than the degree distribution, we use the
same parameters for generating the hierarchical net-
works.

One might expect networks with a power law de-
gree distribution to be more navigable due to the exis-
tence of “hubs,” i.e. highly-linked nodes, which gener-
ally reduce the diameter of the network. As shown in
Figure 5, however, this is not the case; in fact, using
a power law degree distribution reduces the success
rate of decentralized search slightly. We hypothesize
that this is due to the existence of a large number
of lower-degree nodes that searches are run to/from.
Nevertheless, as expected, these networks still appear
to have good relative navigability when compared to
the networks in Section 6.1, providing further verifi-
cation that the property of navigability is shared by a
wide range of networks and, in particular, real-world
social networks with power law degree distributions.

7 Conclusion and Future Work

Over the years, there have been numerous empirical
and theoretical studies about the small world phe-
nomenon first documented by Milgram [7]. These
previous attempts assumed that all decentralized
search was performed perfectly, which is not neces-
sarily a reasonable assumption. This paper set out

to model and investigate the properties of imperfect
decentralized search. We modeled imperfect search
by choosing a neighbor v as the next step with prob-
ability p(v) = ce”P*(**) with normalization constant
c and tunable parameter (.

Our initial batch of experiments confirmed that for
a well-studied hierarchical network structure [8], im-
perfect search performs fairly well for relatively low
values of 8. For instance, the value of 8 = 1.5 (which
has a considerable degree of imperfection) has a rel-
ative navigability of 50%. Slightly higher values of
B quickly approach perfect decentralized search, as
expected.

Our experiments also studied the effects of network
size on the average path length for successful searches.
For both perfect and imperfect search, holding the
drop rate p fixed demonstrated that average path
length grew logarithmically with respect to network
size, as expected; however, a criticism of this experi-
ment is that with a constant p, the potentially longer
paths are less represented in the statistics. We re-
executed the experiments by modifying p to hold the
overall success rate constant, and determined that av-
erage path length grew polylogarithmically with re-
spect to network size. By the definition proposed in
Kleinberg [5], this indicates that the network exhibits
the “small-world phenomenon,” even when imperfect
decentralized search is used. Regardless of the value
of p, the performance of imperfect search relative to
perfect search remained fairly constant as the net-
work grew, indicating that the size of the network
appeared to have little effect on the relative perfor-
mance of imperfect search.

Given that network size did not affect relative nav-
igability, we then wanted to explore the effect of
network structure on the performance of imperfect
search. By modifying the branching factor b and
holding the network size N constant, we determined
that lower values of b dramatically improve perfor-
mance of imperfect search. Within the hierarchicial
network model, a lower branching factor represents
a more granular heuristic (which is used during de-
centralized search). Thus, in this model, when at-
tempting to improve imperfect decentralized search,
improving the heuristic is considerably more worth-
while than shrinking the network size.

Ultimately, these results help to verify some of the
real-world phenomena observed by Milgram [7] and
others: even when the decentralized search is error-
prone (as it would be with human participants), we
still achieve the results we’d expect. This paper solely
focused on the hierarchical model presented in Watts
[8]. Interesting future work could include investigat-
ing the properties of imperfect search on different
graph structures, such as a small-world graph, a lat-



tice structure [3], or a real social network [2].
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