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1 Motivations
Inferring network structure from observed data is a useful procedure to study the relation between structure and
function networks. For networks with observable dynamics but hidden structure, inference gives the best guess of the
underlying connectivity that explains the observed data. For networks with known structure and observable dynamics,
inference helps to separate parts of the network that directly contribute to the dynamics and function and those that
don’t. Both aspects of network inference may find their uses in neuroscience in the future: inferring connectivities of
hundreds of interconnected neurons recorded concurrently by microscopic imaging, or deconstructing the functional
connections in a heuristically trained artificial neural network for example.

In this study, we give theoretical answers to two important questions of network structure inference. First, using
binary neural networks as an example of single-step, discrete-time network, we study and characterize the constraint
on individual node’s dynamics for the network inference problem to be solvable using convex optimization. Second,
as L1 regularization is often used to solve large-scale sparse problems the case for most real networks, we derive and
verify a closely form way of calculating the corresponding regularization parameter given either the prior knowledge
or the estimated value for sparsity.

This study was first motivated by On the Convexity of Latent Social Network Inference by S.A. Myers and J.
Leskovec 2010 in which they used convex optimization to infer structures of information diffusion networks. The
binary neural network was modified from the network analyzed in Real-Time Computation at the Edge of Chaos in
Recurrent Neural Networks by N. Bertschinger and T. Natschläger in 2004. Instead of individual nodes having binary
values of -1 and 1, we use 0 and 1. The theoretical approach to find the optimal regularization parameter was inspired
by Bayesian Regularization and Pruning Using a Laplace Prior by P.M. Williams in 1995, in which a heuristic choice
of regularization parameter was given to cases with no prior sparsity knowledge.

2 Binary Neural Networks
In this work, we consider a discrete-time binary neural network consisting of probabilistic cells. Each network consist
of N cells, whose states are denoted by xi, 0 ≤ i < N that takes the value of either 0 or 1. Connectivities of such
network is parameterized by a connection weight matrix W , where each entry Wij ∈ R of the matrix represents the
connection weights from cell i to j. At each time step t, a cell first compute it’s net input si,t,

si(t) =
∑
j

Wijxj(t) + ui(t) (1)

where ui(t) is an optional external input to cell i at time t. To update the cell’s state at the next time step xi(t + 1),
the value of si(t) is passed through an activation function h(si(t)) common for all cells in the network. The activation
function’s output then corresponds to the probability that at the next time step, xi(t+ 1) = 1,

P (xi(t+ 1) = 1) = h(si(t))
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Note that 1 − P (·) conversely the probability of xi(t + 1) = 0. While a binary neural network constructed in this
fashion is probabilistic in nature, limiting forms of h(·) readily give rises to deterministic networks. For example,
one may increase the slope of a soft-thresholding sigmoid activation function to approach a step function, making the
network’s elements equivalent to deterministic thresholding units.

The subject of this paper is to study how the structure for an instant of such neural networks can be inferred from
observations of their state evolutions (why should anyone care?). While the Markovian nature of the binary neural
network may suggest a transition matrix approach to the problem, the matrix’s 22N elements make it unpractical.
Instead, we formulate the problem of structure inference as a maximum likelihood estimation (MLE) problem.

3 Convexity of Structure Inference
Mathematically, we take a network whose structure is defined by W , and denote one trajectory of its evolution as a
function ~x, where ~x(t) is a binary vector describing the states for all nodes in the network at time t, |~x(t)| = N .
Similarly, we denote the input sequence as ~u with |~u(t)| = N as well. Note that values of ~u(t) are not necessarily
restricted to be binary by definition. Since more than one trajectory may be available, the structure inference problems
takes as input a set of trajectories and inputs of the network, X = {(~x, ~u)}, and outputs the best estimate, Ŵ , of W .

To solve the problem, we formulate it as a maximum likelihood estimation problem,

Ŵ = arg max
W

L(W ;X) = arg max
W

∏
~x∈X

∏
t

∏
i

P (xi(t+ 1)|~x(t),W ) (2)

where P (xi(t + 1)|~x(t),W ) is the probability of observing xi(t + 1) given the state of the network in the previous
time step,

P (xi(t+ 1)|~x(t),W ) = xi(t+ 1)h(si(t)) + (1− xi(t+ 1))(1− h(si(t))) (3)

Furthermore, since the rows of W are do not interact in computing the transition probability, the overall likelihood is
maximized if the likelihood for each row is maximized,

Ŵi∗ = arg max
Wi∗

Li(Wi∗;X) = arg max
Wi∗

∏
~x∈X

∏
t

P (xi,t+1|~xt,Wi∗)

Or, equivalently, to avoid computing products of small probabilities, we maximize the likelihood by minimizing the
negative log likelihood for each row, Li,

Ŵi∗ = arg min
Wi∗

[− logLi(Wi∗;X)] = arg min
Wi∗

−
∑
~x∈X

∑
t

logP (xi,t+1|~xt,Wi∗) (4)

3.1 Convexity Constraint on the Activation Function
The maximum likelihood estimation of Ŵi∗ is in general difficult to solve. However, if the log likelihood Li over the
W space is convex everywhere, the inference problem can be solved efficiently using convex optimization techniques.
We therefore proceed to derive how the convexity property of the likelihood function constrains the construction of
binary neural networks.

Beginning with the derivation, we first introduce a few shorthands: we use p as shorthand forP (xi(t+1)|~x(t),Wi∗),
s as shorthand for si(t), and h as shorthand for h(si(t)). Furthermore, we abbreviate the first and second derivatives
of h with respect to si(t) as h′ and h′′. We take the second derivative of the log likelihood with respective two Wi∗,

−∂
2 logLi(Wi∗;X)

∂Wij1∂Wij2

=
∑
~x∈X

∑
t

1

p2

(
∂p

∂Wij1

∂p

∂Wij2

− p∂2p

∂Wij1Wij2

)
Convexity requires the second derivative to be non-negative for any choice of indices j1,2. Furthermore, since convex-
ity shouldn’t depend on the specific trajectory ~x or time t, convexity of the log likelihood translates to convexity of
what is inside the summation operator. As 1/p2 ≥ 0, we enforce non-negativity inside the parentheses,

∂p

∂Wij1

∂p

∂Wij2

≥ p∂2p

∂Wij1Wij2



Expanding the derivatives, we obtain,

∂p

∂Wij
= (2xi(t+ 1)− 1)h′

∂s

∂Wij

∂2p

∂Wij1∂Wij2

= (2xi(t+ 1)− 1)h′′
∂2s

∂Wij1∂Wij2

∂p

∂Wij1

∂p

∂Wij2

= (2xi(t+ 1)− 1)2h′2xj1(t)xj2(t)

∂2p

∂Wij1Wij2

p = (2xi(t+ 1)− 1)2hh′′xj1(t)xj2(t) +

(2xi(t+ 1)− 1)(1− xi(t+ 1))h′′xj1(t)xj2(t)

Note that we only have to check the case in which xj1(t) = xj2(t) = 1 as the other three cases result in xj1(t)xj2(t) =
0. Furthermore, we know that (2xi(t + 1) − 1)2 ≡ 1 and (2xi(t + 1) − 1)(1 − xi(t + 1)) = 0 or −1. Then for
convexity of the maximum likelihood estimation, we have only a simple constraint on the activation function,

1

h− 1
≤ h′′

h′2
≤ 1

h
(5)

or, alternatively,

h′2 −max(h′′h, h′′h− h′′) ≥ 0

A perhaps more intriguing interpretation of the result is with respect to carrying out computations using cellu-
lar automata: for a given set of trajectories X that phenomenologically describe some computation, as long as the
activation function h(si,t) complies with the convexity constraint, 1. there exists a unique globally optimal network
structure that best implements the computation; 2. this optimal network structure can be found efficiently using convex
optimization.

4 Space of Convex Activation Functions
The function space of activation functions that satisfy the convexity constraint are solutions to the ordinary differential
equation

h′′ = f(h)h′2

where f(h) is defined on the interval [0, 1] and obeys,

1

h− 1
≤ f(h) ≤ 1

h

In this section, we first show that some widely used activations functions satisfy the convexity constraint. We then
proceed to prove a set of invariance transformations that generalize individual examples to function spaces.

4.1 Example Activation Functions
We start from the anti-symmetric sigmoidal activation function often used in Boltzmann machines:

h(s) =
1

1 + e−s
(6)

It’s not hard to show that,

h′2 − hh′′ =
e−s

(1 + e−s)
4 ≥ 0

h′2 − hh′′ + h′′ =
e−3s

(1 + e−s)
4 ≥ 0



A similar anti-symmetric function activation function

h(s) =
tanh s+ 1

2
(7)

also satisfies the constraint, because

h′2 − hh′′ =
1

2
(tanh s+ 1)2(1− tanh s) ≥ 0

h′2 − hh′′ + h′′ =
1

2
(1− tanh s)2(tanh s+ 1) ≥ 0

Next, instead of giving one example activation function, we consider a class of symmetric activation function
taking on the form,

h(s) = e−s
2k

, k ≥ 1 (8)

When k = 1, the activation function is Gaussian shaped. As k increases, h(s) morphs into a uniform square between
−1 ≤ s ≤ 1. We check the convexity constraint,

h′2 − hh′′ = 2k(2k − 1)s2k−2e−2s
2k

≥ 0

h′2 − hh′′ + h′′ = 2k(2k − 1)s2k−2e−s
2k

(e−s
2k

− 1) + 4k2s4k−2e−s
2k

≥ 0

To check the second inequality expression, we note that the expression is convex with both its value and its first
derivative equal to 0 at s = 0.

4.2 Invariance to Linear Transformation of Input
Let sT = T (s) where T is a linear transformation of s. Note that T ′′(s) = 0. Let ḣsT be the derivative of h(sT ) with
respect to s,

ḣ(sT )2 = (T ′(s))2h′(sT )2

≥ (T ′(s))2 max [h(sT )h′′(sT ), (h(sT )− 1)h′′(sT )]

= max
[
h(sT )ḧ(sT ), (h(sT )− 1)ḧ(sT )

]
4.3 Invariance to Exponentiation
Let g(s) = h(s)k where k ≥ 1 (works with 0 < k < 1 for gaussian and sigmoid, but I have no proof). We will show
that

h′2 ≥ max(hh′′, hh′′ − h′′)
⇒ g′2 ≥ max(gg′′, gg′′ − g′′)

To start, we first write down the derivatives of g

g′ = khk−1h′

g′′ = k(k − 1)hk−2h′2 + khk−1h′′

For the first entry in the max operator, we work our way backwards by first substituting all gs with hs

g′2 ≥ gg′′

⇔ k2h2k−2h′2 ≥ k(k − 1)h2k−2h′2 + kh2k−1h′′



Dividing both sides by kh2k−2 and regrouping the terms, we have

h′2 ≥ hh′′

which is indeed the case.
For the second entry in the max operator, we similarly carry out the substitution and scaling,

g′2 ≥ gg′′ − g′′

⇔ (hk + k − 1)h′2 ≥ (hk − 1)hh′′

To prove the last inequality, we equivalently have to show that

H(k) = (hk − 1)(h′2 − hh′′) + kh′2 ≥ 0

To show the above, we start from H(0) = 0 and H(1) ≥ 0. Then, we take the second derivative of H with respect to
k,

∂2H(k)

∂k2
= log(k)2hk(h′2 − hh′′) ≥ 0

and find thatH(k) is convex, implying thatH(k) ≥ 0 for k ≥ 1.

5 Structure Inference Accuracy

5.1 Estimation Error and the Cramér-Rao Inequality
The Cramér-Rao inequality bounds the mean-squared error of any MLE of by the reciprocal of the Fisher information.
When subsequent observations of the system are independent, the inequality has the matrix inequality,

Σ ≥ 1

|X|
I−1 (9)

where Σ is the covariance matrix of the estimation error Ŵi∗−Wi∗, |X| is the total number of independent observations
and I is the Fisher information matrix. The inequality is defined in the positive semi-definite sense. A MLE is called
“efficient” if the above expression becomes an equality. We note that the covariance roughly scales inversely with the
amount of independent observations available.

To come up with bounds on our inference problem, we derive the element-wise expression for the Fisher informa-
tion matrix,

Ij1j2 = E

[
1

p2
∂p

∂Wij1

∂p

∂Wij2

]
= E

[
h′2

h− h2
xj1xj2

]
lim
N→∞

Ij1j2 = E

[
h′2

h− h2

]
E [xj1xj2 ]

(10)

Note that we are still using the shorthand h for h(si). We calculate the value of Ij1j2 assuming the system’s size N
is very large. We then show actual data that the results apply well to small Ns. With the large N assumption, si and
the product xj1xj2 become independent; and the expectation becomes a product of two expectations on si and xj1xj2 ,
respectively.

The marginal distributions for si and xj1xj2 depend on the actual dynamics of the network. To keep the problem
tractable this section, we shall make two assumptions to simplify the problem and leave the dynamics’ impact on
inference for later considerations. First, we make the thermodynamic assumption that all possible states of the network
are equally likely to be visited. Second, we assume that entries of Wi∗ are distributed with mean 0 and standard



deviation σW . Note that we don’t have to assume independence among the entries as MLE assumes independent
uniform distribution of the quantity being inferred. The 0 mean assumption isn’t absolutely necessary as any bias in
the weight distribution can be effectively cancelled out by a bias in the input ~u.

The thermodynamic assumption allows us to easily compute the second expectation of xj1xj2 to be 1/2 when
j1 = j2 and 1/4 otherwise. Since h(·) is a function of si, the first expression is a measure over si’s marginal
distribution. With the assumption that all states are equally likely, half of the xjs are 1 with the other half 0. Then si
is simply the sum of N/2 independent drawing from a distribution with mean 0 and standard deviation σW . The law
of large numbers then implies that si ∼ N (0, Nσ2

W /2). Simple integration yields

E

[
h′2

h− h2

]
=

∫ ∞
−∞

ds
h′2

h− h2
1√

πNσW
e−s

2/(Nσ2
W )

Idiag =
1

2
E

[
h′2

h− h2

]
Ioff =

1

4
E

[
h′2

h− h2

] (11)

5.2 Inference Accuracy on Random Networks
In this section, we compare the performance of the proposed MLE against the theoretical limit predicted by the
Cramér-Rao inequality on networks constructed using random weight matrices with i.i.d. entries with sigmoidal
activation function (Eq 6). Note that with the sigmoid activation function, the inference problem becomes equivalent
to logistic regression with zero bias. We quantify quality of the inference by normalizing the values of the inference
error covariance matrix Σ relative to the weight matrices’ variance σ2

W . Inverting the Fisher information matrix (Eq 11)
and numerically integrating the expectation over s (Eq 11), the Cramér-Rao bound of an efficient MLE becomes,

Σdiag

σ2
W

=
4N

σ2
W |X|(N + 1)E

[
h′2

h−h2

] ≈ 17.8

σ2
W |X|

Σoff

σ2
W

=
−4

σ2
W |X|(N + 1)E

[
h′2

h−h2

] =
−17.8

σ2
W |X|(N + 1)

(12)

The first approximation sign comes from N/(N + 1) ≈ 1. The correlation terms in the covariance matrix vanishes as
N gets large.

To keep the spectra of W constant with different sizes, we scale σW by 1/
√
N such that Wij drawn i.i.d. from

N (0, 1/N). (have to prove the underlying network is ergodic?) In this case, the relative inference error scales linearly
with the ratio N/|X|. Using observations from random network simulation of sizes 20 and 50 with varying durations,
we use the CVXOPT software package to solve the convex MLE problem in parallel on a computer with Intel Core i7
CPU at 4GHz with 6 cores. The MLE algorithm performs as expected, giving solutions that are close to the ground
truth with relative small residuals (Fig 1).

We then compute the normalized diagonal entires of Σ, equivalent to the normalized the mean squared error
(MSE), for the two sizes at different values of |X|, and compare them against the Cramér-Rao bound (Fig 2). The
convex optimization algorithm solves the structure inference problem efficiently with accuracies that tightly follows
the optimal bound given by the Cramér-Rao inequality. For MSE within 10% of σ2

W , one needs approximate 3000
and 8000 observations of the system’s states for network sizes of 20 and 50 respectively. Furthermore, the convex
optimization algorithm showed a runtime that scales linearly with the amount of data (Fig 2 insets).

6 Sparse Connectivity and the L1 Regularization
Real world networks are often sparse. We call a connectivity matrix k-sparse, 0 ≤ k ≤ 1, if only kN2 of entries in W
are populated. If one has a prior knowledge or estimation of what the k is for the network to be inferred, the inference
procedure can perceivably perform better than a fully connected network given the same amount of observations. The
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Figure 1: Example inference results at network sizes of 20 (top) and 50 (bottom). The numbers of observation where 3,000 and 8,000 for each case
respectively. From left to right, the three columns of images are the ground truth, inference results and inference error of the connectivity matrix.
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Figure 2: Inference MSE normalized by σ2
W with different amount of observations with network sizes of 20 and 50. The theoretical Cramér-Rao

bounds are plotted in blue. The actual values, green lines, are calculated for each element of the W matrix, and tightly follow the theoretical lower
bound. Insets show the linear scaling of inference runtime with respect to the number of observations |X|.



intuition is information theoretical in the sense that the saving in the amount of observations needed to infer kN2

instead of N2 entries exceeds the extra amount of observations needed to determine which kN2 entries are populated.
To add in a sparsity constraint while keeping the objective function (Eq 4) convex, the favored approach has been

to add an L1 norm regularization term to the objective function

Ŵi∗ = arg min
Wi∗

[− logLi(Wi∗;X) + λ||Wi∗||1]

where larger regularization parameter λ constrains the optimization to give more sparse solutions.

6.1 Eliminating the Regularization Parameter with Prior Knowledge of k
In the absence of prior knowledge of k, the standard practice of finding the best λ has been cross-validation. Obser-
vations are divided to training and testing sets. The optimal value of λ is the one that maximize the likelihood when
trained on the training set and tested on the testing set. For network structure inference, however, this may not be
necessary, as estimating the value of k is a convenient byproduct to sampling a network’s degree distribution–a much
easier task. We then set out to find the relation between the optimal λ given k.

Since the objective function is convex, we first linearize it into a quadratic form around the unregularized solution
Ŵi∗ to obtain

1

2
(Wi∗ − Ŵi∗)

TΣ−1(Wi∗ − Ŵi∗) + λ||Wi∗||1

where Σ is the error covariance matrix (Eq 12). Since as N gets large, Σ becomes diagonal. We can write the above
expression for each element Wij

1

2Σdiag
(Wij − Ŵij)

2 + λ|Wij |

Given the unregularized solution Ŵij , the new objective function minimizes the above equation and computes the
regularized solution Ŵ †ij according to,

Ŵ †ij =

 Ŵij − λΣj1=j2 (Ŵij ≥ λΣj1=j2)

Ŵij + λΣj1=j2 (Ŵij ≤ −λΣj1=j2)
0 otherwise

(13)

The optimal choice of λ is the one that minimizes the mean squared error (MSEL1
) between the regularized solution

and the real answer conditioned on k (alternatively, can one optimize for the expected sparsity?),

λopt = arg min
λ

MSEL1
= arg min

λ

1

N

∑
j

E
[
(Ŵ †ij −Wij)

2|k
]

(14)

In Appendix A, by assuming a Gaussian prior for the non-zero elements, we derive the analytical expression for the
above expectation by separating it into a “Benefit” function, B, that represents the improved estimation of Wi∗’s zero
elements, and a “Cost” function, C, that represents the degraded estimation of non-zero elements due to regularization.
We introduce two parameter substitutions to keep the expression concise

α = λ
√

Σdiag/2, γ =
√

1 + σ2
W /Σdiag

where σW is the standard deviation of the non-zero elements of W which can be estimated from the unregularized
solution.We normalize MSEL1

by MSE for the unregularized solution,

MSEL1

MSE
=

∑
j E
[
(Ŵ †ij −Wij)

2|k
]

NΣdiag
= (1− k)B(α) + kC(α, γ)

B(α) = (1 + 2α2)Erfc(α)− 2√
π
αe−α

2

C(α, γ) = (1 + 2α2)Erfc (α/γ) + (γ2 − 1)Erf (α/γ)− 2√
π
αγe−α

2/γ2

(15)



The optimal λ can now be found by setting the derivative of the expected error to zero and solving for α,

(1− k)
(√

παoptErfc(αopt)− e−α
2
opt

)
+ k

(√
παoptErfc(

αopt

γ
)− 1

γ
e−α

2
opt/γ

2

)
= 0 (16)

6.2 Experimental Verification
To verify that the above calculation indeed yields λopt, we simulated random networks withN = 20, k = 0.2 to obtain
between 2000 and 10000 observations. The non-zero element of W are distributed according toN (0, 1/kN) to again
keep the same eigenvalue spectrum. For each |X|, we solve for λopt numerically (Eq 16). We then run the optimization
algorithm with λ between 0 and 2λopt, and compute the fraction of the mean squared error of the regularized solution
to that of the unregularized solution (Eq 15). This gives the ground truth of the optimal λ which we compare against
theoretical predictions.
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Figure 3: Optimal λ for the L1 regularization. Networks with N = 20, k = 0.2 were simulated to give observation quantities |X| between 2,000
and 10,000. For each value of |X|, structural inference was carried out with λ between 0 and 2λopt. The resulting MSEL1 , theory (left) and data
(right), were then compared against the unregularized MSE (λ = 0). The calculated λopt (blue lines) does correspond to the valley of minimal ratio,
or maximal L1 improvement.

A total of 3,200 data points were collected using PiCloud’s computing service with Amazon’s c1 CPUs over
600 CPU hours. The actual ratios between regularized mean squared error to the unregularized matches theoretical
prediction well (Fig 3 pixel values left and right panels). However, actual data’s values are noisier than theoretical
calculation, which may be attributed to the small network size of 20. More importantly, the theoretically predicted λopt
(Fig 3 blue line) follows the valley of the minimum ratio, or best L1 performance, for different values of |X|, verifying
the correctness of our calculations.

6.3 Limiting Behaviors of λopt

While solving for αopt is a numerical task, its limiting cases, however, are informative and analytically tractable. We
first consider the condition under which αopt = 0. This corresponds to the boundary in the k, γ plane beyond which
regularization is unnecessary. The boundary has the form

k − 1− k

γ
= 0

which is only satisfied when both k = 1 and γ → ∞. Therefore, even in the fully connected case, unless infinite
amount of observation is available, regularization still helps.
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Figure 4: L1 regularization in the ample data limit (γ � 1). Left panel shows the exact (blue) and inverse error function approximated (green)
optimal value of α as a function of sparsity k. Right panel shows the calculated (blue) and actual (green) fraction of regularized solution’s MSE to
that of the unregularized solution at various k. The actual data was obtained with N = 20, |X| = 20, 000, thus γ > 56. Inset shows example
solution at k = 0.1.

Another interesting limiting case is when γ � 1, or Σdiag � 1, or when ample amount of observations are available
and the unregularized optimization is performing well. Under such condition, the optimal α is only a function of k
and the solution to

(1− k)
(√

παoptErfc(αopt)− e−α
2
opt

)
+ k
√
παopt = 0

which is reasonably approximated using the inverse error function as

αopt(k) ≈ InvErf(1− k)√
2

, λopt ≈
InvErf(1− k)√

Σdiag
(17)

which does not depend on σW .
The value of αopt tends to infinity as k tends to zero, and approximately follows the linear relation

√
π/8(1 − k)

as k tends to 1 (Fig 4 left panel). We then compare the calculated performance under such αopt against actual values
obtained from data (Fig 4 right panel) in the form of MSE ratios, which again showed excellent agreement. As an
example, regularized solution at k = 0.1 shows perfect recovery of zero elements (Fig 4 inset).

7 Discussion
While we solved the convexity constraint and the optimal regularization parameter problem in this study, more could
be desired before this approach is applied to real data. First, we have to study the case in which the observed data
is noise, incomplete or corrupt. This is especially important if one desires to infer connectivities in the brain as all
existing methods of measuring neuron activities involve dramatic subsampling. Second, we have to understand how
network’s dynamics introduce biases into the observation of its states, this is especially important if the network is
doing something useful as its state trajectory may not be ergotic. Related, when the network is only working with a
reduced state space, there may be feedback mechanisms to send input back into the network to make its states more
random, thus improving inference accuracy. Last but not least, the method have to be extended to real-time spiking
neurons. Given more computation power, it would be fun to try all the results on much larger networks.



A Cost and Benefit of L1 Regularization
In this section, we compute the expected inference error with L1 regularization (Eq 14) as a function of the sparsity
parameter k and regularization parameter λ. First, we know that each element of the unregularized solution Ŵij is
normally distributed around the true solution Wij with variance Σdiag (Eq 12), or

P (Ŵij |Wij) =
1√

2πΣdiag
exp

(
− (Ŵij −Wij)

2

2Σdiag

)

Next, we note that there are kN elements of the true Wi∗ that are nonzero and (1− k)N elements have true values
at exactly zero. Starting with simpler calculation for the zero elements, we first make a parameter substitutions for
convenience: α = λ

√
Σdiag/2, β =

√
Σdiag. The expected error for the zero elements, averaged and normalized by

Σdiag, is, ∑
{j:Wij=0}E

[
(Ŵ †ij −Wij)

2|k
]

(1− k)Nβ2
=

1

β2

∫ ∞
√
2αβ

dŴij (Ŵij −
√

2αβ)2P (Ŵij |Wij = 0)

+
1

β2

∫ −√2αβ

−∞
dŴij (Ŵij +

√
2αβ)2P (Ŵij |Wij = 0)

= (1 + 2α2)Erfc(α)− 2√
π
αe−α

2

= B(α)

Intuitively, this term represents the improved performance in estimating the zero elements of Wi∗ with regularization,
or the benefit function B(α). It’s not hard to see that if one lets λ, or α, to go to infinity, there will be no error in the
estimation of the zero elements.

To calculate the expected error for the non-zero elements of Wij , we have to assume a prior, which for the sake
of calculation we treat as normally distributed P (Wij |Wij 6= 0) ∼ N (0, σ2

W ). Introducing another substitution
for convenience γ =

√
1 + σ2

W /Σdiag, we expand the expectation using the expression for the regularized solution
(Eq 13),∑

{j:Wij 6=0}E
[
(Ŵ †ij −Wij)

2|k,Wij

]
kNβ2

=
1

β2

∫ ∞
−∞

dWijP (Wij |Wij 6= 0)

×

(∫ √2αβ

−
√
2αβ

dŴij W
2
ijP (Ŵij |Wij)

+

∫ ∞
√
2αβ

dŴij (Ŵij −
√

2αβ −Wij)
2P (Ŵij |Wij)

+

∫ −√2αβ

−∞
dŴij (Ŵij +

√
2αβ −Wij)

2P (Ŵij |Wij)

)

= (1 + 2α2)Erfc (α/γ) + (γ2 − 1)Erf (α/γ)− 2√
π
αγe−α

2/γ2

= C(α, γ)

Intuitively, this term represents the additional error introduced to estimation of Wi∗’s the non-zero elements by regu-
larization, or the cost function C(α, γ).


