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1 Introduction
Network Alignment is the problem of uncovering the relationship that exists in
the nodes from two graphs which model the same phenomenon. Simply put,
given two graphs G = (V,E) and G′ = (V ′, E′), the goal is to find a one-to-one
matching f : V → V ′ such that for v ∈ V , v′ ∈ V ′, f(v) = v′ iff. v and v′

represent the same entity.
Common interesting applications of the Network Alignment problem include

the discovery of similarity in the ways protein interact in different species (a
matching is found between protein-interaction networks from different species,
see [Berg and Lassig, 2004]), or de-anonymizing social networks (by matching an
anonymized social network with another social network for which the identities
are public, see [Narayanan and Shmatikov, 2009]).

Another implication is the field of ontology matching, where one tries to
build one large ontology given several overlapping ontologies. Each ontology is
modeled by a graph of relationships between concepts, and thus the problem is
in fact equivalent to graph alignment.

In this paper, I first give an overview of the previous work in Network Align-
ment. Then I explain the reasons that led me to create a new dataset to bench-
mark Network Alignment algorithms, and the properties of the dataset I have
created. I then describe my main contribution, which is a scalable algorithm
that outperforms previous work in the domain. The last section gives a de-
tailed overview of the results obtained, and explores the reasons that caused
this performance.

2 Previous Work
Historically, the first algorithms for Network Alignment have been developed
for matching protein-interaction networks. There are two different types of
approach: IsoRank and Belief Propagation.
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2.1 IsoRank
IsoRank ([Singh et al., 2008]) builds on the PageRank algorithm to recursively
define a similarity measure between nodes in V and nodes in V ′. The idea is that
two nodes u ∈ V and u′ ∈ V ′ are similar if there are several pairs (v, v′) ∈ V ×V ′

such that (u, v) ∈ E (ie. u and v are neighbors in G), (u′, v′) ∈ E′, and v and
v′ are very similar.

More precisely, we can define the similarity function R by:

Ru,u′ =
∑

v∈N(u)

∑
v′∈N(u′)

Rv,v′

|N(v)||N(v′)|

The relationship to the PageRank algorithm algorithm is made more clear
if one defines R as a vector indexed by pairs (u, u′). Then, we can define a
two-dimensional matrix A by:

A[u, u′][v, v′] =
{ 1

|N(v)||N(v′)| if (u, v) ∈ E and (u′, v′) ∈ E′

0 otherwise

Then the vector R is defined by R = AR. As in PageRank, R is then
obtained by computing the principal eigenvalue of the matrix A, by the power
method: R is initialized randomly, and is update with the rule R ← AR

|AR| until
convergence is reached (note that A is of size nn′ × nn′ here, with n = |E| and
n′ = |E′|).

2.2 Belief Propagation
The Belief Propagation algorithm ([Bay, 2005]) transforms the Network Align-
ment problem into a maximization of a factored probability distribution. It
then uses classical techniques from the field of Probabilistic Graphical Models
to efficiently maximize the probability function.

It first assumes that |E| = |E′| = n and that for each pair (ui, u
′
j) ∈ V ×V ′,

there is a weight wij that represents the prior similarity of the nodes ui and u′
j .

For each node ui ∈ V , it defines a factor φui(r) = ewir ; for each node in
u′

j ∈ V ′ a factor φu′
j
(r) = ewrj . Furthermore, for each pair (u, u′) ∈ V × V ′ it

defines a factor ψ by:

psiui,u′
j
(r, s) =

 1 if i = s and j = r
1 if i 6= s and j 6= r
0 otherwise

It then defines a probability distribution P over 2n variablesX = (x1, . . . xn),
Y = (y1, . . . yn) by:

P (X,Y ) = 1
Z

∏
i,j

ψui,u′
j
(xi, yj)

∏
i

φui
(xi)φu′

i
(yi)
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This probability distribution is maximal if the two matchings
{

(u1, u
′
x1

), . . . (un, u
′
xn

)
}

and {(uy1 , u
′
1, ) . . . (uyn

, u′
n)} are both one-to-one matchings. Furthermore, when

it is non-zero, it is equal to

1
Z

exp
(∑

i

wixi

)

Thus, maximizing P is equivalent to finding a matching of maximal weight.
The detailed algorithm is fairly complex, and so far in my work I haven’t used
it extensively, which is why I think it is better to refer the reader directly
to [Bay, 2005], where it is very clearly explained.

[Bayati et al., 2009] shows how this algorithm can be used to match protein-
interaction networks with very high precision. However, it is important to note
that the running time of the algorithm here is O(n3). It is thus impossible to
apply to networks of more that a thousand nodes.

2.3 Other previous work
[Kollias et al., 2011] introduces a variant of IsoRank that allows the algorithm to
run much faster, while still being a good approximation of the original algorithm.
The algorithm, called Network Similarity Decomposition (NSD), first uses a
decomposition of the matrix A (like SVD) to approximate the power iteration.
However, we’ll see later that it still suffer from the same drawback as IsoRank,
in that it is impossible to run for large networks.

[Narayanan and Shmatikov, 2009] tries to solve the Network Alignment prob-
lem on much larger networks than what was previously done. Specifically,
they try to de-anonymize social networks: the perform a matching between
an anonymized version of Twitter and a non-anonymized version of Flickr to re-
identify users of the Twitter network. Given the size of the networks, they use a
simple greedy approach to perform their matching: starting from a set of nodes
that they have identified already, they identify the next node by choosing the
match that maximizes the number of squares (a square denotes a square made
by an edge of G, a matching between G and G′, and edge of G′, and another
matching between G and G′). Their matching achieves some interesting results,
but is far from a perfect accuracy.

3 Contribution
The contribution of this paper is two-fold: first I extracted a rich dataset from
publicly available data that allows for reliable and flexible benchmarking of
network alignment algorithms. Second, I created and implemented a scalable
algorithm from graph alignment that outperforms previous work on this dataset.
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3.1 New dataset
Since most of the previous work focused on protein-network alignment which
tend to be small (at most 10k nodes), there is not a wide variety of large datasets
to benchmark Network Alignment algorithm. Furthermore, for most of the
datasets the true matching is unknown, and thus it is very hard to measure the
accuracy of an algorithm.

To palliate this problem, I created two networks of Wikipedia articles with
the links from articles to others, one network representing the articles in German
and the other the articles in French. A matching between two nodes then
represents the fact that one article is the translation of another. Then, I also
collected information about the translations of each article, and built the original
matching between articles.

Each of those networks has more than a million nodes. However, it is often
useful to test algorithms on smaller networks to iterate more quickly. To that
effect, it is possible to greedily select a set of nodes in both networks such that
the original matching is still a one-to-one matching when restricted on those
two subgraphs, and such that each of those networks are densely connected.

This has two big advantages: first, one can select sets of various sizes de-
pending on the needs. Second, there is a huge variety of such sets for each size,
which makes this dataset very suitable to competitions for example. One can
for example create different training and test sets so that the different teams
can test their algorithm on the training sets, and then their algorithm can be
tested against a test set kept private.

In fact, this is exactly this approach that allowed to create the dataset for the
CS224W competition. In this occasion, the dataset has proven its utility: mul-
tiple students implemented their algorithm, whose accuracy were tested against
the original matching.

The dataset is not yet available online, as some work is done to include
textual information. However, it is available on request.

3.2 Scalable algorithm
Here I describe the nature of my algorithm for network alignment. The algo-
rithm has two stages: first, I create an initial matching from the partial matching
by selecting nodes of high degree in one graph and matching them greedily in
the other. Then, I use a Simulated Annealing optimization to further maximize
the number of squares formed by the matching.

Greedy initial solution First, I search for a greedy solution using the fol-
lowing algorithm: at each iteration, I consider the set V of nodes in the French
Wikipedia that already have a match in the German Wikipedia. At the initial
step, V is the set of matches that are provided. I compute the set V ′ of nodes
that are neighbors of V (either because of in-edges or out-edges), and I pick
the node of highest degree in V ′ (this proves to be more efficient than picking
a random node).
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Then, I select the best match for this node in the German Wikipedia. This
is the node that adds the largest number of squares to the current matching. I
then repeat until all nodes are matched. This approach is very similar to the
approach proposed by [Narayanan and Shmatikov, 2009], the difference being
that they pick a random node in the French graph while I pick the nodes with
highest degree. The intuition behind that choice is that nodes of highest degree
have the potential to add more squares, and setting them early avoid for them
to be poorly matched because their real match has already been selected for
another node with a lower number of squares.

Simulated Annealing I then use a Simulated Annealing algorithm to im-
prove the solution found. The elementary operation is a swap between two
edges (i, i′) and (j, j′) in the matching, which results in two new edges (i, j′)
and (j, i′). Note that the result of the greedy approach might not in fact be
a local maxima. Indeed, in the greedy phase we match each French node to
the best possible German node (the German node being chosen greedily), but
nothing guarantees that no swap could improve the solution. In fact, it turns
out that greedily swapping edges instead of performing a simulated annealing
gives almost as good results as the simulated annealing, but takes much longer
however.

My Simulated Annealing performs 5000 potential swaps at each iteration.
It performs each swap if it increases the quality of the solution, or if a certain
acceptance criteria is met. More precisely, is δij denotes the increase in number
of squares obtained by swapping i and j, the swap is accepted if δij > 0 or if

r 6 exp
(

δ

kbT

)
where r is a random number picked uniformly between 0 and 1.

The temperature T decreases over time. I perform several runs with various
values for the initial parameter kb. This corresponds to the Boltzmann constant:
if kb is big, then the algorithm starts by swapping a lot of edges even if this
decreases the number of squares. If kb is small, the probability to swap an edge
for which δij < 0 is small. The algorithm stops when too many iteration didn’t
lead to an improvement of the number of squares.

4 Results
4.1 Evaluation of the Simulated Annealing approach
4.1.1 The Initial Greedy Step

The greedy step of the algorithm is very similar to the algorithm described
in [Narayanan and Shmatikov, 2009]; the only difference is that I trye to match
the nodes nodes with high degrees first, while [Narayanan and Shmatikov, 2009]
matches nodes in random order.
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My approach proves significantly better in practice: the random strategy
creates a matching with about 38000 squares, while my approach’s resulting
matching has 76000 squares. As a comparison, the initial partial matching
has about 4000 squares, and the original matching has about 100000 squares.
Furthermore, my approach leads to 1317 correct edges, while choosing random
edges to match only produces 1175 correct edges.

4.1.2 The Complete Pipeline

To evaluate my algorithm, I used IsoRank as a baseline. The matrix A is of size
n2×n2, which is prohibitive. It is sparse, but the number of non-zero coefficients
is about n2d2, where d is the average degree. For n = 4000 and d ' 170, this is
impossible to store in memory. Thus, my implementation doesn’t use the matrix
formulation, but rather updates Ruu′ for all pairs (u, u′), using the formula:

Ru,u′ =
∑

v∈N(u)

∑
v′∈N(u′)

Rv,v′

|N(v)||N(v′)|

Furthermore, my implementation runs those updates in parallel to speed-up
the computation. I then use a computer with 64 parallel threads to run the
algorithm, which gives a 55× improvement over the sequential implementation.
Indeed, one can easily assign each node u to a thread, which will update all the
values Ru,u′ , for all u′ ∈ V ′. I use a double buffer to store Ru,u′ : one for reading
and one for writing. The buffers are swapped after each iteration. Thus, no
complex synchronization is required, as the threads read concurrently but write
at different locations that do not influence the reads.

In order to use the partial matching, I only update Ruu′ if neither u nor u′

are in the partial matching. If one of them is, then the coefficient Ruu′ is set
to 1 of u and u′ are a match, and 0 otherwise. In order for the normalization
to remain relevant with those fixed values, I choose to normalize the vector R
with the ‖ · ‖0 norm, which is simply the largest coefficient.

Number of Squares Accuracy (%) Time (s.)
IsoRank 70101 28.47 18448

First Greedy Step 76000 16.16 6
Sim-Ann 103189 76.97 8885

Original Matching 100448 100

Table 1: Results for IsoRank and Simulated Annealing

Comparison of the accuracies Table 1 shows the results in terms of ac-
curacy (number of unknown edges that are correct), number of squares, and
computational time, for IsoRank, the Simulated Algorithm, and also for the
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first greedy step of the Simulated Annealing. The original matching is given as
a reference.

First, as expected Simulated Annealing is the best in terms of number of
squares. This is not surprising, as it explicitly tries to maximize this quantity.
More surprising is the results in accuracy: IsoRank has a very low accuracy,
while Simulated Annealing performs very well with almost 77% of the unknown
edges that were recovered.

Furthermore, in terms of computational time Simulated Annealing is slightly
faster than IsoRank. However, it is important to consider that IsoRank was par-
allelized on 64 threads while Simulated-Annealing was implemented sequentially.
A parallel implementation would increase the difference.

Convergence It is also interesting to note that both IsoRank and Simulated
Annealing can be stopped before convergence. For larger graphs, this is a useful
feature as it will often take too long to converge, and if the algorithm is able to
find a good enough matching early in the computation it can be stopped earlier.

Therefore, we measure the accuracy and the number of squares of the match-
ing during the computation for the two algorithms. Figure 1 shows the evolution
of the accuracy and the number of squares during IsoRank. After an initial pe-
riod where the two quantities oscillate, the evolution becomes smoother, and
converges after about 25 iterations.
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Figure 1: Evolution Number of squares and Accuracy (% of preserved edges)
during the iterations of IsoRank

Figure 2 shows the same data for the Simulated Annealing algorithm. Keep
in mind that that the number of iterations have no common scale in the two

7



algorithms: while each iteration takes more than 5 minutes for IsoRank, Simu-
lated Annealing’s iterations take less that a second.
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Figure 2: Evolution Number of squares and Accuracy (% of preserved edges)
during the iterations of Simulated Annealing

During Simulated Annealing, the evolution of the number of squares and of
the accuracy are very smooth: they slowly converge to their maximum without
iterating. This means that the algorithm can be used even if the time needed
to converge is arbitrarily big: it stars improving the accuracy after the first
iteration. This is particularly important for very large graphs, where waiting
for convergence would be impossible. While IsoRank performs very badly during
the first iterations, Simulated Annealing is more reliable.

4.2 Evaluation of the Number of Squares heuristic

4.3 Overfitting
Table 1 shows that the Simulated Annealing algorithm, which tries to maximizes
the number of squares, finds a matching with more squares than the original
matching. While it seems intuitive that maximizing the number of squares
is a good heuristic, which is why it is used as a measure of performance in
previous work, the relationship between the number of squares and the accuracy
is unclear.

Since our dataset contains the original matching, we can measure the accu-
racy of the matchings obtained at each iteration of both IsoRank and Simulated
Annealing.
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Figure 3: Accuracy (% of correct matches) as a function of the number of
squares. Each dot corresponds to a matching, the color represents the algorithm
that found the matching.

Figure 3 shows the relationship between the number of squares and the
proportion of correct matches. It contains the matchings obtained during the
iterations of Simulated Annealing and of IsoRank. Also, we take the original
matching and use it as a starting point for a greedy search, during which we
swap all pairs (u, u′) such that δ(u, u′) > 0 until no such pair exists (this is
equivalent to our Simulated Annealing with kbT = 0).

This indicates that algorithms that try to maximize the number of squares
risk to overfit, ie. to produce matchings with a very high number of squares
but a low accuracy. However, Figure 2 shows that the accuracy increases at
each iteration for Simulated Annealing. Thus, it seems that even though it is
theoretically possible that the algorithm starts to overfit after some time, in
practice the search is stuck in a local maxima area where the most accurate
matching is also the biggest number of squares.

This is not the case for IsoRank: for equal number of squares, IsoRank’s
matchings are much more accurate than the ones obtained with Simulated An-
nealing. This is because IsoRank is designed to find a matching that has a
meaning, rather than to maximize the number of squers.

In fact, Figure 1 shows that during the iterations of the algorithms, the
number of squares stops increasing after iteration 18, while the accuracy keeps
increasing after that. In that regard, it seems that IsoRank is less susceptible
to overfitting.
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4.4 Local structure of the squares
So far we have studied the heuristic of squares globally, ie. on a whole matching.
Here, we study the distribution of the squares on the network matched: we study
which nodes create the biggest number of squares, depending on their degree.
We compare this distribution on the original matching, on random matchings
and on matchings obtained with the Simulated Annealing algorithm.

Figure 4 shows various plots which all represent the fraction s
d versus d,

where s is the number of squares created by a node, and d is the degree of the
node. Let us denote this fraction by s̃: s̃ = s

d . Each plot corresponds to a
different matching or to different French and German graphs (see below).
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Figure 4: All figures: s̃ = s
d as a function of d. Each point is a node in the

French graph. Top-Left: original matching. Top-Right: After random shuf-
fling of the edges of the French and the German graph. Bottom-Left: Original
French and German graph, random shuffling on the matching. Bottom-Right:
Matching obtained with Simulated Annealing.

On the top-left, the original matching. There are two different trends: first,
a clear relationship that the fraction s

d grows with d for degrees above 200.
Second, for d < 200 there is an opposite relationship: s̃ decreases as d increases.
In fact, the shape of the curve is roughly similar to 1

d , which means that s is a
constant. This means that roughly, for edges with small degrees the number of
squares is a constant that doesn’t vary much with the degree.

On the top-right plot, we shuffle the edges of the French graph and of the
German graph before plotting the data (each node keeps the same in and out-
degree, only the edges are shuffled). Even though one could expect a random
scatter plot, it seems that the structure is roughly preserved. The quantity s̃
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is of course lower than for the original matching, but the two trends are still
present. This means that the degree of each node is in itself an important
quantity for the matching, and that the edges are less relevant.

The bottom-left plot confirms that intuition: it is plotted after keeping the
original French and German networks, but choosing a random matching. Here,
we see a truly random set of points, and the previous trends are almost non-
existent.

Finally, the bottom-right plot uses the matching computed by the Simulated
Annealing algorithm. The similarity with the original matching is striking. In
fact, for nodes of degree higher than 500 only a few points differ in the two
plots. The major difference is in fact for the nodes of small degrees. While,
in the original, they had a high s̃ (above 0.4), for the Simulated Annealing
matching they always have s̃ < 0.4.

This means that the Simulated Annealing is excellent at finding matches
between nodes of high degree, but does not perform well on low-degree nodes.
Since the degree distribution follows a power law (not shown here, but it does),
this penalizes the Simulated Annealing very much in terms of accuracy. However
in terms of number of squares this is not penalizing, since nodes of small degree
account for a small minority of the squares. This is why our algorithm is able to
achieve a great number of squares while still being far from the perfect accuracy.

Conclusion
The Wikipedia dataset has already proven very useful in two contexts: during
CS224W 2011 annual competition, where it was used to benchmark student’s
algorithms, and in the context of this study, where its unique feature – the fact
that the original matching exists and is available – allowed me to explore the
relationship between number of square and accuracy based on data.

The Simulated Annealing approach, even though very simple in its imple-
mentation, performs very well on the Wikipedia dataset. Furthermore, it is
designed with scalability in mind, and can easily be adapted to deal with much
larger datasets. It can also be used as a post-processing tool, without waiting
for full convergence, as it improves the quality of a given matching only after a
few iterations. Finally, it isn’t very susceptible to overfitting, as its limit is in
fact that it tends to stay stuck in local maxima.

The limits of this approach is that it relies on the heuristic of the number
of squares. While this proved successful on this dataset, it is unclear if all
datasets exhibit this property. Furthermore, it fails to match nodes with low
degree, which are very abundant in graphs where the degree distribution follows
a power law.

I believe that further research should focus on using Simulated Annealing
in conjunction with features of the nodes themselves, or a-priori weights of the
matches (u, u′) for u ∈ V and u′ ∈ V ′.
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