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1. Introduction 
 

Research is never carried out in isolation. Scholars build on each other’s findings, work together 

on problems, work on problems in parallel, and often verify each other’s results. The success of 

the academic enterprise is dependent on all its participants communicating their ideas, 

techniques, and findings with each other and with the public. Given the public importance of 

scholarly research, we believe that more attention must be given to understanding the dynamics 

of scholarly communications and to address problems facing the scholarly community. 

 

In this project, we seek to explore and understand the types of communities that form within a 

specific discipline, high energy physics. Although work has been done to detect communities in 

‘science’, communities and community detection algorithms have not been carefully explored for 

specific sub-disciplines such as that of high energy physics phenomenology. We explore the 

applicability of different network detection algorithms and try to evaluate their effectiveness at 

detecting ‘meaningful’ communities.  

 

Our approach, however, is not simply aimed at detecting meaningful communities for the sake of 

identifying them. We propose a novel approach to use the detected communities as a tool for 

disambiguating author names. Most bibliographic databases contain author names, but they 

rarely record a unique identifier for each individual. Since multiple people can share the same 

name, even within a single discipline, there is a need to develop algorithms that can 

computationally determine which papers are authored by the same individual. By determining 

which duplicate names are different individuals, it will be possible to show readers work by the 

same author, provide a means for authors to track their publications, and enable universities to 

better determine their scholarly output. 

 

Identifying individuals and correctly attributing bibliographic records to real people is an 

important problem for academics, academic institutions, and funding/granting agencies alike. 

From their different perspectives, each of these groups has an interest in identifying their 

scholarly output for evaluation and understanding of their academic impact. When looking for 

citation impact in existing databases, scholars want to identify papers they have written, 

universities want to identify papers written by their professors, and granting agencies want to 

identify the work of their grantees. Through computer-aided author disambiguation, it will be 

possible to provide services to study the scholarly output of an individual or an institution, as 

well as provide important services for the discovery of research, such as listing works by the 

same author. 
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2. Related Work 

 

Author Disambiguation 

Author disambiguation is a special case of entity resolution—discovering underlying entities and 

mapping database references to these entities (in our case, a specific person). Traditionally, entity 

resolution is done by looking at pair-wise comparisons of attributes for each record and resolving 

the entity based on attribute similarity. Famously, Bhattacharya & Getoor (2007) extend the 

traditional model by using relational data to aid in resolution.  

 

There have been many other proposed methods of author disambiguation in recent literature. 

Some methods rely on building statistical models, such as those in Zhang et al. (2007). This 

particular approach requires empirically setting constraint weights for a Hidden Markov Random 

Field model and relies on each node having a complete set of relevant metadata (affiliation, 

email address, journal information, etc.) that may not always be present. Other methods look at 

relational attributes of the authors, such as co-authorship and co-citation.  Kang et al. (2009) look 

solely at co-authorship of papers, but extend their information base with co-authorship data 

gleaned from web queries.  

 

In this paper, we develop a novel technique for author disambiguation that extends the work 

carried out by others. We describe a method that, like Bhattacharya & Getoor (2007), uses the 

information contained in the relation between papers and like Kang et al. (2009) uses the citation 

information. However, our approach aims to take advantage of the information contained in the 

citation graph structure to identify individuals. In particular, we apply community detection 

algorithms to extract the underlying structures in the citation graph and develop an approach for 

using that information to disambiguate authors. 

 

Community Detection and Information Flow 

Various heuristic algorithms are used to determine communities in real-world graphs.  The 

Girvan-Newman (2002) algorithm uses edge betweenness centrality, defined as the number of 

shortest paths between pairs of nodes along that edge, to find community boundaries. This 

technique gives a hierarchical decomposition of the network communities, with better results 

than traditional hierarchical clustering methods, but has complexity O(n
3
), making it too slow to 

analyze a large network.   

 

Newman & Girvan (2004) define modularity as a measure of the quality of the division of a 

network into communities, where a good division is characterized by many edges within 

communities and only a few between them.  A fast modularity maximization algorithm that uses 

hierarchical agglomeration is presented in Clauset et al. (2004) and Newman (2004).  This 

algorithm employs a bottom-up approach, starting with every node in its own community and at 

each step merging communities that provide the best increase in modularity.  For hierarchical 

networks that are most commonly found in real life, this algorithm achieves a run time of O(n 

log
2
n). Newman (2006) presents a community detection method based on optimal modularity 

known as the spectral modularity maximization algorithm. This technique is based on 

eigenvector decomposition of the modularity matrix, a modified graph adjacency matrix, and has 

a run time of O(n
2 

log n).  
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Rosvall & Bergstrom’s (2010) Infomap algorithm uses significance clustering on parametrically 

resampled networks to map change in a network over time and visualizes merging and splitting 

of clusters with alluvial diagrams. The paper uses a large scientific journal citation dataset as a 

canonical example.    

 

Dynamic Sliding Window  

To measure scientific consensus, Shwed & Bearman (2010) examine community structure in 

academic paper citation networks.  To model changes in the network over time, Shwed & 

Bearman use a dynamic window approach, in which the median of the distribution of citation 

ages serves as the window width.  

 

3. Academic Paper Citation Dataset 

 

Dataset Description 

We believe there is value in working with a group of papers and citations from a relatively 

homogeneous community, so we chose the ArXiv HEP-PH (high energy physics 

phenomenology) citation graph, extracted from the e-print arXiv, which covers many of the 

papers and citations from a period of 10 years beginning in 1993
1
.  

 

The data consists of 34,546 nodes (papers) and 421,578 edges (citations), which will be used as 

an unweighted, directed, acyclic graph. The resulting citation graph is not complete, as it only 

includes citations for papers that can be found in arXiv.org within the 1993-2003 time period. 

The dataset also comes with no guarantees that citations to papers in the dataset are included.  

 

Data Collection 

We complement the data with titles, abstracts, publication dates, and author names for each of 

the papers. The additional metadata for each of the paper was collected over a 2 day period in 

October 2011, using the arXiv.org API
2
. The citation graph, made available through the 2003 

AMC KDD Cup 2003, includes the arXiv identifier which was subsequently used to query the 

arXiv API. The API identifies the available metadata, including author names (as entered into 

arXiv by the uploader). In total, the papers in the dataset were written by 77,507 authors and co-

authors
3
 (an average of 2.24 co-authors per paper). However, out of the 77,507 authors, there are 

only 14,897 distinct names. In fact, there are 7 names that are listed as authors of over 100 

papers, 98 names that are listed as authors of over 50 papers, and over 6,000 names that appear 

in at least 2 papers. ArXiv.org does not track which instances of these names are the same 

individual. The large amount of name duplication and the lack of mechanism for disambiguating 

indicate the magnitude of the challenge that our project aims to solve. 

 

Author Name Consolidation 

When working with this same dataset, McGovern et al. (2003) use only a heuristic approach to 

consolidating author names and do nothing to attempt disambiguation. Their resulting dataset of 

                                                
1
 Details of the dataset can be found at http://snap.stanford.edu/data/cit-HepPh.html 

2
 http://arxiv.org/help/api/index 

3
 This does not imply 77,507 individuals, simply that this many names can be found as author or co-authors of 

papers. 
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9,200 author names has subsequently been mistakenly used as the benchmark for the oft-cited 

entity-resolution work of Bhattacharya and Getoor (2007). Lacking access to McGovern et al.’s 

consolidated dataset (and to some additional attributes that would help to re-create it), we follow 

a similar approach, but choose a simpler consolidation strategy. Using python’s difflib library, 

we match names on the full string with different cutoff points to group together authors with 

similar names. We used a fairly strict cutoff of 0.95. This cutoff can be thought of as roughly a 

percentage-string similarity, where names are grouped together if they are very similar to each 

other according to this threshold. The resulting set has 14363 unique author names (534 names 

were consolidated). This reduced list provides a useful starting point for attempting 

disambiguation. 

 

Without disambiguating, but after consolidation, we observe that most author names have 

published few papers (3,432 names have a single paper), while a few names have published 

many papers (19 consolidated names have over 100 papers attributed to them). 

 

4. Method and Algorithm Descriptions 

 

Our basic approach is to first apply the dynamic moving window technique to the full citation 

dataset to extract time-based subgraphs. Second, we find communities in each time window 

using a community detection algorithm, with the goal of determining topic-based communities. 

We use the communities to construct a meta-graph that describes community evolution over 

time. Our approach is based at using the information embedded in both the communities at each 

time point and the constructed community evolution graph to identify individuals from the 

existing author names. 
  

Dynamic Moving Window 

As scholars move through their careers, they may enter and leave different communities within 

their field. As such, we track the changes in the communities over time by using a dynamic 

sliding window. With this approach, algorithms are run once for each year and, for every given 

year, we will analyze a sub-graph composed of the union of the following three sub-graphs: (1) 

G1 = nodes corresponding to all the papers published in the given year; (2) G2 = nodes 

corresponding to all the papers published within x years of the papers in G1, where x is the 

median age of the citations found in the papers of G1; and (3) G3 = all the nodes (papers) and 

edges (citations) directly connected to G1 and G2, regardless of publication date. This dynamic 

window approach is similar to that proposed by Shwed & Bearman (2010).  

 

By tracking the community detection algorithms over the evolution of the network, we have a 

point of comparison to the results of the same community detection algorithms over the entire 

corpus. It is possible that some communities remain stable through time, thereby appearing in the 

whole dataset. Other communities may appear or disappear as specific groups are created or 

dissolved throughout the ten year window spanning the dataset.  

 

The dynamic moving window approach provides a finer level of granularity for detecting 

communities and attempting author disambiguation. While a specific author may belong to 

multiple communities within high energy physics, it is less likely (though not impossible) that he 

or she will belong to very different ones in a given time window. By dividing our dataset into 
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subgraphs using these windows, we observe an strong edge effect caused by the data from before 

the creation, and popularization, of arXiv.org.  

 

The grouping of the data into time windows is illustrated in Figure 1.  Figure 1(a) shows the 

increasing length of the median citation age, with all years before 1997 having a median age of 

one year, those between 1997 and 2001 having a median age of two years, and the last two years 

having a median age of three years. It is likely that the true median is at least three years, and that 

the first few years of data are lowered by missing data. Figure 1(b) corroborates this story, as we 

see an increasing number of papers per year in each moving window, increasing linearly over 

time, with a slight drop-off for 2003, likely caused by the fact that the dataset ends with papers in 

April 2003. 
 

(a)  (b)  
Figure 1. (a) median citation age per year. (b) Number of articles in each dynamic window. 

 

Community Detection Analysis 

Network communities are sets of nodes with many connections inside the group of nodes and 

few connections to the rest of the network. After consideration of several community detection 

approaches, we tested the applicability of three well-known community detection algorithms: 

Rosvall & Bergstrom’s (2010) Infomap, Clauset et al.’s (2004) agglomerative modularity 

maximization algorithm, and Newman’s (2006) spectral modularity maximization algorithm.  

 

Infomap 

For the Infomap algorithm, we downloaded the version on the paper’s companion Website 

mapequation.org, written in C. To run this algorithm, we read our graph’s edge list using 

NetworkX and re-wrote the graph in Pajek format, used to input data to Rosvall & Bergstrom’s 

implementation. All year subgraphs were processed in less than half an hour on a 2.0 GHz laptop 

with 2 GB of RAM. The resulting output files, written in Pajek form, could then be parsed in 

python to create a representation of the communities. 

 

The Infomap algorithm generates significance clusters and alluvial diagrams to map change in 

networks. It works as follows: (1) cluster the original networks for each time point, partitioning 

the network into non-overlapping modules; (2) generate and cluster the bootstrap networks for 

each time point, using a parametric bootstrap technique; (3) for each time point, identify journals 
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that are significant in their own clusters and clusters that are significantly distinct from other 

clusters; (4) generate an alluvial diagram to illustrate changes between the time points.  

 

The clustering method, used in steps (1) and (2), uses the map equation as an objective function 

and a new algorithm to partition the network by minimizing the expected description length of a 

random walk across the network. To generate a bootstrap replicate network of the original 

network in step (2), each link weight is resampled from a Poisson distribution with the mean 

equal to the link weight in the original network.  Approximately 1,000 of these bootstrap 

networks are created. Step (3), the significance clustering step, uses simulated to annealing to 

search for the largest subsets of journals in the bootstrap networks to identify significant 

journals, and to search for clusters whose significant subset is separated from other significant 

subsets in the bootstrap networks to identify significantly distinct clusters.  

 

Agglomerative Modularity Maximization Algorithm 

For the Clauset et al. algorithm, we first attempted to write our own version from scratch in 

Python, since there was no NetworkX module available.  Unfortunately, due either to 

programmer error or a bad heap/queue implementation, we could not run the algorithm on large 

data without getting a segmentation fault.  We then discovered an implementation of the 

algorithm distributed with SNAP. SNAP is capable of reading in the dataset’s original edge-list 

and produces an output that could be parsed in a similar way to Infomap’s output communities.  

 

Both the agglomerative modularity maximization algorithm and the spectral modularity 

maximization algorithm use the modularity score as a fundamental metric to measure the quality 

of of the community partitioning of a graph.  Newman & Girvan (2004) define modularity as a 

measure of the quality of the division of a network into communities, where a good division is 

characterized by many edges within communities and only a few between them. Mathematically, 

modularity can be expressed in terms of a matrix computation.   

First, we define a k x k symmetric matrix e.  Each element eij of matrix e is the fraction of all 

edges in the network that connect vertices in community i with vertices in community j.  The 

trace of matrix e, Tr e = ∑      , is the fraction of network edges that connect vertices within the 

same community.  Next we define row or column sums ai = ∑      .  The ai are the fraction of 

edges in the network that connect to vertices in community i.  Modularity is defined as   
∑          

    =  Tr e - ||e||
2
, where ||x|| is the sum of the elements in the matrix x.  Intuitively, 

this modularity definition represents the fraction of within-community edges minus the expected 

value of the within-community edges in a network with the same community divisions, but 

random connections between vertices.  Q can take on values from 0 to 1, where Q = 0 means that 

the number of within-community edges is equivalent to the number in a random network, and 

values close to Q = 1 mean that there is strong community structure.   

 

The agglomerative modularity maximization algorithm employs a bottom-up approach, starting 

with every node in its own community and at each step merging communities that provide the 

best increase in modularity.  The algorithm runs until the entire graph is one community, keeping 

track of the merges along the way in the form of a dendrogram.  Then, one can backtrack to find 

the optimal cut in the dendrogram, which will produce a set of communities that maximize the 

modularity of the graph.  The algorithm also makes clever use of balanced binary trees and max 
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heaps to ensure that calculations are only being done on non-zero cells of the adjacency matrix 

instead of the entire sparse matrix.  

 

Spectral Modularity Maximization Algorithm 

We implemented our own version of Newman’s spectral modularity maximization algorithm, 

based on the implementation currently available in Ben Edwards’s NetworkX community 

branch, with the Leicht and Newman extensions for directed graphs.  The base algorithm divides 

graphs into two communities, however, our interest in producing smaller communities required 

an implementation to recursively divide each community until no improvement in modularity 

could be found. The resulting code, currently only available in this project’s repository, will be 

contributed to the NetworkX open source project and represents a meaningful code contribution. 

Details of the implementation can be found in the code repository.
4
 

 

The spectral modularity maximization algorithm is based on spectral graph partitioning and 

utilizes eigenvector decomposition of the modularity matrix, a modified graph adjacency matrix. 

The algorithm functions as follows: (1) a pre-processing step constructs the matrix 

representation, (2) a decomposition step computes the eigenvalues and eigenvectors, and maps 

each node to a lower-dimensional representation based on the eigenvector grouping, and (3) 

assign nodes to one of two clusters based on the new lower-dimensional representation.  

 

To divide a network into more than two communities, the approach described in Newman (2006) 

is to continue dividing into groups of two, until a proposed division makes a zero or negative 

contribution to the modularity of the network, in which case that subgraph is not further divided.  

When dividing any of the subgraphs in the network no longer improves the overall modularity, 

the algorithm terminates.  In this paper, Newman proposes a definition of a community as an 

indivisible subgraph, based on the modularity score. 

 

Leicht and Newman (2008) extend the modularity maximization approach to incorporate 

information contained in edge directions. Since our citation network is directed, we implemented 

this extension in the spectral modularity maximization algorithm. The intuition behind 

incorporating edge directions is that the “surprise” of a seeing a particular edge, which 

modularity captures by comparing the actual number of edges between communities to the 

expected number, should take direction into account.  If node A has high in-degree and low out-

degree, and node B has high out-degree and low in-degree, then it should be more surprising to 

see an edge from A to B and less surprising to see the opposite.   

 

Evaluating Communities 

In an attempt to understand the content of the communities, and to see if the detected 

communities are topically related (as we expect intuitively), we apply a technique known as 

latent semantic indexing (LSI). We have used LSI both to create clusters and to evaluate the 

clusters produced by the algorithms described above.  

 

We applied LSI on the metadata available for our dataset: titles and abstracts. In LSI, the text is 

first tokenized and filtered to remove words that belong to a manually created stop word list 

                                                
4
http://code.google.com/p/cs224w-citation/source/browse/trunk/networkx-

community/networkx/algorithms/community/partition_recursive.py 
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(consisting of articles, conjunctions, common prepositions, and other words that provide no 

indication of content).  After this we reduce tokens to their stemmed versions by using the Porter 

stemmer.  This leaves many smaller words unchanged, but converts forms of words to a common 

root - e.g.  symmetric and symmetrically would both be stemmed to symmetri.  Finally, we throw 

out all tokens which only appear once in the corpus (or, collection of all the tokens from all the 

text).  Now each paper can be represented by a feature vector, in which the terms from the corpus 

are the positions and the number of occurrences of that term in the paper title/abstract are the 

values.  In practice, we want to use a reweighted value instead of a raw term count.  We tried two 

common reweighting methods to convert our raw counts.  The first is called Term Frequency - 

Inverse Document Frequency (TF-IDF), and encodes the idea that a term that appears in nearly 

every document (“physics”, perhaps for this collection) is not as useful in distinguishing between 

documents as a rarer term. TF is in this case just the raw term counts, and is multiplied by IDF.  

IDF is calculated by taking the log of the total number of documents over the number of 

documents that contain the term in question.  The second method is log-entropy. Here, instead of 

raw counts we take the log of the term count + 1, the log portion of the equation, and multiply by 

the entropy portion of the equation.  The entropy portion is calculated as  

   ∑
         

    
 

 

Here pij is the probability of word i appearing in document j, which is empirically given by the 

raw count of term i in document j, over the number of times term i appeared in the whole corpus. 

 

From these feature vectors, we were able to use LSI to find the most common topics across the 

collection of abstracts, along with the words that contribute to those topics. We then assign each 

abstract to the category for which it scores most highly based on its constituent terms. We then 

tried to overlay this category metadata onto the nodes in our network, and look at the topical 

homogeneity of the communities that are detected by each algorithm. The results of this are 

further discussed in the Results section below. 

 

We also take advantage of the temporal nature of our dataset by comparing clusters over time. 

We use the dynamic moving windows as a unit of study and look at how papers move between 

communities over time. Since each time window contains papers from, at the very least, all 

papers from the year before, it is possible to see paper x’s cluster at time ti and again at ti+1. With 

random clusters, we expect a community of papers at time ti to be randomly distributed among 

the communities at time ti+1. However, we observe that the clustering algorithms consistently 

place the same papers into the same communities over time.  

 

We calculate the proportion of papers that stay together in a community by constructing a cluster 

evolution weighted-directed graph C.  In this graph, each node is a community and we place an 

edge between communities that have papers in common between communities at time ti and time 

ti+1. The weight of each edge is defined by the number of papers shared by each community. 

More precisely, this graph is defined by the following algorithm:  
 

#initialize graph with one node for each community and time year 

for t in years: 

    for c in communities[t]: 

        add node(t,c) 
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# now add edges 

for t in years: 

    for clusters_at_ti in communities[t]: 

        for clusters_at_ti_plus_1 in communities[t+1]: 

            intersection=set intersection(cluster_at_ti, 

cluster_at_ti_plus_1) 

            if intersect > 0: 

                add edge (cluster_at_ti, cluster_at_ti_plus_1, weight=size of 

intersection) 

 

We calculate the proportion of nodes that stay together by taking the maximum of the outgoing 

edge weights for each community node. For example, if community #1 at t=1992 (hereafter, 

c[1992, 1]) has 10 papers and c[1993,1] has 8 of those papers, c[1993,2] has 1, and c[1993,3] has 

1, then we say that the proportion of nodes that stay together is 0.8.  

 

Author Disambiguation 

Finally, we use the communities detected through the previously described algorithms in order to 

disambiguate authors. The intuition is that instances of an author’s name are more likely to refer 

to the same person within the context of a given community than in the entire corpus. We also 

assume that within the time period of a year it is unlikely for an author to publish papers in many 

different topics, and so it is likely for the nodes representing that author’s papers to lie within the 

same community. We therefore take a given time window and say that if a (consolidated version) 

of an author’s name appears multiple times in the same community, it belongs to a single person. 

If the same name appears in different communities within the same time window, it belongs to 

different persons who share the same name.  

 

 
Figure 2. Author disambiguation on cluster evolution sub-graph. 

 

We subsequently use the cluster evolution graph C, described above, to track people’s movement 

between communities over time. At time ti we identify all the different persons with similar 

names. We subsequently consider all people with the similar names who are connected in the 

cluster evolution graph to be the same individual. At each time step, any names that have not 

been labeled as an already-found person are considered a new person. Figure 2 shows a 

simplified version of the cluster evolution graph, with communities that contain three similar 

names (j smith, joe smith, and john smith). Each square represents a community at a given time 
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window, the edges represent communities that share members between time periods, and the 

colors represent individuals. In this example, the algorithm would detect three individuals that 

share similar names. 
 

5. Results and Discussion 

 

Evaluating Communities 

Results of running LSI on the title/abstract of the papers looked initially unpromising.  The vast 

majority (20,000-25,000) of the papers were being clustered into one topic, while the others were 

grouped into clusters ranging from a few papers to a few hundred.  When we discovered that the 

results of the graph-based community detection algorithms were giving us a similar distribution 

of a few disproportionately large communities with many small communities, we began to think 

that perhaps the LSI results could be showing us a compatible view of our community structure.  

So, for each community detected by the graph-based algorithm, we determined which LSI-

discovered topic had the most associated nodes present.  What we would have liked to see is 

many of the small communities matching up with small topics, but unfortunately the majority of 

the communities had the one large topic as their main topic (determined by plurality).  This does 

not necessarily mean that our detected communities are poor, but it does cast some doubt on our 

assumption that the communities we detected would have some underlying topical homogeneity.   

 

Of the three community detection algorithms that we used, the Infomap and agglomerative 

modularity maximization algorithms gave somewhat reasonable results, dividing the dynamic 

window subgraphs into a number of communities of various sizes. The spectral modularity 

maximization algorithm with edge directions, however, gave extremely poor results.  For most of 

the subgraphs, the algorithm left the network undivided, or only divided into two communities.  

The modularity scores of these community division were very low, generally less than 0.1, 

indicating that community structure was essentially absent from these networks.  Further, the 

Python implementation was extremely memory intensive, making it difficult to run the algorithm 

on the larger subgraphs. Consequently, we have not included the results of the spectral 

modularity maximization algorithm in this section.  

 

(a) (b)  
Figure 3. Proportion of papers that stay together in clusters between years for (a) Infomap and (b) Clauset. 
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Figure 3 shows the proportion of articles that stay together in a cluster between years for both the 

Infomap and the Clauset algorithms, as measured simply by the largest sub-community from one 

year’s sub-graph that stayed together in the next year’s subgraph . While there is a good amount 

of variance, especially in the Infomap graphs, both algorithms arguably do a good job of keeping 

the same nodes grouped together from year to year.  The Infomap algorithm appears to have a 

slight edge based on our data, keeping between 65% and 85% of the nodes consistently in the 

same community, whereas the Clauset algorithm keeps nodes in the same community between 

60% and 80% of the time.   

 

  

  

Figure 4. Comparison of Community Size Distribution between Clauset and Infomap Algorithms 

 

Besides consistency of communities, we observed some interesting differences in the 

characteristics of the communities detected by each of our community detection algorithms. 

Figure 4 shows the community size distribution of our communities for the years 2000 and 2001 

(all the other years have similar distribution profile).  The cluster size distribution generated by 

the InfoMap algorithm follows the same familiar power law distribution that is seen in other 

properties of real-world graphs, such as degree distribution, strongly connected component 

(SCC) size distribution, etc.  The cluster size distribution generated by the Clauset algorithm is 

characterized by a small handful of disproportionately large clusters, with the majority of clusters 

being smaller than 10. Given that edges join papers that have cited each other, we had expected 
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communities to be topically similar. The existence of a small number of very large communities 

is consistent with the intuition that, within a given discipline, the large majority of papers are 

related to one another. However, the very large number small communities seems to break from 

our assumptions of how communities would be formed, since it seems unlikely that there are 

many papers not related to the rest of the field. 

 

Even though the distribution of community sizes in Infomap looked “better behaved” than the 

Clauset distribution, we believe that this is a function of the constraints of our network on the 

Infomap algorithm, and not a measure of the goodness of the algorithm.  Infomap uses random 

walks through the graph and determines communities essentially by where it spends most of its 

time (inter-community travel is less probable than intra-community travel).  Since our graph is a 

directed, acyclic graph (DAG), Infomap finds communities that are anchored by nodes with high 

in-degree and comparatively low out-degree.  These high in-degree nodes can be thought of as 

sinks, where many random paths through the network consistently end up.  These communities 

are in contrast to the communities the algorithm would find in an undirected graph (or directed 

graph with cycles), in which a random walker would revisit many of the same nodes in a given 

walk. So, we propose that for a DAG, Infomap produces communities that are highly correlated 

with the degree distribution of the network, hence the power law distribution of community size.  

On the other hand, the communities detected by Clauset are based on maximizing modularity, 

and hence tend to cluster together nodes with a more balanced in-out degree ratio.  As an 

example, for the 1995 year graph, we calculated the average in-degree to out-degree ratio in 

communities.  For Infomap this number was 1.398, while for Clauset this number was 1.021. 

 

Author Disambiguation  

The results for author disambiguation have not proven to be reliable, but show promise in several 

regards. There is no known way to systematically evaluate the quality of the author 

disambiguation through automated means, but a visual inspection of some of the data allows us 

to understand the successes and failures of our approach. We tried the author disambiguation on 

several different sets of names: those with the most number of variations, those with the most 

number of papers, and a randomly selected set. The results of the top ten names on each of these 

lists can be found in Appendix A, and are described in summary here.  

 

We test our resulting data to see the average number of people detected for each name. We 

expect the majority of names to be associated with a single person, since the most names are 

unique. However, we observe that both clustering algorithms are overly aggressive in the 

division of names into multiple people. In this measure, Figure 5 shows that Clauset consistently 

produces fewer persons, regardless of the number of papers associated with that name. On 

average, the Clauset-based clusters produce 3.0 persons per name, while the Infomap-based 

clusters produce 7.5 persons per name. We subsequently turn to specific examples to gain a 

better understanding of the structure of the cluster evolution graph and of the results of our 

algorithm.  
 

Due to the smaller number of papers per name, the randomly selected set of authors allows for a 

more careful manual inspection of the author disambiguation approach. Upon observation, we 

see several trends that emerge in both the Clauset and the Infomap results. After manually 

verifying all of the papers for the 10 randomly selected authors under both sets of clusters, we 
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found no instances where the algorithm incorrectly identified two different people as the same 

person (based on additional information we could glean from looking at the paper itself, namely 

the author’s affiliation). We note, however, that in one example in the sample, author Mihir 

Worah, a subset of the papers contain two different affiliations (University of Chicago and 

University of California at Berkeley) and yet our algorithm identifies the papers with both 

affiliations as belonging to one person. Hence, our approach succeeds in a case that might prove 

difficult for a system that puts an emphasis on attribute data.   

 

 
Figure 5. Number of persons detected vs. number of papers published by that name 

 

However, when looking at all the papers attributed to the name Worah, our algorithm run on the 

Clauset communities, attributes this set to two people, despite the fact that all the papers in the 

dataset seem to belong to the same real person.  Looking at the output from all of the datasets, it 

becomes apparent that the majority of new persons detected are created in the early years where 

the name appears in the dataset. That is, a single name appears in multiple clusters within a 

single time window. This is contrary to our assumptions about individuals only appearing in a 

single cluster due to only publishing in one community at a time. After our analysis, we can say 

that the community detection algorithms analyzed do not, for a single time window, correctly 

identify individuals. There appears to be a trend towards dividing the papers of a single 

individual into multiple communities.  

 

Despite this limitation, the cluster evolution graph approach shows promise for correctly 

identifying individuals in subsequent years, especially in the case of the Clauset-based clusters. 

We observe that the same name remains connected throughout the evolution of the clusters, and 

is thus not split into many people, even for names associated with many papers in many clusters. 

If names were randomly distributed among the papers, and our algorithm randomly associated 

clusters, we would expect more people to be detected by our algorithm.  

 

We were unable to identify instances where the same name belonged to two different 

individuals, except in the cases where our consolidation strategy had been overly aggressive. In 

Appendix A, we include a sample that uses a less strict name consolidation strategy (cutoff = 

0.8). This consolidation strategy groups names that are evidently not the same person, yet, our 

algorithm does not succeed at separating out the different individuals.  
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In short, the author disambiguation approach is successful at grouping together many of the 

papers produced by the same name, especially in later time windows. In its current form, our 

implementation only ever separates a name into multiple individuals and does not allow for 

individuals to be joined together into a single person. Considering the shortcomings of our 

approach, especially for the earlier years, we might explore the possibility of merging individuals 

beyond the first time window. 

 

Our approach was hindered by the number and size of the detected communities in each time 

window. The existence of a few very large communities and many small ones at each time 

window groups together many instances of a given name as a single individual, and increases the 

probability of linking to the largest cluster in the following time window.  

 

6. Future Work 

 

The communities that were detected in our citation network were not suitable for doing author 

disambiguation the way we had originally envisioned.  However, our study shows that there is 

value in detecting communities, constructing a cluster evolution network, and using the network 

structure for the purposes of disambiguating authors.  One future avenue of work to explore 

would be using community detection to develop features for a classifier-based or hybrid system. 

One could use a Boolean feature of whether or not the pair of names in question are in the same 

community, or even come up with some notion of distance between communities.  For example, 

if citation networks do tend to have one or only a few large central communities, then perhaps 

only the peripheral communities are actually meaningful.  We could then calculate the shortest 

path through the central “community” between two peripheral communities as a proxy for 

measuring how closely related those two communities are.  

 

Given the propensity for our algorithm to split names into multiple people (when in fact, the 

name belongs to a single person), it would be valuable to explore strategies for merging names 

back into individuals in subsequent time windows. Merging names in future windows would 

address the issue that the first time windows do not benefit from the information implicit in the 

cluster evolution graph. 

 

We also believe that there is still a benefit to looking at the topical similarity of papers within 

time windows, and that once again this might serve best as a feature for a classifier or smaller 

piece of a larger hybrid system.  One possible approach would be to look at the kind of clustering 

that occurs when we apply LSI to a citation network of a much more topically diverse nature.  

We had originally intended to use the ISI Web of Science citation network for the purposes of 

this project, but could not obtain permission to use the data.  We think that we would see much 

better results, in terms of well-formed topical communities, if the pool of papers were not all 

from a highly specialized field such as high-energy physics phenomenology. 
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