

1

Community Detection and Author Disambiguation in a

High Energy Physics Citation Network

CS224W Project Final Report

Juan Pablo Alperin Nicole Rodia Benjamin Quimby

1. Introduction

Research is never carried out in isolation. Scholars build on each other’s findings, work together

on problems, work on problems in parallel, and often verify each other’s results. The success of

the academic enterprise is dependent on all its participants communicating their ideas,

techniques, and findings with each other and with the public. Given the public importance of

scholarly research, we believe that more attention must be given to understanding the dynamics

of scholarly communications and to address problems facing the scholarly community.

In this project, we seek to explore and understand the types of communities that form within a

specific discipline, high energy physics. Although work has been done to detect communities in

‘science’, communities and community detection algorithms have not been carefully explored for

specific sub-disciplines such as that of high energy physics phenomenology. We explore the

applicability of different network detection algorithms and try to evaluate their effectiveness at

detecting ‘meaningful’ communities.

Our approach, however, is not simply aimed at detecting meaningful communities for the sake of

identifying them. We propose a novel approach to use the detected communities as a tool for

disambiguating author names. Most bibliographic databases contain author names, but they

rarely record a unique identifier for each individual. Since multiple people can share the same

name, even within a single discipline, there is a need to develop algorithms that can

computationally determine which papers are authored by the same individual. By determining

which duplicate names are different individuals, it will be possible to show readers work by the

same author, provide a means for authors to track their publications, and enable universities to

better determine their scholarly output.

Identifying individuals and correctly attributing bibliographic records to real people is an

important problem for academics, academic institutions, and funding/granting agencies alike.

From their different perspectives, each of these groups has an interest in identifying their

scholarly output for evaluation and understanding of their academic impact. When looking for

citation impact in existing databases, scholars want to identify papers they have written,

universities want to identify papers written by their professors, and granting agencies want to

identify the work of their grantees. Through computer-aided author disambiguation, it will be

possible to provide services to study the scholarly output of an individual or an institution, as

well as provide important services for the discovery of research, such as listing works by the

same author.

2

2. Related Work

Author Disambiguation

Author disambiguation is a special case of entity resolution—discovering underlying entities and

mapping database references to these entities (in our case, a specific person). Traditionally, entity

resolution is done by looking at pair-wise comparisons of attributes for each record and resolving

the entity based on attribute similarity. Famously, Bhattacharya & Getoor (2007) extend the

traditional model by using relational data to aid in resolution.

There have been many other proposed methods of author disambiguation in recent literature.

Some methods rely on building statistical models, such as those in Zhang et al. (2007). This

particular approach requires empirically setting constraint weights for a Hidden Markov Random

Field model and relies on each node having a complete set of relevant metadata (affiliation,

email address, journal information, etc.) that may not always be present. Other methods look at

relational attributes of the authors, such as co-authorship and co-citation. Kang et al. (2009) look

solely at co-authorship of papers, but extend their information base with co-authorship data

gleaned from web queries.

In this paper, we develop a novel technique for author disambiguation that extends the work

carried out by others. We describe a method that, like Bhattacharya & Getoor (2007), uses the

information contained in the relation between papers and like Kang et al. (2009) uses the citation

information. However, our approach aims to take advantage of the information contained in the

citation graph structure to identify individuals. In particular, we apply community detection

algorithms to extract the underlying structures in the citation graph and develop an approach for

using that information to disambiguate authors.

Community Detection and Information Flow

Various heuristic algorithms are used to determine communities in real-world graphs. The

Girvan-Newman (2002) algorithm uses edge betweenness centrality, defined as the number of

shortest paths between pairs of nodes along that edge, to find community boundaries. This

technique gives a hierarchical decomposition of the network communities, with better results

than traditional hierarchical clustering methods, but has complexity O(n
3
), making it too slow to

analyze a large network.

Newman & Girvan (2004) define modularity as a measure of the quality of the division of a

network into communities, where a good division is characterized by many edges within

communities and only a few between them. A fast modularity maximization algorithm that uses

hierarchical agglomeration is presented in Clauset et al. (2004) and Newman (2004). This

algorithm employs a bottom-up approach, starting with every node in its own community and at

each step merging communities that provide the best increase in modularity. For hierarchical

networks that are most commonly found in real life, this algorithm achieves a run time of O(n

log
2
n). Newman (2006) presents a community detection method based on optimal modularity

known as the spectral modularity maximization algorithm. This technique is based on

eigenvector decomposition of the modularity matrix, a modified graph adjacency matrix, and has

a run time of O(n
2

log n).

3

Rosvall & Bergstrom’s (2010) Infomap algorithm uses significance clustering on parametrically

resampled networks to map change in a network over time and visualizes merging and splitting

of clusters with alluvial diagrams. The paper uses a large scientific journal citation dataset as a

canonical example.

Dynamic Sliding Window

To measure scientific consensus, Shwed & Bearman (2010) examine community structure in

academic paper citation networks. To model changes in the network over time, Shwed &

Bearman use a dynamic window approach, in which the median of the distribution of citation

ages serves as the window width.

3. Academic Paper Citation Dataset

Dataset Description

We believe there is value in working with a group of papers and citations from a relatively

homogeneous community, so we chose the ArXiv HEP-PH (high energy physics

phenomenology) citation graph, extracted from the e-print arXiv, which covers many of the

papers and citations from a period of 10 years beginning in 1993
1
.

The data consists of 34,546 nodes (papers) and 421,578 edges (citations), which will be used as

an unweighted, directed, acyclic graph. The resulting citation graph is not complete, as it only

includes citations for papers that can be found in arXiv.org within the 1993-2003 time period.

The dataset also comes with no guarantees that citations to papers in the dataset are included.

Data Collection

We complement the data with titles, abstracts, publication dates, and author names for each of

the papers. The additional metadata for each of the paper was collected over a 2 day period in

October 2011, using the arXiv.org API
2
. The citation graph, made available through the 2003

AMC KDD Cup 2003, includes the arXiv identifier which was subsequently used to query the

arXiv API. The API identifies the available metadata, including author names (as entered into

arXiv by the uploader). In total, the papers in the dataset were written by 77,507 authors and co-

authors
3
 (an average of 2.24 co-authors per paper). However, out of the 77,507 authors, there are

only 14,897 distinct names. In fact, there are 7 names that are listed as authors of over 100

papers, 98 names that are listed as authors of over 50 papers, and over 6,000 names that appear

in at least 2 papers. ArXiv.org does not track which instances of these names are the same

individual. The large amount of name duplication and the lack of mechanism for disambiguating

indicate the magnitude of the challenge that our project aims to solve.

Author Name Consolidation

When working with this same dataset, McGovern et al. (2003) use only a heuristic approach to

consolidating author names and do nothing to attempt disambiguation. Their resulting dataset of

1
 Details of the dataset can be found at http://snap.stanford.edu/data/cit-HepPh.html

2
 http://arxiv.org/help/api/index

3
 This does not imply 77,507 individuals, simply that this many names can be found as author or co-authors of

papers.

4

9,200 author names has subsequently been mistakenly used as the benchmark for the oft-cited

entity-resolution work of Bhattacharya and Getoor (2007). Lacking access to McGovern et al.’s

consolidated dataset (and to some additional attributes that would help to re-create it), we follow

a similar approach, but choose a simpler consolidation strategy. Using python’s difflib library,

we match names on the full string with different cutoff points to group together authors with

similar names. We used a fairly strict cutoff of 0.95. This cutoff can be thought of as roughly a

percentage-string similarity, where names are grouped together if they are very similar to each

other according to this threshold. The resulting set has 14363 unique author names (534 names

were consolidated). This reduced list provides a useful starting point for attempting

disambiguation.

Without disambiguating, but after consolidation, we observe that most author names have

published few papers (3,432 names have a single paper), while a few names have published

many papers (19 consolidated names have over 100 papers attributed to them).

4. Method and Algorithm Descriptions

Our basic approach is to first apply the dynamic moving window technique to the full citation

dataset to extract time-based subgraphs. Second, we find communities in each time window

using a community detection algorithm, with the goal of determining topic-based communities.

We use the communities to construct a meta-graph that describes community evolution over

time. Our approach is based at using the information embedded in both the communities at each

time point and the constructed community evolution graph to identify individuals from the

existing author names.

Dynamic Moving Window

As scholars move through their careers, they may enter and leave different communities within

their field. As such, we track the changes in the communities over time by using a dynamic

sliding window. With this approach, algorithms are run once for each year and, for every given

year, we will analyze a sub-graph composed of the union of the following three sub-graphs: (1)

G1 = nodes corresponding to all the papers published in the given year; (2) G2 = nodes

corresponding to all the papers published within x years of the papers in G1, where x is the

median age of the citations found in the papers of G1; and (3) G3 = all the nodes (papers) and

edges (citations) directly connected to G1 and G2, regardless of publication date. This dynamic

window approach is similar to that proposed by Shwed & Bearman (2010).

By tracking the community detection algorithms over the evolution of the network, we have a

point of comparison to the results of the same community detection algorithms over the entire

corpus. It is possible that some communities remain stable through time, thereby appearing in the

whole dataset. Other communities may appear or disappear as specific groups are created or

dissolved throughout the ten year window spanning the dataset.

The dynamic moving window approach provides a finer level of granularity for detecting

communities and attempting author disambiguation. While a specific author may belong to

multiple communities within high energy physics, it is less likely (though not impossible) that he

or she will belong to very different ones in a given time window. By dividing our dataset into

5

subgraphs using these windows, we observe an strong edge effect caused by the data from before

the creation, and popularization, of arXiv.org.

The grouping of the data into time windows is illustrated in Figure 1. Figure 1(a) shows the

increasing length of the median citation age, with all years before 1997 having a median age of

one year, those between 1997 and 2001 having a median age of two years, and the last two years

having a median age of three years. It is likely that the true median is at least three years, and that

the first few years of data are lowered by missing data. Figure 1(b) corroborates this story, as we

see an increasing number of papers per year in each moving window, increasing linearly over

time, with a slight drop-off for 2003, likely caused by the fact that the dataset ends with papers in

April 2003.

(a) (b)
Figure 1. (a) median citation age per year. (b) Number of articles in each dynamic window.

Community Detection Analysis

Network communities are sets of nodes with many connections inside the group of nodes and

few connections to the rest of the network. After consideration of several community detection

approaches, we tested the applicability of three well-known community detection algorithms:

Rosvall & Bergstrom’s (2010) Infomap, Clauset et al.’s (2004) agglomerative modularity

maximization algorithm, and Newman’s (2006) spectral modularity maximization algorithm.

Infomap

For the Infomap algorithm, we downloaded the version on the paper’s companion Website

mapequation.org, written in C. To run this algorithm, we read our graph’s edge list using

NetworkX and re-wrote the graph in Pajek format, used to input data to Rosvall & Bergstrom’s

implementation. All year subgraphs were processed in less than half an hour on a 2.0 GHz laptop

with 2 GB of RAM. The resulting output files, written in Pajek form, could then be parsed in

python to create a representation of the communities.

The Infomap algorithm generates significance clusters and alluvial diagrams to map change in

networks. It works as follows: (1) cluster the original networks for each time point, partitioning

the network into non-overlapping modules; (2) generate and cluster the bootstrap networks for

each time point, using a parametric bootstrap technique; (3) for each time point, identify journals

6

that are significant in their own clusters and clusters that are significantly distinct from other

clusters; (4) generate an alluvial diagram to illustrate changes between the time points.

The clustering method, used in steps (1) and (2), uses the map equation as an objective function

and a new algorithm to partition the network by minimizing the expected description length of a

random walk across the network. To generate a bootstrap replicate network of the original

network in step (2), each link weight is resampled from a Poisson distribution with the mean

equal to the link weight in the original network. Approximately 1,000 of these bootstrap

networks are created. Step (3), the significance clustering step, uses simulated to annealing to

search for the largest subsets of journals in the bootstrap networks to identify significant

journals, and to search for clusters whose significant subset is separated from other significant

subsets in the bootstrap networks to identify significantly distinct clusters.

Agglomerative Modularity Maximization Algorithm

For the Clauset et al. algorithm, we first attempted to write our own version from scratch in

Python, since there was no NetworkX module available. Unfortunately, due either to

programmer error or a bad heap/queue implementation, we could not run the algorithm on large

data without getting a segmentation fault. We then discovered an implementation of the

algorithm distributed with SNAP. SNAP is capable of reading in the dataset’s original edge-list

and produces an output that could be parsed in a similar way to Infomap’s output communities.

Both the agglomerative modularity maximization algorithm and the spectral modularity

maximization algorithm use the modularity score as a fundamental metric to measure the quality

of of the community partitioning of a graph. Newman & Girvan (2004) define modularity as a

measure of the quality of the division of a network into communities, where a good division is

characterized by many edges within communities and only a few between them. Mathematically,

modularity can be expressed in terms of a matrix computation.

First, we define a k x k symmetric matrix e. Each element eij of matrix e is the fraction of all

edges in the network that connect vertices in community i with vertices in community j. The

trace of matrix e, Tr e = ∑ , is the fraction of network edges that connect vertices within the

same community. Next we define row or column sums ai = ∑ . The ai are the fraction of

edges in the network that connect to vertices in community i. Modularity is defined as
∑

 = Tr e - ||e||
2
, where ||x|| is the sum of the elements in the matrix x. Intuitively,

this modularity definition represents the fraction of within-community edges minus the expected

value of the within-community edges in a network with the same community divisions, but

random connections between vertices. Q can take on values from 0 to 1, where Q = 0 means that

the number of within-community edges is equivalent to the number in a random network, and

values close to Q = 1 mean that there is strong community structure.

The agglomerative modularity maximization algorithm employs a bottom-up approach, starting

with every node in its own community and at each step merging communities that provide the

best increase in modularity. The algorithm runs until the entire graph is one community, keeping

track of the merges along the way in the form of a dendrogram. Then, one can backtrack to find

the optimal cut in the dendrogram, which will produce a set of communities that maximize the

modularity of the graph. The algorithm also makes clever use of balanced binary trees and max

7

heaps to ensure that calculations are only being done on non-zero cells of the adjacency matrix

instead of the entire sparse matrix.

Spectral Modularity Maximization Algorithm

We implemented our own version of Newman’s spectral modularity maximization algorithm,

based on the implementation currently available in Ben Edwards’s NetworkX community

branch, with the Leicht and Newman extensions for directed graphs. The base algorithm divides

graphs into two communities, however, our interest in producing smaller communities required

an implementation to recursively divide each community until no improvement in modularity

could be found. The resulting code, currently only available in this project’s repository, will be

contributed to the NetworkX open source project and represents a meaningful code contribution.

Details of the implementation can be found in the code repository.
4

The spectral modularity maximization algorithm is based on spectral graph partitioning and

utilizes eigenvector decomposition of the modularity matrix, a modified graph adjacency matrix.

The algorithm functions as follows: (1) a pre-processing step constructs the matrix

representation, (2) a decomposition step computes the eigenvalues and eigenvectors, and maps

each node to a lower-dimensional representation based on the eigenvector grouping, and (3)

assign nodes to one of two clusters based on the new lower-dimensional representation.

To divide a network into more than two communities, the approach described in Newman (2006)

is to continue dividing into groups of two, until a proposed division makes a zero or negative

contribution to the modularity of the network, in which case that subgraph is not further divided.

When dividing any of the subgraphs in the network no longer improves the overall modularity,

the algorithm terminates. In this paper, Newman proposes a definition of a community as an

indivisible subgraph, based on the modularity score.

Leicht and Newman (2008) extend the modularity maximization approach to incorporate

information contained in edge directions. Since our citation network is directed, we implemented

this extension in the spectral modularity maximization algorithm. The intuition behind

incorporating edge directions is that the “surprise” of a seeing a particular edge, which

modularity captures by comparing the actual number of edges between communities to the

expected number, should take direction into account. If node A has high in-degree and low out-

degree, and node B has high out-degree and low in-degree, then it should be more surprising to

see an edge from A to B and less surprising to see the opposite.

Evaluating Communities

In an attempt to understand the content of the communities, and to see if the detected

communities are topically related (as we expect intuitively), we apply a technique known as

latent semantic indexing (LSI). We have used LSI both to create clusters and to evaluate the

clusters produced by the algorithms described above.

We applied LSI on the metadata available for our dataset: titles and abstracts. In LSI, the text is

first tokenized and filtered to remove words that belong to a manually created stop word list

4
http://code.google.com/p/cs224w-citation/source/browse/trunk/networkx-

community/networkx/algorithms/community/partition_recursive.py

8

(consisting of articles, conjunctions, common prepositions, and other words that provide no

indication of content). After this we reduce tokens to their stemmed versions by using the Porter

stemmer. This leaves many smaller words unchanged, but converts forms of words to a common

root - e.g. symmetric and symmetrically would both be stemmed to symmetri. Finally, we throw

out all tokens which only appear once in the corpus (or, collection of all the tokens from all the

text). Now each paper can be represented by a feature vector, in which the terms from the corpus

are the positions and the number of occurrences of that term in the paper title/abstract are the

values. In practice, we want to use a reweighted value instead of a raw term count. We tried two

common reweighting methods to convert our raw counts. The first is called Term Frequency -

Inverse Document Frequency (TF-IDF), and encodes the idea that a term that appears in nearly

every document (“physics”, perhaps for this collection) is not as useful in distinguishing between

documents as a rarer term. TF is in this case just the raw term counts, and is multiplied by IDF.

IDF is calculated by taking the log of the total number of documents over the number of

documents that contain the term in question. The second method is log-entropy. Here, instead of

raw counts we take the log of the term count + 1, the log portion of the equation, and multiply by

the entropy portion of the equation. The entropy portion is calculated as

 ∑

Here pij is the probability of word i appearing in document j, which is empirically given by the

raw count of term i in document j, over the number of times term i appeared in the whole corpus.

From these feature vectors, we were able to use LSI to find the most common topics across the

collection of abstracts, along with the words that contribute to those topics. We then assign each

abstract to the category for which it scores most highly based on its constituent terms. We then

tried to overlay this category metadata onto the nodes in our network, and look at the topical

homogeneity of the communities that are detected by each algorithm. The results of this are

further discussed in the Results section below.

We also take advantage of the temporal nature of our dataset by comparing clusters over time.

We use the dynamic moving windows as a unit of study and look at how papers move between

communities over time. Since each time window contains papers from, at the very least, all

papers from the year before, it is possible to see paper x’s cluster at time ti and again at ti+1. With

random clusters, we expect a community of papers at time ti to be randomly distributed among

the communities at time ti+1. However, we observe that the clustering algorithms consistently

place the same papers into the same communities over time.

We calculate the proportion of papers that stay together in a community by constructing a cluster

evolution weighted-directed graph C. In this graph, each node is a community and we place an

edge between communities that have papers in common between communities at time ti and time

ti+1. The weight of each edge is defined by the number of papers shared by each community.

More precisely, this graph is defined by the following algorithm:

#initialize graph with one node for each community and time year

for t in years:

 for c in communities[t]:

 add node(t,c)

9

now add edges

for t in years:

 for clusters_at_ti in communities[t]:

 for clusters_at_ti_plus_1 in communities[t+1]:

 intersection=set intersection(cluster_at_ti,

cluster_at_ti_plus_1)

 if intersect > 0:

 add edge (cluster_at_ti, cluster_at_ti_plus_1, weight=size of

intersection)

We calculate the proportion of nodes that stay together by taking the maximum of the outgoing

edge weights for each community node. For example, if community #1 at t=1992 (hereafter,

c[1992, 1]) has 10 papers and c[1993,1] has 8 of those papers, c[1993,2] has 1, and c[1993,3] has

1, then we say that the proportion of nodes that stay together is 0.8.

Author Disambiguation

Finally, we use the communities detected through the previously described algorithms in order to

disambiguate authors. The intuition is that instances of an author’s name are more likely to refer

to the same person within the context of a given community than in the entire corpus. We also

assume that within the time period of a year it is unlikely for an author to publish papers in many

different topics, and so it is likely for the nodes representing that author’s papers to lie within the

same community. We therefore take a given time window and say that if a (consolidated version)

of an author’s name appears multiple times in the same community, it belongs to a single person.

If the same name appears in different communities within the same time window, it belongs to

different persons who share the same name.

Figure 2. Author disambiguation on cluster evolution sub-graph.

We subsequently use the cluster evolution graph C, described above, to track people’s movement

between communities over time. At time ti we identify all the different persons with similar

names. We subsequently consider all people with the similar names who are connected in the

cluster evolution graph to be the same individual. At each time step, any names that have not

been labeled as an already-found person are considered a new person. Figure 2 shows a

simplified version of the cluster evolution graph, with communities that contain three similar

names (j smith, joe smith, and john smith). Each square represents a community at a given time

10

window, the edges represent communities that share members between time periods, and the

colors represent individuals. In this example, the algorithm would detect three individuals that

share similar names.

5. Results and Discussion

Evaluating Communities

Results of running LSI on the title/abstract of the papers looked initially unpromising. The vast

majority (20,000-25,000) of the papers were being clustered into one topic, while the others were

grouped into clusters ranging from a few papers to a few hundred. When we discovered that the

results of the graph-based community detection algorithms were giving us a similar distribution

of a few disproportionately large communities with many small communities, we began to think

that perhaps the LSI results could be showing us a compatible view of our community structure.

So, for each community detected by the graph-based algorithm, we determined which LSI-

discovered topic had the most associated nodes present. What we would have liked to see is

many of the small communities matching up with small topics, but unfortunately the majority of

the communities had the one large topic as their main topic (determined by plurality). This does

not necessarily mean that our detected communities are poor, but it does cast some doubt on our

assumption that the communities we detected would have some underlying topical homogeneity.

Of the three community detection algorithms that we used, the Infomap and agglomerative

modularity maximization algorithms gave somewhat reasonable results, dividing the dynamic

window subgraphs into a number of communities of various sizes. The spectral modularity

maximization algorithm with edge directions, however, gave extremely poor results. For most of

the subgraphs, the algorithm left the network undivided, or only divided into two communities.

The modularity scores of these community division were very low, generally less than 0.1,

indicating that community structure was essentially absent from these networks. Further, the

Python implementation was extremely memory intensive, making it difficult to run the algorithm

on the larger subgraphs. Consequently, we have not included the results of the spectral

modularity maximization algorithm in this section.

(a) (b)
Figure 3. Proportion of papers that stay together in clusters between years for (a) Infomap and (b) Clauset.

11

Figure 3 shows the proportion of articles that stay together in a cluster between years for both the

Infomap and the Clauset algorithms, as measured simply by the largest sub-community from one

year’s sub-graph that stayed together in the next year’s subgraph . While there is a good amount

of variance, especially in the Infomap graphs, both algorithms arguably do a good job of keeping

the same nodes grouped together from year to year. The Infomap algorithm appears to have a

slight edge based on our data, keeping between 65% and 85% of the nodes consistently in the

same community, whereas the Clauset algorithm keeps nodes in the same community between

60% and 80% of the time.

Figure 4. Comparison of Community Size Distribution between Clauset and Infomap Algorithms

Besides consistency of communities, we observed some interesting differences in the

characteristics of the communities detected by each of our community detection algorithms.

Figure 4 shows the community size distribution of our communities for the years 2000 and 2001

(all the other years have similar distribution profile). The cluster size distribution generated by

the InfoMap algorithm follows the same familiar power law distribution that is seen in other

properties of real-world graphs, such as degree distribution, strongly connected component

(SCC) size distribution, etc. The cluster size distribution generated by the Clauset algorithm is

characterized by a small handful of disproportionately large clusters, with the majority of clusters

being smaller than 10. Given that edges join papers that have cited each other, we had expected

12

communities to be topically similar. The existence of a small number of very large communities

is consistent with the intuition that, within a given discipline, the large majority of papers are

related to one another. However, the very large number small communities seems to break from

our assumptions of how communities would be formed, since it seems unlikely that there are

many papers not related to the rest of the field.

Even though the distribution of community sizes in Infomap looked “better behaved” than the

Clauset distribution, we believe that this is a function of the constraints of our network on the

Infomap algorithm, and not a measure of the goodness of the algorithm. Infomap uses random

walks through the graph and determines communities essentially by where it spends most of its

time (inter-community travel is less probable than intra-community travel). Since our graph is a

directed, acyclic graph (DAG), Infomap finds communities that are anchored by nodes with high

in-degree and comparatively low out-degree. These high in-degree nodes can be thought of as

sinks, where many random paths through the network consistently end up. These communities

are in contrast to the communities the algorithm would find in an undirected graph (or directed

graph with cycles), in which a random walker would revisit many of the same nodes in a given

walk. So, we propose that for a DAG, Infomap produces communities that are highly correlated

with the degree distribution of the network, hence the power law distribution of community size.

On the other hand, the communities detected by Clauset are based on maximizing modularity,

and hence tend to cluster together nodes with a more balanced in-out degree ratio. As an

example, for the 1995 year graph, we calculated the average in-degree to out-degree ratio in

communities. For Infomap this number was 1.398, while for Clauset this number was 1.021.

Author Disambiguation

The results for author disambiguation have not proven to be reliable, but show promise in several

regards. There is no known way to systematically evaluate the quality of the author

disambiguation through automated means, but a visual inspection of some of the data allows us

to understand the successes and failures of our approach. We tried the author disambiguation on

several different sets of names: those with the most number of variations, those with the most

number of papers, and a randomly selected set. The results of the top ten names on each of these

lists can be found in Appendix A, and are described in summary here.

We test our resulting data to see the average number of people detected for each name. We

expect the majority of names to be associated with a single person, since the most names are

unique. However, we observe that both clustering algorithms are overly aggressive in the

division of names into multiple people. In this measure, Figure 5 shows that Clauset consistently

produces fewer persons, regardless of the number of papers associated with that name. On

average, the Clauset-based clusters produce 3.0 persons per name, while the Infomap-based

clusters produce 7.5 persons per name. We subsequently turn to specific examples to gain a

better understanding of the structure of the cluster evolution graph and of the results of our

algorithm.

Due to the smaller number of papers per name, the randomly selected set of authors allows for a

more careful manual inspection of the author disambiguation approach. Upon observation, we

see several trends that emerge in both the Clauset and the Infomap results. After manually

verifying all of the papers for the 10 randomly selected authors under both sets of clusters, we

13

found no instances where the algorithm incorrectly identified two different people as the same

person (based on additional information we could glean from looking at the paper itself, namely

the author’s affiliation). We note, however, that in one example in the sample, author Mihir

Worah, a subset of the papers contain two different affiliations (University of Chicago and

University of California at Berkeley) and yet our algorithm identifies the papers with both

affiliations as belonging to one person. Hence, our approach succeeds in a case that might prove

difficult for a system that puts an emphasis on attribute data.

Figure 5. Number of persons detected vs. number of papers published by that name

However, when looking at all the papers attributed to the name Worah, our algorithm run on the

Clauset communities, attributes this set to two people, despite the fact that all the papers in the

dataset seem to belong to the same real person. Looking at the output from all of the datasets, it

becomes apparent that the majority of new persons detected are created in the early years where

the name appears in the dataset. That is, a single name appears in multiple clusters within a

single time window. This is contrary to our assumptions about individuals only appearing in a

single cluster due to only publishing in one community at a time. After our analysis, we can say

that the community detection algorithms analyzed do not, for a single time window, correctly

identify individuals. There appears to be a trend towards dividing the papers of a single

individual into multiple communities.

Despite this limitation, the cluster evolution graph approach shows promise for correctly

identifying individuals in subsequent years, especially in the case of the Clauset-based clusters.

We observe that the same name remains connected throughout the evolution of the clusters, and

is thus not split into many people, even for names associated with many papers in many clusters.

If names were randomly distributed among the papers, and our algorithm randomly associated

clusters, we would expect more people to be detected by our algorithm.

We were unable to identify instances where the same name belonged to two different

individuals, except in the cases where our consolidation strategy had been overly aggressive. In

Appendix A, we include a sample that uses a less strict name consolidation strategy (cutoff =

0.8). This consolidation strategy groups names that are evidently not the same person, yet, our

algorithm does not succeed at separating out the different individuals.

14

In short, the author disambiguation approach is successful at grouping together many of the

papers produced by the same name, especially in later time windows. In its current form, our

implementation only ever separates a name into multiple individuals and does not allow for

individuals to be joined together into a single person. Considering the shortcomings of our

approach, especially for the earlier years, we might explore the possibility of merging individuals

beyond the first time window.

Our approach was hindered by the number and size of the detected communities in each time

window. The existence of a few very large communities and many small ones at each time

window groups together many instances of a given name as a single individual, and increases the

probability of linking to the largest cluster in the following time window.

6. Future Work

The communities that were detected in our citation network were not suitable for doing author

disambiguation the way we had originally envisioned. However, our study shows that there is

value in detecting communities, constructing a cluster evolution network, and using the network

structure for the purposes of disambiguating authors. One future avenue of work to explore

would be using community detection to develop features for a classifier-based or hybrid system.

One could use a Boolean feature of whether or not the pair of names in question are in the same

community, or even come up with some notion of distance between communities. For example,

if citation networks do tend to have one or only a few large central communities, then perhaps

only the peripheral communities are actually meaningful. We could then calculate the shortest

path through the central “community” between two peripheral communities as a proxy for

measuring how closely related those two communities are.

Given the propensity for our algorithm to split names into multiple people (when in fact, the

name belongs to a single person), it would be valuable to explore strategies for merging names

back into individuals in subsequent time windows. Merging names in future windows would

address the issue that the first time windows do not benefit from the information implicit in the

cluster evolution graph.

We also believe that there is still a benefit to looking at the topical similarity of papers within

time windows, and that once again this might serve best as a feature for a classifier or smaller

piece of a larger hybrid system. One possible approach would be to look at the kind of clustering

that occurs when we apply LSI to a citation network of a much more topically diverse nature.

We had originally intended to use the ISI Web of Science citation network for the purposes of

this project, but could not obtain permission to use the data. We think that we would see much

better results, in terms of well-formed topical communities, if the pool of papers were not all

from a highly specialized field such as high-energy physics phenomenology.

15

References

1. Bhattacharya, I. and Getoor, L. 2007. Collective Entity Resolution in Relational Data. ACM

Transactions on Knowledge Discovery from Data, 1(1), Article 5

2. Clauset, A., Newman, M. E. J., and Moore, C. 2004. “Finding community structure in very

large networks.” Phys. Rev. E 70, 066111

3. Girvan, M. and Newman, M. E. J. 2002. “Community structure in social and biological

networks.” Proc. Natl. Acad. Sci. USA 99, 7821–7826

4. Kang, I.S., Na, S.H., Lee, S., Jung, H.,Kim, P., Sung, W.K. and Lee, J.H. 2009. “On co-

authorship for author disambiguation.” Information Processing & Management, 45(1): 84--

97.

5. Leicht, E. A. and Newman, M. E. J. 2008. ‘‘Community Structure in Directed Networks.’’

Physical Review Letters 100:118703.

6. McGovern, A., Friedland, L., Hay, M., Gallagher, B., Fast, A., Neville, J., and Jensen, D.

2003. Exploiting relational structure to understand publication patterns in high-energy

physics. ACM SIGKDD Explor. Newsl., 5(2):165–172.

7. Newman, M. E. J. 2004. “Fast algorithm for detecting community structure in networks.”

Phys. Rev. E 69, 066133

8. Newman, M. E. J. 2006. ‘‘Modularity and Community Structure in Networks.’’ Proceedings

of the National Academy of Sciences of the United States of America 103:8577–82.

9. Newman, M. E. J. and Girvan, M. 2004. “Finding and evaluating community structure in

networks.” Phys. Rev. E 69, 026113.

10. Rosvall, M. and Bergstrom, C.T. 2008. “Maps of random walks on complex networks reveal

community structure.” PNAS 105: 1118–1123

11. Shwed, U. and Bearman, P. S. 2010. “The Temporal Structure of Scientific Consensus

Formation.” American Sociology Review, 75: 817

12. Zhang, D., Tang, J., Li, J., and Wang, K. 2007. “A constraint-based probabilistic framework

for name disambiguation.” In Proc. sixteenth ACM conference on Conference on information

and knowledge management (CIKM '07). ACM, New York, NY, USA, 1019-1022.

