Collaborative filtering models for recommendations systems

Nikhil Johri, Zahan Malkani, and Ying Wang

Abstract— Modern retailers frequently use recommen-
dation systems to suggest products of interest to a
collection of consumers. A closely related task is ratings
prediction, in which the system predicts a numerical rat-
ing that a user u will assign to a product p. In this paper,
we build three ratings prediction models for a dataset of
products and users from Amazon.com and Yelp.com. We
evaluate the strengths and weaknesses of each model, and
discuss their effectiveness in a recommendation system.

I. INTRODUCTION

In this paper, we focus on collaborative filtering
methods for recommendations. Collaborative filtering
is the term applied to techniques that analyze the
relationships between users and products in a large
dataset and make recommendations based on existing
connections between nodes [1]. One common technique
in collaborative filtering is to use existing connections
to make judgments about similar products and users.
Similarity depends only on history — for example, two
users may be similar if they have purchased many of
the same items, so one user’s rating can be used to infer
a rating for another.

The alternative to collaborative filtering is content
filtering, which creates features for users and products
to assess compatibility. These features, which in a book
recommendation system might be things like genre or
subject, will be scored for both users and products [1].
This makes content filtering highly domain-specific.
In contrast, collaborative filtering does not need to
create such features, so it is domain-independent. It is
sufficient in collorative filtering to have only a matrix
of users to products, where each entry in the matrix is
some scalar indicator of the past relationship between
a user and a product.

A. Previous Work

Collaborative filtering has enjoyed a long popularity
in recommendations tasks. It was first used commer-
cially in 1992 in a system called Tapestry to rec-
ommend newsgroup messages to readers [4]. In this
system, feedback and annotations from existing user-
document relationships are used to select interesting
documents for other users. This system first uses the

term collaborative filtering to indicate that people
implicitly collaborate by recording their reactions to
documents, enabling others to make decisions based
on those reactions.

Our work is based on two broad categories of
collaborative filtering: similarity methods and matrix
factorization [6]. Similarity methods make recommen-
dations by comparing the similarity between users or
products. In a neighborhood-based similarity model,
users are compared to each other to determine their
nearest neighbors based on their histories. Then, to
make a prediction for user u’s opinion on product p,
the model looks at the opinions of the neighbors of
u regarding p. Another similarity model is the item-
based model, which examines item similarity instead
of user similarity. This approach has been the basis for
Amazon’s own recommendation engine [5]. Its advan-
tage is that product similarities can be computed offline,
and when a user needs a product recommendation, the
system performs a fast lookup of items similar to ones
in the user’s history . This speed has been beneficial
for scalability in Amazon’s large purchase network.

The second type of collaborative filtering is model-
based methods, in our case, matrix factorization. Matrix
factorization does not use history to model similarity
like the previously discussed models. Instead, it uses
past ratings to estimate the parameters of a statistical
model for user-product relationships [2]. Users and
products are represented as vectors in a latent vector
space R/. A numerical estimate for the opinion of
user u on product p can be obtained by taking the
cross product of vectors for u and p. The values of the
latent dimensions are learned during a training stage
by minimizing the error between known and predicted
ratings.

Modern recommendation systems are often a combi-
nation of collaborative filtering, content-based filtering,
and matrix factorization. One way to create a hybrid
model is simply to take the outcomes of several ap-
proaches and merge them by taking a weighted aver-
age. Other hybrid techniques incorporate the previously
discussed models with other machine learning methods,
such as classification [6]. The ways to combine the

approaches are numerous, and it is common for a
recommendation system to incorporate a large number
of strategies. The top entrants in the Netflix Prize used
a hybrid algorithm with over 100 techniques [3].

B. Our project

This project explores some of the most popu-
lar ratings prediction methods using a dataset from
Amazon.com. The dataset, described in Section [}
contains product purchase metadata of over 500,000
DVDs, music albums, books, and videos. We use both
neighborhood-based and matrix factorization methods,
described in Section and we discuss our findings
in in Section Based on our experiments, we hope
to shed light on the nature of the recommendation task
and the strengths of each of the models.

II. DATASET

We consider two data collections for this project.
The first is a set of business review information from
Yelp.com. The second is a collection of Amazon
product purchase metadata from the Stanford Large
Network Dataset Collection.

A. Yelp Academic Dataset

Yelp.com is a review aggregator site where users
review local businesses. The dataset contains informa-
tion about several different types of business venues
including restaurants, shops, nightlife, and beauty spas.
A reviewer assigns a 1-5 star rating to a venue and
writes a text review. Other members then have the
opportunity to vote on the usefulness of the review
(positive votes only).

The statistics of this dataset are show in Table [II

Users 65,888
Reviews 152,327
Businesses 9600
Median reviews per user 1
Median reviews per business 6
Average rating given Mean = 3.64, Median = 4
in a review Mode = 4, STD = 1.21

TABLE I
YELP.COM DATASET STATISTICS

Unfortunately, we found this dataset too small for
meaningful experimentation with our algorithms: it
consists of a total of 7500 businesses, but the businesses
come from 30 distinctly different geographies. There
is little cross-geographic interaction between users and

businesses, which adds to the sparsity problem that is
already common in such datasets.

For our project milestone, we modeled the Yelp data
using a bipartite graph with users and businesses as
vertices and reviews as edges. We built our system to
predict the numerical value of the star rating that a user
would assign to a business. As discussed in Section [[V]
our models performed poorly on this dataset, which led
us to switch to the Amazon dataset.

B. Amazon full dataset

The Amazon dataset is considerably larger, with over
500,000 product descriptions, including product title,
salesrank, and ratings information. For our project, we
are mainly concerned with the ratings assigned by users
to products. We parsed the dataset to a bipartite review
graph whose nodes are products and users and edges
are the ratings given by users to products. When we
extracted the relevant data, we found many duplicate
entries where a user u has reviewed a product p several
times, sometimes assigning different ratings each time.
After eliminating the duplicates, we reached a dataset
with properties shown in Table

Users 1,555,171
Reviews 6,285,389
Products 548,551
Median reviews per user 2
Median reviews per product 2
Average rating given Mean = 4.15, Median = 5
in a review STD = 1.2567

TABLE II
AMAZON.COM DATASET STATISTICS

Figures [T| and [2] show the review count distributions
for users and products in the Amazon dataset. Figure [3]
shows the distribution of star ratings. We see that the
user and product distributions follow power laws, while
star ratings skew towards the high end with a bimodal
general form.

Switching to the Amazon dataset provided several
benefits:

e The number of edges in the graph higher is more
one order of magnitude higher than in the Yelp
dataset.

o There is no geograhic isolation between groups of
users and products

o The graph is less sparse for users, with a median
review count of two instead of one

For these reasons, we focus this paper mainly on
discussions relating to the Amazon dataset.

Distribution of reviews per user

10 T T

Fraction of users

Review count

Fig. 1. User review count distribution

Distribution of reviews per product
10 T T T

Fraction of products

10° 10 10° 10 10
Review count

Fig. 2. Product review count distribution

C. Amazon high activity dataset

The Amazon dataset improves on the Yelp dataset,
but it is still fairly sparse — the median user has
only 2 reviews. We wanted to experiment on a denser
dataset to see how density affects model performance.
As a result, we created a third dataset from a high-
activity subset of the full Amazon dataset. This dataset
comprises all products and users with a review count
of greater than 5. Though this subset does not reflect
the real world, it allows us to gain insight on the
significance of the sparsity problem. The characteristics
of this dataset are listed in Table

Distribution of ratings

Fraction of ratings
o o o o o o
n w = (6] (o] ~
T
L

o

3
Number of stars

Fig. 3. Star rating distribution

Users 89,322

Reviews 3,250,502

Products 174,601
Median reviews per user 14
Median reviews per product 9

Average rating given Mean = 4.11, Median = 5
in a review STD = 1.24

TABLE III
HIGH ACTIVITY AMAZON SUBSET STATISTICS

ITI. MODELS

We wish to user our models to predict the star rating
a given user would assign to a given venue or product.
To begin, we model our training data as a bipartite
graph, where each user is connected to an item if the
user has reviewed that item. The weight of the edge is
the star count associated with that review. The goal of
our model is that for a (user, item) tuple without an
existing review, we will be able to predict the strength
of the missing edge.

In this project, we implement three collaborative fil-
tering algorithms on our datasets to solve this modified
bipartite graph inference problem. Our first model, the
neighborhood-based collaborative filtering approach,
focuses on similarity between users. The second model
is item-based collaborative filtering, which utilizes sim-
ilarity among products rated by the same user. Finally,
our third model assumes a hidden similarity layer exists
between users and items, and attempts to learn this
using stochastic gradient descent. Further details about
these models are outlined below.

A. Neighborhood-based model

In this algorithm, we predict ratings for a user based
on the known ratings from similar users. The steps are
outlined below:

1) For a given user i, calculate similarity between
this users and all other users.

2) Represent the dataset as a sparse matrix of
businesses and users, with values in the matrix
being the ratings assigned by the users to the
businesses. Take the cosine similarity between
the vectors of two users.

3) Select the k nearest neighbors of i based on this
similarity measure

4) Compute a predicted rating for i based on a
weighted combination of the nearest neighbors.
ratings

While running this model, we sometimes find users

with no ratings history except for the one rating we are
trying to predict, or we find users whose neighbors have
never rated the product in the prediction. When this
happens, we have the neighborhood predict a default
value of four.

B. Modified neighborhood model

Given the sparsity of our datasets, we also try a vari-
ation of the neighborhood based collaborative filtering
approach, in which instead of simply selecting the k
nearest neighbors for a user, we select the k nearest
neighbors out of those who have rated the product. This
works poorly for items that have fewer than k reviews,
as we end up simply calculating the average of the
scores assigned to those items. When no neighbors can
be found, this algorithm becomes useless, so we skip
those particular predictions. Our motivation for using
this variation is that these changes might alleviate the
“cold start” problem when users have no history.

C. Item-based model

Sarwar, et al.[7] take a item-base collaborative fil-
tering algorithms, which, focusing on the similarities
between items rather than users. In a similar vein, we
also use the graph structure in the bipartite graph of
users and businesses to compute a similarity metric
between businesses. The motivating intuition is that
users are likely to rate similar businesses comparably,
yielding a better prediction for the (user, business) pair
than the neighborhood-based method.

Considering the item-space rather than the user space
takes care of some crucial problems. Namely, the search
for similar users in the high-dimensional space of user

profiles over the large set of all Yelp.s users is pro-
hibitively computationally expensive. It also partially
takes into account a missing data problem regarding
new user profiles that have comparatively few ratings
for businesses.

The steps involved in item-based collaborative filter-
ing are as follows:

1) When considering the (user, item) pair, calculate
similarities between the target business and each
of the items the user has rated previously

2) Use cosine similarity and use all of the ratings for
a particular item over the user space as the feature
vector to measure similarity between items.

3) Look for the k nearest neighbors to the target
item from among the set of items the user has
rated previously

4) Take a weighted average of the selected k items
to compute a prediction of the rating for the target
item

When we encounter examples with no history,

we again predict a default value of 4, as in the
neighborhood-based model.

D. Matrix factorization

In our final model, we predict ratings by estimating
parameters for statistical models for user ratings. Un-
like the previous two methods which projected user
ratings based on user similarity or item similarity,
matrix factorization models assume that a similarity
layer between users and items is induced by a hidden
lower-dimensional structure latently present in the data.

If we associate each item i with a vector ¢; € R,
and each user u with a vector p, € R7, then we
can use the resulting dot product q;fpu to represent
the interest between user w and item . Here, we are
mapping both items and users to a unified Euclidean
space representing the network topology of the bipartite
graph. The problem then turns into a learning problem
where we attempt to learn the distribution vectors for
q;, pu- From those vectors one can infer the interest that
a user will have in an item from the simple dot product.

A number of methods can be employed to learn
these factor vectors for users and items. In their
work on Netflix recommender systems, Bell, et al. [3]
describe possible usage of two common approaches,
namely, stochastic gradient descent and alternating least
squares. Given the sparsity of our training set, stochas-
tic gradient descent is a suitable option, whereby we
compute, at each step, a prediction error e,; = ry; —
gl p, for each user-item training pair, and adjust our

parameters g;, p,, accordingly in the opposite direction
of the gradient.

IV. RESULTS AND DISCUSSION

In this section, we report the results of our models
on the Yelp dataset, the full Amazon dataset and on
the Amazon high-activity subset. We count a dataset
example as a 3-tuple of product, user, and star rating.
For each of the three datasets, we randomly shuffle
the examples and make train-test splits as shown in
Table [V

Num train | Num test
Yelp 137154 15173
Amazon (Full) 6277889 7500
Amazon (High activity) | 3246602 3900

TABLE IV
TRAIN/TEST SPLITS

We measure performance over the test sets using
root-mean-square error. The errors are normalized by
dividing by 4, the maximum difference between the
highest and lowest star ratings possible. However, in
the interest of preserving granularity for model com-
parison, predicted fractional ratings are not rounded to
the nearest integer before calculating the errors.

It should be mentioned that the proportion of test
items to train items for the Yelp dataset is much higher
than for the other two datasets. This is because after
switching datasets, we felt it was not necessary to test
10% of the dataset, especially when the Amazon graph
was much larger. We felt that 7500 and 3900 test items
for two Amazon datasets were sufficient, given that we
were now working with datasets that took much longer
to test.

A. Neighborhood-based model

1) Yelp dataset: Our first attempt at the
neighborhood-based model was on the Yelp dataset.
The results are shown in Table [V] and Figure [}

The neighborhood model’s performance on the Yelp
dataset is not impressive. The model performs better
than a baseline model that predicts 4 for every product,
but not better than another baseline model that predicts
the average rating given by all other users.

The error increases with &k at first, most likely
because adding less similar users dilutes the quality
of the similar users pool. However, as we increase k to
over 50, the error decreases again. This means that the
model approaches the baseline of predicting the average
for all users.

Normalized RMSE
k=1 0.3143
k=3 0.3149
k=5 0.3155
k=10 0.3162
k =50 0.3189
k =100 0.3183
k = 1000 0.2993
Always predict 4 0.3137
Average of all other users 0.2723

TABLE V
NEIGHBORHOOD MODEL, YELP DATASET

Prediction performance on Yelp dataset

0.305

0.3

0.295

0.29 -

Normalized RMSE

0.285

—&— Neighborhood model
— — — Baseline: Predict 4 for all
— — — Baseline: Predict Average for each product

0.28 -

0.275

0.27 L I)
10
Number of neighbors, k

Fig. 4. Neighborhood model, Yelp dataset

The main problem with the Yelp dataset is its sparsity
— the median review count is one, which means that we
can expect over half our users in the test set to have
reviewed only one item. If we try to predict that rating,
we do not have any other history to go on. Therefore,
we cannot find an similar users by any reasonable
definition, and we just predict a default value of 4.

Since the neighborhood model is user-based, this
lack of similarity between users is especially bad.
We conclude that the neighborhood approach is not
effective on the Yelp dataset.

2) Full Amazon dataset: Next, we wanted to see if
having a larger dataset would change the neighborhood
model’s performance. We tested only & values under 25,
since having more than 25 neighbors just approaches
predicting the average and does not give insight about
the usefulness of close neighbors.

The results on the full Amazon dataset are shown in
Table [VI] and Figure 5]

Even though the Amazon full dataset is much larger

Normalized RMSE

k=1 0.3497

k=3 0.3374

k=5 0.3348

k=10 0.3262

k=25 0.3220

Always predict 4 0.3211
Average of all other users 0.3007

TABLE VI
NEIGHBORHOOD MODEL, FULL AMAZON DATASET

Prediction performance on full Amazon dataset

0351
—— Neighborhood model
0.345 — — —Baseline: Predict 4 for all
— — - Baseline: Predict Average for each product
0.34

0.335

7
S 033
o
o
£ 0.325
E
5 0.32+
=z
0.315F
0.31f
0.305F
03777777\ 77777 [— e |
0 5 10 15 20 25
Number of neighbors, k
Fig. 5. Neighborhood model, full Amazon dataset

than the Yelp dataset, it is still quite sparse: the median
review count for a user is 2. As a result, the Amazon
full dataset does not perform any better on this model.
An interesting thing to note is that this dataset does not
seem to have any initial rise in error with an increase in
neighbors. It starts with the highest error at £ = 1 and
declines steadily as we bring more people into the pool.
This suggests calculating user similarity using cosine
similarity is not at all helpful on Amazon; an item-
based method might fare better.

Another conclusion we can draw is that sparsity
does indeed matter more than dataset size. Even though
the Amazon dataset is one order of magnitude larger
than the Yelp dataset, there doesn’t seem to be a
performance gain because the model still does not beat
the baselines.

3) Amazon high-activity dataset: To test the sparsity
hypothesis further, we ran the neighborhood model on
the high activity Amazon dataset. The results are shown
in Table [VII] and Figure [6]

The high-activity dataset achieves remarkably good

Normalized RMSE

k=1 0.1352

k=3 0.1380

k=5 0.1410

k=10 0.1467

k=25 0.1549

Always predict 4 0.3049
Average of all other users 0.2513

TABLE VII
NEIGHBORHOOD MODEL, HIGH-ACTIVITY DATASET

Prediction performance on high-activity users and products

0.32
o3+
—&— Neighborhood model
0.28 — — — Baseline: Predict 4 for all
— — — Baseline: Predict Average for each product
0.26
T
S 0241
o
el
_‘é’ 0.22+
E
5 0.2r
P4
0.181
0.16 -
014} ././0//’./‘
0.12)
0 5 10 15 20 25
Number of neighbors, k
Fig. 6. Neighborhood model, high-activity dataset

performance. At every value of k, the model beats both
baselines. This confirms our hypothesis that sparsity
was at fault in the poor results on the Yelp dataset and
Amazon full dataset.

Furthermore, we see that error rises with k, which
is opposite to the falling shape of the curve in the full
Amazon dataset. This indicates that the error increases
as more neighbors of poorer quality are added, so using
the nearest neighbors as defined by cosine similarity
are indeed valuable. This trend is in contrast to the
Amazon full dataset, where most test users did not have
any meaningful history to calculate neighbors from,
resulting in a poor pool of neighbors.

4) Modified neighborhood model: We attempted the
modified version of neighborhood model, where in-
stead of simply looking for users similar to the user
being tested, we considered only those users who had
rated the product in question. We found the k closest
neighbors from this subset and made predictions based
on their ratings. The advantage of this was that we
would almost always have a rating to predict for a

(user, product) pair, since the neighborhood of the user
would always contain users who had rated the product
in question. However, we found that the resulting
predictions were often closely mirroring the average
rating of the product, as one would expect, and did not
perform better than the regular neighborhood model.

5) Summary of neighborhood models: In these mod-
els, we learned that the user-similarity approach of
neighborhood models does not work well in sparse
datasets where users have few edges. Unfortunately,
most large datasets are sparse, so it is unlikely that
we will see good performance from the neighborhood
model like in the Amazon high activity dataset. Another
unattractive quality of the neighborhood model is that it
is slow. Although there is no training involved, we need
to calculate user u’s similarity with all other users at
test time. This is a time-expensive procedure unless we
store all pairs of similarities ahead of time. Based on
its poor accuracy and speed, the neighborhood-based
model is not the best choice to be used alone in a
recommendation engine.

B. Item-based model

1) Full Amazon dataset: The results of the item-
based model on the full Amazon dataset are shown in

Table [VITI] and Figure

Normalized RMSE

k=1 0.1972

k=3 0.2099

k=5 0.2185

k=10 0.2284

k=25 0.2339

Always predict 4 0.3211
Average of all other users 0.3007

TABLE VIII
ITEM-BASED MODEL, FULL AMAZON DATASET

Compared to the neighborhood-based model, the
item based model performs far better on the full
dataset. Prior work has stated that item-based models
were specifically created for sparser datasets [5]. One
possible explanation for this is that users with several
reviews are likely to have a wider range of ratings; on
the other hand, a user with only two or three reviews
is likely to have bestowed the same rating upon all
items he or she has reviewed. As a result, when trying
to make a prediction in a sparse context, it is far
more useful to consider the small number of ratings
provided by the user in question, rather than trying
to use this limited set of ratings to find similar users

Prediction performance on full Amazon dataset

—— ltem-based model
— — — Baseline: Predict 4 for all

032F ~~ -~ -~ - oo

— — — Baseline: Predict Average for each product |-

25

Normalized RMSE
o o
) D
(= =3
T T

=}

[N}

=
T

022

0.2

0.18 : ‘ ‘ ‘
0 5 10 15 20

Number of neighbors, k

Fig. 7. Item-based model, full Amazon dataset

and make a prediction based on them. Interestingly,
the performance of the model decreases with higher
values of k. This can also be accredited to the previous
explanation: a larger variety of ratings for a user would
imply more diversity in ratings. While the predictions
remain the same for low activity users, they get worse
for those with a lot of ratings. With smaller values of k,
we are averaging over ratings of a few products which
are similar to the one in question; with larger values, we
are looking at a whole array of ratings, which for high
activity users is bound to be very diverse, rendering the
average score less useful.

2) Amazon high-activity dataset: The results of the
item-based model on the high activity Amazon dataset
are shown in Table [[X] and Figure [§]

Normalized RMSE

k=1 0.3636

k=3 0.3172

k=5 0.3083

k=10 0.3024

k=25 0.2967

Always predict 4 0.3049
Average of all other products 0.2834

TABLE IX
ITEM-BASED MODEL, HIGH-ACTIVITY DATASET

As expected, the performance of the item-based
model decreases in the case of the less sparse, high-
activity dataset. While the neighborhood model per-
formed a lot better in this context, the item-based

25

Prediction performance on high-activity users and products

—— ltem-based model
— — — Baseline: Predict 4 for all
— — — Baseline: Predict Average for each product

0.36

0.34

o
w
R

Normalized RMSE
<)
w

0.26

0.24 L L L I |
0 5 10 15 20
Number of neighbors, k
Fig. 8. Item-based model, high-activity dataset

model falters, as it is now predicting averages over
more diverse rating sets. The phenomenon of the low
activity user with the same rating for all two or three
rated products no longer exists, removing the boost in
prediction the item-based model received in the sparser
dataset.

Additionally, the performance of the model improves
with an increase in the value of k from 1 to 3, and
stays fairly stable thereafter. This can be explained by
the fact that each user in this dataset has rated several
products, and basing their rating on one similar product
alone may not be enough, or may be too extreme. When
averaging out over a few related products, the perfor-
mance therefore increases. Unlike the sparse dataset,
however, there is no help from low activity users for
low values of k.

C. Matrix factorization

The last model we tried was matrix factorization.
When we ran this model on the sparser Yelp and Ama-
zon full datasets, gradient minimization was unable to
converge. Because the time of each iteration was too
long, and there were too many parameters to consider,
we focused on running this model on the high-activity
Amazon dataset.

1) Amazon high-activity dataset: The results of ma-
trix factorization are shown in Table [X] and Figure [0
We varied the number of latent dimensions (f) in
the user-product space to take into account overfitting
effects.

Normalized RMSE
f=10 0.2231
f=20 0.2280
Always predict 4 0.3049
Average of all other users 0.2513

TABLE X
MATRIX FACTORIZATION MODEL, HIGH-ACTIVITY DATASET

Prediction performance on high-activity users and products
031

—@— Matrix factorization model
— — — Baseline: Predict 4 for all
— — — Baseline: Predict Average for each product

0.28

0.26 -

Normalized RMSE

0.25-

0.24 -

25

/,.
-
022 ‘ ‘ s |
5 10 15 20
Number of latent dimensions, f
Fig. 9. Matrix factorization model, high-activity dataset

This model does fairly well on the high-activity
dataset, beating both the baselines, though it does not
perform as well as the neighborhood model.

As we suspected, a smaller number of latent dimen-
sions raised the RMSE on the training set but reduced
it on the test set. We did not use regularization in
this model, so perhaps the model suffers from a bit
of overfitting at f = 20.

It is worth noting that though we tried to run this
model with the regularization as mentioned in matrix
factorization papers [2], our model performed very
poorly with regularization. While the purpose of reg-
ularization is to avoid overfitting effects by penalizing
large parameter values, even very small values of A
(about 10~%) ended up interfering a great deal with
gradient descent. As a result, in our final factorization
method implementation, we ended up excluding regu-
larization altogether.

If we had more time and more computational power,
we would try to increase the number of dimensions
even more, at least into the hundreds. We would also
experiment with different regularization values, because

perhaps the correct combination of f and A is some-
thing we have not searched over yet. However, this task
is currently unfeasible on the Corn machines because
of memory requirements for high f. The timeframe of
trying each combination is also quite costly, which led
us to have only two successful trials. We believe the
potential of this model is still largely unexplored after
this set of experiments.

In a recommendation system, an attractive charac-
teristic of matrix factorization is its speed in making
predictions. Though training is costly, a prediction just
involves taking a dot product. However, the disadvan-
tage is that new users and products are hard to add, as
this would change the dimensions of the matrix.

V. CONCLUSION

In this project, we built three models for ratings
prediction:

1) The neighborhood model predicts ratings based
on ratings from similar users. We found that this
approach performs very poorly on sparse data
and is also slow due to the calculation of user
similarity at test time.

2) The item-based model makes predictions based
on item similarity. Its advantage is that product
similarity can be calculated offline, and the sys-
tem is less dependent on changes in users.

3) The matrix factorization model learns latent pa-
rameters for products and users. In our experi-
ments, the model had promising results on the
high-activity dataset, but was too slow for much
further experimentation. Though training is slow,
a trained model can make predictions quickly by
taking a dot product.

All three collaborative filtering models suffer from
the “cold start” problem, in which users with little or
no history have no basis for prediction. To address
this problem, it would help to combine collaborative
filtering with content-based filtering, in which users and
products have hand-annotated descriptions. This would
make for an exciting extension to our current project. In
fact, many of the real-world recommendation systems
today already use complex and interesting combina-
tions of the techniques in this paper.

REFERENCES

[1] Adomavicius, G., Tuzhilin, A. (2005). Toward the next gener-
ation of recommender systems: a survey of the state-of-the-art
and possible extensions. Knowledge and Data Engineering,
IEEE Transactions on , 17(6), 734- 749.

[2] Bell, R., Koren, Y., Volinsky, C. (2009). Matrix factoriza-
tion techniques for recommender systems. IEEE Computer

42(8):30-37

[3] Bell, R., Koren, Y., Volinsky, C. (2009). The
BellKor solution to the Netix Prize. Tech-
nical Report, AT&T Labs Research, 2007b.

http://www.netflixprize.com/assets/ProgressPrize2007_KorBell.pdf

[4] Goldberg, D., Nichols, D., Oki, B., Terry, D. (1992). Us-
ing collaborative filtering to weave an information tapestry.
Communications of the Association of Computing Machinery,
35(12), 61-70.

[5] Linden, G., Smith, B., York, J. (2003). Amazon.com recom-
mendations: Item-to-item collaborative filtering. IEEE Internet
Computing, 7(1), 76-80.

[6] Melville, P., Sindhwani, V. (2010). Recommender
Systems. The Encyclopedia of Machine Learning.
http://www.prem-melville.com/publications/recommender-
systems-eml2010.pdf

[7] Badrul Sarwar, George Karypis, Joseph Konstan, and John
Reidl. 2001. Item-based collaborative filtering recommen-
dation algorithms. In Proceedings of the 10th international
conference on World Wide Web (WWW °01). ACM, New
York, NY, USA, 285-295.

VI. ACKNOWLEDGMENTS

We would like to acknowledge Jure Leskovec and the
teaching staff of Stanford’s CS224W for their advice
and support. We also thank Yelp for the Yelp Academic
Dataset, and Jure Leskovec for the Amazon dataset.

	Introduction
	Previous Work
	Our project

	Dataset
	Yelp Academic Dataset
	Amazon full dataset
	Amazon high activity dataset

	Models
	Neighborhood-based model
	Modified neighborhood model
	Item-based model
	Matrix factorization

	Results and Discussion
	Neighborhood-based model
	Yelp dataset
	Full Amazon dataset
	Amazon high-activity dataset
	Modified neighborhood model
	Summary of neighborhood models

	Item-based model
	Full Amazon dataset
	Amazon high-activity dataset

	Matrix factorization
	Amazon high-activity dataset

	Conclusion
	References
	Acknowledgments

