
Beyond community detection on undirected, unweighted

graphs

Vipul Pandey
vpandey1@stanford.edu

Juthika Dabholkar
juthika@stanford.edu

Rex Kirshner
rbk@stanford.edu

November 17, 2011

1 Abstract

Community detection has been rigorously ex-
plored for undirected and unweighted graphs,
and modularity has emerged as the most
prevalent metric for verification and opti-
mization. However, we have shown that
modularity is an inaccurate measure of
community structure for more complicated
graphs, in particular directed networks. We
came up with a metric based on the ratio
of cycles within and across communities. In
this paper, we also propose an extension of
this metric to directed weighted graphs and
discuss further extension to directed signed
networks.

Keywords - Community detection, directed
graphs, shortest cycles, weighted graphs, signed
graphs

2 Introduction

Community detection is a very important problem
in network analysis. The primary metric for identifi-
cation is modularity (number of edges falling within
groups compared to the expected number in an
equivalent random network). However, this metric
only generates and evaluates quality communities
in unweighted, undirected and unsigned networks.
While there have been proposals and extensions of
modularity to account for other types of graphs,
there are no good solutions to the problem.

This paper defines a new metric for community
detection, based on the number of cycles within a
community compared to the number of cycles across
ommunities. Intuitively, we are measuring the speed
at which information travels back to the source via
nodes within a community compared to the speed

at which information leaves a community and comes
back via nodes outside the community. Good com-
munities should have quick speeds within the com-
munity, but have low speeds ouside of the commu-
nity.

We also discuss extensions to directed weighted
and directed signed, although we do not rigorously
explore these avenues, instead leaving them for fu-
ture work.

3 Prior Work

Community detection on unweighted, undirected,
unsigned graphs has been well researched on and
various algorithms and measures for optimization
and verification of community structure have been
identified. The technique was introduced by Gir-
van and Newman using a betweenness metric in [6].
They also suggested the notion of modularity for
quantifying the effectiveness of a partition of the
graph. The metric of modularity (Q) proposed by
Girvan and Newman in [6], is defined as follows:

Q = Σi(eii − a2i ) (1)

Here eij is the fraction of edges in the network that
connect vertices in partition i to those in partition
j, and

aij = Σieij

In [3], the validation measure of modularity itself
was optimized using spectral techniques to arrive
at effective splits. It was proposed in both [3] and
[6] that these techniques can be trivially extended
to directed graphs and we can get the community
structure by just ignoring directionality of edges.

Modularity has has been shown to be a bad metric
for community detection for directed graphs because
it throws away edge direction information and com-
putes the modularity values based on the undirected

1



version on the graph. This removes valuable infor-
mation, and, especially in the cases we are interested
in, creates bad partitions. Besides, it is not trivial to
extend the metric to directed graphs since the ad-
jacency matrix for directed graphs is asymmetric.
However, Leicht and Newman [1] propose a tech-
nique for community detection in directed grpahs by
systematically transforming the directed (non sym-
metric) adjacency matrix to a symmetric matrix and
a slight variation of the spectral methods used for
the undirected case in [3]. They define the directed
version of modularity in terms of a suprise value
where a directed edge from a node of high in-degree
to a node of high out-degree is considered a big-
ger surprise and makes a bigger contribution to the
modularity score. The modified version of modular-
ity is defined as follows:

Q = (1/2m)sTBs (2)

Here, s is the vector whose elements define which
community each node belongs to, and B is the
modularity matrix with elements Bij = Aij −
(kini koutj )/m. Since this matrix B is not symmet-

ric, they add BT to B creating a symmetric matrix.
Thus, the new definition is

Q = (1/4m)sT (B + BT )s (3)

This can be solved using a similar technique as the
spectral technique proposed in [3].

4 Hypothesis

We believe that the same techniques and measures
as have been proposed for undirected graphs are
not as intuitive when we apply them to directed,
weighted or signed graphs. The intuition for this is
explained as follows:

In the directed case, consider the example (Figure
1) where one node accepts connections from a com-
munity, but does not give any back. Without taking
direction in to account, Z belongs in the community
with A, B and C. However, this does not make in-
tuitive sense. Example: a group of friends follows
Obama on Twitter.

4.1 Initial Experiments

For our initial experiments to verify our hypothesis,
we created a sample graph of 44 nodes, 300 edges.
The fictitious graph consisted of 4 subgraphs (of 10

Figure 1: Communities in directed graphs

nodes each) built on the small-world model, with
each node having an egde pointing to its neighbors
and neighbor of neighbors. Additionally, within
each subgraph, we added 10 short range random
links.

Beyond these 4 communities, we added 4 individ-
ual nodes (hubs), which had a large in-degree but
an out-degree of 0. Each of these nodes had links
pointing to them from a random set of 25 nodes
from the earlier 40 nodes.

Figures 2 and 3 depict the structure of the fic-
titious graph and its subgraph (built on the small
world model).

Figure 2: Fictitious directed graph consisting of 4
communities and 4 hubs

As can be seen intuitively, there are 4 tightly knit
communities in this network. Additionally, the hubs
should be 4 singleton communities, since they do

2



Figure 3: Small world model based 10 node directed
subgraph

not ”follow” anyone. We assigned each node in the
network a community label based on this intuition.
Nodes 0-9 were in one community, 10-19 in the sec-
ond, 20-29 in the third, 30-39 in the fourth and the
nodes 40-43 were individual singleton communities.

4.2 Observations

To run our existing community detection algorithms
on this graph, it first needed to be transformed to
an undirected graph, since the present community
detection algorithms do not take directionality into
account. Figure 4 shows the outcome of community
detection on the corresponding undirected graph of
our fictitious graph.

As can be seen from Figure 4, the network is par-
titioned into 4 communities - the 10 node subgraphs
are correctly partitioned and each of the hubs is now
assigned to one of these 4 partitions, which does not
tally with our intuition above. Thus we can see that
directionality is indeed an important signal for com-
munity detection, and we cannot trivially ignore it
if we wish to get intuitive results.

For the purpose of complete analysis, we also ran
the same algorithm on a G(n, m) random graph hav-
ing the same number of nodes and edges. Figure 5
shows the community structure (or the lack thereof)
for this random graph.

4.3 Analysis

As we saw visually, the community structure ob-
tained by ignoring directions does not tally with our

Figure 4: Four communities detected on the undi-
rected graph

Figure 5: Community structure for the random
graph

intuition. We also analyzed the graphs using mod-
ularity that quantifies the effectiveness of commu-
nity structure in undirected graphs. We observed
that this metric is also not very good at quanti-
fying the effectiveness of community partitions for
directed graphs.

Table 1 shows the value of the modularity mea-
sure on our data. As expected, the modularity score
for the undirected random graph is low, far from op-
timal. However, it is observed that the modularity
score for the partition returned by the community

3



detection algorithm (with just 4 communities) has
a higher score than that for our ground truth par-
tition (with 4 communities of 10 nodes each and 4
singleton communities).

Graph Partition Modularity

Directed Ground truth 0.379
Undirected Algorithm output 0.447

Random Algorithm output 0.156

Table 1: Modularity scores

Ideally, our metric should be such that the best
partition should have the most optimal score. Thus
we can infer that the modularity measure used for
identifying or evaluating community partitions in
undirected graphs does not hold for the case of di-
rected graphs. Therefore, most of the community
detection algorithms that try to optimize this mea-
sure would also fail to give us the expected parti-
tions.

We also experimented with the directed version
of modularity proposed by Leicht and Newman in
[1]. Even this metric did not give us the expected
(higher) value for the ground truth as compared to
the partition returned by the modularity based al-
gorithm on the corresponding undirected version of
the graph. This can be explained by considering the
case when there is a single edge between two single-
ton communities with a high in-degree each (similar
to the ones above). Since (based on their degree
distribution) it is unlikely that there is an outgo-
ing edge from one of these nodes, it would result in
a high contribution to the overall modularity score
tending to combine these two singleton communities
into a single community. However, this does not in-
tuitively make sense, since there is an edge from one
of the hubs to the other in one direction only and
not in the reverse. For the two nodes to be close
enough to be in a single community, we believe that
there needs to be a link in the opposite direction as
well, without which the nodes should still be deemed
independent of each other at a community level.

5 Intuition

Modularity uses the density of edges within a com-
munity, but it does not use the extra information
given to us by direction. We try to capture this in-
formation in the directionality by following paths.

Every arbitrary path does not give useful informa-
tion, so we decided to focus on cycles. Using cycles
we were able to capture the inherent structure of
the community by concentrating on paths that re-
turn information back to the sender. Intuitively,
good communities should be structured such that
information sent from any node to the community
should come back relatively quickly, and any infor-
mation sent out should take a long time to come
back, if it comes back at all.

The first important contribution to our metric
is cycle length within a community. As previously
stated, communities should be structured so that in-
formation within can quickly reach its source. This
is fairly consistent with modularity, as denser areas
will be more likely to have short cycles; our measure
is just a stronger requirement.

The second important contribution is the length
of each cycle that starts within a community and
leaves it. A good community structure should have
all related nodes within, and any information sent
out is rare and infrequent. Therefore, as these paths
pass through many other hubs, the lengths are much
longer. Again, this follows with the ideas laid down
by modularity, as the low density of the edges will
cause long paths, but is a stronger requirement, as
edges must not only exist but move in the right di-
rection.

Therefore, as we want to optimize average short-
est cycle lengths within and average shortest cycle
lengths outside, we naturally moved to ratio of these
two measures. Thus, as average intra cycle length
goes down and average inter cycle length goes up,
our score decreases to a minimum of zero (as neither
will be negative). Now, we have a measure with a
lower bound that we can use to rate communities:
smaller is better.

There are two methods of gathering cycle length
data before averaging. The first is to gather the
shortest cycle for each node, while the second is to
pick an edge, and find the shortest path from the
destination to the source. The later is actually the
better for our metric, as nodes with one cycle of
length 2 and ten cycles of length 50 is actually not
the best fit in the community. Calculating just the
shortest cycle for each node loses this important in-
formation. While holding these long cycles against a
densely connected community may seem detrimen-
tal, the short cycles will average the long outliers
out.

4



6 Algorithm

6.1 Overview

We build on our intuition of finding cycles within
and outside the community to evaluate the validity
of a given split of a graph. We take one community
at a time and try to find shortest cycle within. For
this we ignore every edge that comes in or goes out of
the community and consider only intra-community
edges. Then we iterate over the the outgoing edges
of each node (to other nodes within the community)
and find the shortest path from the destination node
of the edge back to the source node. That gives us
the shortest cycle starting from that edge. We thus
find all the shortest cycles within a community. We
repeat this process for each community to get all
the intra-community cycles in the entire graph and
calculate average intra-community cycle length.

We carry out a similar exercise for calculating av-
erage length of the cycles going outside communities
taking one community at a time and iterating over
all its nodes. We then iterate over all the outgoing
edges from the node to a node of some other com-
munity and find the the shortest path back from
the destination node, thus completing a cycle. This
gives us a shortest cycle for an edge going out of
the community. We then calculate the average of
all the shortest cycles computed. Our metric score
is a ratio of average intra-community cycle length to
average length of cycles traveling outside communi-
ties. It can be clearly seen that better the partition-
ing, lower will be the score of our metric. This is
because we expect the intra-community cycle length
to drop as we get better communities and the extra-
community cycle lengths to increase. This is oppo-
site to other measures like modularity where higher
score means better partitioning.

6.2 Pseudo-code

Figure 6 illustrates our algorithm by way of a pseudo
code.

6.3 Handling infinite cycle lengths

One thing to note above is that while finding cy-
cles both within and without, we may come across
destination nodes of an edge with no path back to
the source node, thus representing cycles with infi-
nite lengths. We represent them with -1 in our lists
and we have different ways to handle them. One

way is to remove all -1s from the list and take the
average, but that would be incorrect as we can not
ignore them completely. There could be many infi-
nite length cycles and we need to know about them
to find the efficacy of the partitioning. Below are
some other ways of handling -1s that we considered:
(a) Replace -1s with a constant - a big enough value
that represents infinite length cycles aptly for the
graph but not so big that the proper cycles are un-
derrepresented. Although it does not incorporate
any property of the graph, making it invariant to
the type of graph, it gave the best results and was
independent of certain edge cases as well (for eg.
cases where none of the outgoing paths make their
way back to the source).
(b) Replace -1s with a multiple of the max cycle
length detected for each category (within and with-
out). This is a good option as it does incorporate a
property of the graph, although it doesn’t work well
in cases where there are many infinite length cycles
and a handful of short length ones, which will give
a very wrong view.
(c) Ignore all the -1s and calculate the average of the
remaining elements in both the lists. Then factor in
the count of -1s in some way to penalize the score.
An increase in the number of -1s should worsen the
score. The issue with this approach is that it treats
all graphs of all sizes in the same way. e.g. metric
score for 100 infinite length cycles in a 100 node
graph should be different from another graph of
1million nodes having same number of infinite cy-
cles.
(d) Ignore all the -1s and calculate the average of
the remaining elements in both the lists. Then fac-
tor in the proportion of -1s in some way to penalize
the score. A higher proportion of -1s should worsen
the score.

We report option (a) in our experiments as it
seemed to be the most promising.

7 Runtime Complexity

The upper bound of our metric is only bound by the
single source shortest path algorithm. As this must
be computed for the destination node of each edge,
and single source shortest path is bounded by O(n2),
verification of community structure using our metric
runs in worst case O(mn2). One optimization that
can be done in our process is to compute all pair
shortest paths once for the entire graph and use it

5



Figure 6: Pseudo-Code

for multiple subsequent calculations and iterations,
which would drop the overall time complexity to
O(n3).

8 Observations and Analysis

We generated fictitious graphs of three different
sizes (approximately 40, 250 and 1000 nodes), hav-
ing communities of various structures, and labeled
them with the intuitive ground truth partitions for
each node. We also ran a modularity based commu-
nity detection algorithm on these generated graphs
and obtained a different partition, ignoring edge di-
rections. We compared the effectiveness of these two
splits according to three measures: Girvan-Newman
(undirected) Modularity from [3], Leicht-Newman
(directed) modularity score from [1] and our metric
based on directed cycles within and across commu-
nities.

8.1 Observations

We describe our findings for each of the different
types of generated fictitious graphs in the following

sections 1:

8.1.1 Small World Communities

We generated fictitious graphs where each of the
communities was inherently a small world network.
These graphs were created by initially generating
several small communities where all the nodes we
first connected in the form of a bi-directional ring
structure, following which each node was connected
to its neighbor’s neighbor. Additionally, each of the
communities had some random links connecting the
nodes within the community. The number of nodes
per community were randomly chosen based on a
triangular distribution. The structure of one of the
communities is shown in Figure 7. Finally, each
of the nodes in the network were chosen for inter-
community links with a low probability and then
were randomly connected to one of the nodes in the
network, not in the same community.

Table 2 summarizes our observations for this type
of graph.

1In all tables, GN = Girvan Newman Modularity on undi-
rected graphs, LN = Leicht Newman Modularity for directed
graphs and CY = our measure based on the ratio of average
shortest cycle lengths within and outside communities.

6



Figure 7: Community based on Small World Model

Graph Metric Modularity
based
partition

Ground
Truth
partition

Nodes,
Edges

No.
of
Comm

Score No.
of
Comm

Score

44, 312
GN 0.412 0.352
LN 4 0.481 5 0.447
CY 0.195 0.043

256, 1576
GN 0.682 0.666
LN 11 0.751 12 0.745
CY 0.081 0.048

1012, 5714
GN 0.776 0.766
LN 18 0.832 19 0.828
CY 0.069 0.054

Table 2: Scores for Small World Communities

8.1.2 Erdos-Renyi Communities

In this case we generated graphs of multiple sizes
each having multiple communities with each com-
munity in itself being an ErdosRenyi network. We
generate Stochastic Kronecker Graphs using the fol-
lowing initiator matrix :(

0.7 0.7
0.7 0.7

)
Each such graph represents a community, and

edges across communities are added with probabil-
ity chosen from a triangular distribution of low val-
ues, thus sparsely connecting the communities. For
each graph we generated what we call a super com-
munity which is a complete graph of 4-5 nodes with

no links going out of that community and almost
all the nodes of other communities having an out-
going edge pointing to almost each member of super
community. The number of nodes per community
and the number of communities was again chosen
using a triangular distribution. Figure 8 shows such
a community.

Figure 8: Community based on Erdos Renyi struc-
ture

Graph Metric Modularity
based
partition

Ground
Truth
partition

Nodes,
Edges

No.
of
Comm

Score No.
of
Comm

Score

53, 402
GN -0.04 -0.01
LN 3 0.255 4 0.151
CY 0.404 0.071

266, 5555
GN -0.022 -0.024
LN 11 0.205 12 0.064
CY 0.453 0.087

956, 41693
GN 0.016 -0.013
LN 18 0.137 19 -0.03
CY 0.41 0.114

Table 3: Scores for Erdos Renyi Communities

8.1.3 Core-Periphery communities

In this case we generated graphs having multiple
communities, with each community having a dense

7



core and a light periphery. As before, we generated
Stochastic Kronecker Graphs using the following ini-
tiator matrix : (

0.99 0.8
0.8 0.5

)
Each such graph represents a community, and the

nodes in only the core of different communities are
connected to each other with a probability chosen
from a triangular distribution of much lower val-
ues, thus sparsely connecting the communities. As
above, for each graph we generated what we call
a super community which is a complete graph of
4-5 nodes with no links going out of that commu-
nity and almost all the nodes of other communities
having an outgoing edge pointing to almost each
member of super community. The number of nodes
per community and the number of communities was
again chosen using a triangular distribution. Fig-
ure 9 shows such a community. We summarize the
results of our experiments in Table 4.

Figure 9: Community based on Core Periphery
structure

8.1.4 Random graphs with unidirectional
edges between communities

1. Forward-many graph
The forward many graph is constructed first by
creating n communities by randomly generat-
ing edges between all nodes in both directions
with a probability of p. Then, edges are gen-
erated with the same probability p from nodes
in the community i to communities i + 1, i +

Graph Metric Modularity
based
partition

Ground
Truth
partition

Nodes,
Edges

No.
of
Comm

Score No.
of
Comm

Score

52, 503
GN 0.008 0.042
LN 3 0.349 4 0.32
CY 0.289 0.069

276, 9117
GN 0.011 -0.025
LN 6 0.216 8 -0.053
CY 0.369 0.062

1260, 75341
GN 0.048 0.051
LN 10 0.236 21 0.151
CY 0.335 0.109

Table 4: Scores for Core Periphery Communities

2, , n - 1, n. In this way, communities are al-
ways connected in a single direction, and nodes
in later communities will have the most con-
nections. This case is very interesting because
when it is collapsed in to a undirected graph,
as necessary for community detection based on
modularity, all ground truth community struc-
ture is lost, and the graph looks like a random
undirected graph. Thus, there is a major differ-
ence between the ground truths and the mod-
ularity based communities.

Graph Metric Modularity
based
partition

Ground
Truth
partition

Nodes,
Edges

No.
of
Comm

Score No.
of
Comm

Score

40, 499
GN 0.113 0.092
LN 4 0.116 5 0.107
CY 0.77 0.047

250, 18685
GN 0.072 0.071
LN 5 0.084 5 -0.083
CY 0.113 0.049

986, 275636
GN 0.028 0.027
LN 6 0.028 17 0.034
CY 0.949 0.049

Table 5: Scores for Forward-many graph

2. Forward-once graph

8



The forward once graph is similar to the for-
ward many, except each community i is only
connected to community i + 1, instead of all
communities after. Again, this is interesting
because ground truth community structure is
lost without direction, as all allowable edges are
placed with equal probability.

Graph Metric Modularity
based
partition

Ground
Truth
partition

Nodes,
Edges

No.
of
Comm

Score No.
of
Comm

Score

40, 349
GN 0.334 0.253
LN 3 0.359 4 0.305
CY 0.592 0.047

250, 11308
GN 0.357 0.278
LN 3 0.415 5 0.344
CY 0.319 0.049

986, 55757
GN 0.617 0.385
LN 4 0.635 17 0.455
CY 0.462 0.05

Table 6: Scores for Forward-once graph

8.2 Analysis

In all the above cases, we observed that Girvan New-
man doesnt do a good job of getting to the ground
truth. Also the modularity as proposed by Gir-
van Newman [3] drops when we go from suboptimal
communities to ground truth. A similar behaviour
is exhibited by the modularity metric as proposed
by Newman [1] for directed networks. On the other
hand our metric shows a clear improvement when
moving from suboptimal partitions to ground truth.

9 Analysis on weighted directed
networks

Extension of this approach of evaluating communi-
ties based on the number and length of cycles can
be extended to weighted graphs with relative ease.
The weights can be incorporated by taking their
reciprocal for the corresponding edge, and adding
that value to the path, instead of incrementing the
path length by one as we did for unweighted directed
graphs. This will make sure that a cycle with higher

edge weights is considered shorter than an equal
length cycle with relatively lighter set of edges. We
claim that this will help us in separating communi-
ties that are densely connected within by edges of
high weights, and also densely inter-connected but
with edges of lighter weights.

Our experiments confirm our claim that our met-
ric is applicable to this configuration. We gen-
erated graphs with multiple communities where a
community is as densely intra-connected as inter-
connected. However, each edge within the commu-
nity is assigned a weight around 0.85 and the edges
between the communities are assigned a weight of
around 0.15. Table ?? describes our results on a fic-
titious graph of around 500 nodes. We compare the
performance of our metric on the divisions as gener-
ated by the Girvan-Newman algorithm, which does
not separate the communities based on weights, and
the ground truth and confirm that our metric gives
a far better values for the ground truth.

Graph Metric Modularity
based
partition

Ground
Truth
partition

Nodes,
Edges

No.
of
Comm

Score No.
of
Comm

Score

516, 26240
GN 0.011 -0.05
LN 4 0.216 9 -0.035
CY 0.359 0.1

Table 7: Scores for Weighted graph

Even though the average cycle lengths are compa-
rable within and without communities, considering
the reciprocal of weights condenses the within cycle
lengths and expands the ones without thus creating
a clear demarcation.

10 Extension to signed directed
networks

Extending our metric of community verification to
signed networks is actually much more complicated
than it first appears. Our metric depends on the
length of cycles, making it hard to account for neg-
ative edges. There are a few obvious ways include
these types of graphs, but each have a major flaw.

The first is to remove all negative edges from
the graph, and run the metric on only positive

9



edges. This method has two advantages. First, it is
the simplest way to deal with the negative edges.
Second, it can solve many of the intuitive prob-
lems we had with signed graphs. Two communi-
ties connected internally with positive edges and to
each other with negative edges will provide a bet-
ter score as two communities than as one. However,
the reason this method is not optimal is because it
throws away information, which is the same reason
we found modularity to be sub optimal for com-
munity detection in directed graphs. For example,
consider a ring of nodes connected by positive edges,
and then connected within by negative edges. This
would make a decent community without the nega-
tive edges, but the negative edges show it is a com-
munity full of animosity, and therefore a bad com-
munity.

Another method of dealing with negative edges
is to count them as negative contributions to cycle
lengths. This has the advantage of taking in to ac-
count negative signs. However, this ultimately does
not make sense. A cycle of length 10 containing 4
negative links would be counted as a cycle of length
2, which is a better cycle than counting them as
positive or not counting negative edges at all. Cy-
cles that contain more negative links than positive
further complicate this method. This would lead to
negative cycle lengths, something undefined in our
metric.

Perhaps the most promising method is to count
positive and negative cycles separately. This would
change the formula to look something like this (avg
positive cycle length within + avg negative cycle
length within)/(avg positive cycle length without +
avg negative cycle length without). This method
has the advantage of accounting for both positive
and negative cycles in the proper way. However, the
major drawback of dealing with signed edges this
way is that it does not provide a clear and intuitive
way to deal with both positive and negative edges,
something that is common in most signed graphs.

Needless to say, extending our metric to signed
graphs is not as simple as it is for weighted graphs.
However, the potential is defintely there. Due to
time constraints we were not able to explore this
avenue further, but we have looked at a few options,
and laid the groundwork for future study.

11 Limitations and Special Cases

There are some limitations to our approach, some of
which can be overcome by more research, while oth-
ers have to be the considerations while applying our
metric. The runtime complexity of the algorithm,
which is O(n3), is rather high and prohibitive for
very large graphs. Even though it is comparable to
Girvan-Newman for undirected graphs, we believe
it could be too high for many real world networks.

We need to explore the special conditions and cor-
ner cases further, and come up with ways to han-
dle them. One example would be that of singleton
communities with a single node with no edges go-
ing out in which case there is no path to explore for
cycles and the metric would fail to give a genuine
value. The other example is that of taking the en-
tire graph as one community, which again poses the
same problem wherein there is no outbound edges
from that one community thus breaking our met-
ric. We believe these cases can be easily handled by
dealing with them on a case by case basis.

Another area to explore is to see if optimization
of our metric leads to minuscule communities in the
quest to minimize intra-community cycle lengths.
Although this would also decrease the outer cycle
lengths again boosting up and worsening the score.
But we still need to explore how to regularize the
optimization based on the number and size of com-
munities thus discouraging very small or/and very
high number of communities.

12 Future Work

The next step is to come up with an algorithm to op-
timize our metric for community generation, rather
than just use it for community validation as we have
done. Right now the only way to generate quality
communities based on our metric is a brute force ap-
proach of separating nodes in to every possible com-
munity, running the metric, and picking the parti-
tions that generate the lowest score. Unfortunately,
this is absolutely infeasible with the high run time
complexity of both the brute force community par-
titioning and our metric. Ultimately we would like
to use a meta-heuristic algorithm in order to create
communities based on our metric as opposed to just
leaving it as a verifier.

The other way we would like to extend our project
is by looking at using MapReduce in order to in-
crease scalability. We have already observed that

10



graphs with thousands of nodes and hundreds of
thousands of edges can run upwards of an hour.
This is a very low and very breachable ceiling. While
there is some easy potential for running our met-
ric in parallel (by giving each computer a different
subset of the edges), this still does not help with
memory scalability, and does not begin to offer the
same benefits that MapReduce does. Some of the
techniques we could use such as all pairs shortest
path have already been implemented in MapRe-
duce. This would defnitely result in increase in
scalability of the validation of the partitioning for
larger graphs. Additionally, several approximate
meta-heuristic optimization algorithms in MapRe-
duce could also be explored for further extending
this metric to obtain communities for large scale
networks, besides just verifying their efficacy.

13 Conclusion

We started with exploring solutions to the problem
of community detection in directed graphs as out-
lined in [3] and [1] and found that in specific, but
not uncommon cases, they failed to find appropriate
communities. Instead, we proposed that cycles are a
better property to exploit for community detection
because they represent the complete flow of infor-
mation within the communities, and potential loss
or dilution of information going outside. We then
proposed a metric that is built on this intuition. We
validated our hypothesis on multiple types and sizes
of graphs with different kinds of embedded com-
munities. While both the modularity based mea-
sures degrade from suboptimal partitions to ground
truth, our metric shows a marked improvement. We
showed how to potentially extend it to wighted di-
rected and signed directed networks and opened up
the avenues for further research in these directions.
Our metric, as it stands, is only valid for verify-
ing the community structures but we believe that
further work on optimizing directly on our metric
would lead to good community partitioning.

14 References

[1] Leicht, E. A., and M. E. J. Newman. ”Com-
munity Structure in Directed Networks.” Physical
Review Letters 100.11 (2008).

[2] Traag, V. A., and Jeroen Bruggeman. ”Com-
munity Detection in Networks with Positive and
Negative Links.” Physical Review E 80.3 (2009).

[3] M. E. J. Newman, Fast algorithm for detecting
community structure in networks, Phys. Rev. E
69, 066133 (2004).

[4] Newman, M. E. J., Analysis of weighted
networks Phys. Rev. E 70, 056131 (2004).

[5] R. Kannan, S. Vempala, and A. Vetta. On
clusterings: Good, bad and spectral. Journal of the
ACM, 51(3):497515, 2004.

[6] M. E. J. Newman and M. Girvan, Finding
and evaluating community structure in networks.
Preprint cond-mat/0308217 (2003)

11


