
FastInf: A Fast Algorithm to Infer Social Networks from
Cascades

Altan Alpay Deniz Demir Jie Yang

ABSTRACT
The structure of social networks, i.e., the edges among nodes,
are the fundamental information we need for future studies.
However it may not be easily observed in many cases, such
as flu infection, shopping recommendation, etc. Therefore
it is an interesting and important problem to infer the net-
works from the observed data, e.g., information propagation
cascades.

Pervious works have focused on accuracy and developed
several complex models to solve this problem. However in
the real world those solutions are not efficient nor scalable
enough to be used in big data environment. For example,
people generate billions of records every day on the biggest
social media websites such as Twitter and Facebook.

We develop a very efficient and scalable algorithm, FastInf,
to infer the hidden networks from cascades. Although its
speed is much faster than other algorithms, we still can keep
its accuracy at least close to the state of the art, and in some
cases it is even better. We also provide a Map-Reduce im-
plementation of this algorithm, which makes it feasible in
the real-world industry environment.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning-Machine Learn-
ing; H.2.8 [Database Management]: Database Applica-
tions—data mining

General Terms
Algorithms, Experimentation, Performance

Keywords
Social networks, Information cascades, Networks of diffu-
sion, Twitter

1. INTRODUCTION
Network structures are the basic data for the many stud-

ies in social networks. However, in some cases we cannot

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
.

directly obtain the underlying networks on which the in-
formation propagates, though we usually can easily observe
which nodes are infected, thus it becomes a fundamental and
important problem to infer the unknown networks from the
observed node infections or information cascades.

For example, in many websites users can share links in
their social media, such as Blogs, Facebook and Twitter,
thus they may bring their friends or followers to the website.
If we know who brings whom to which content, we can then
find the most influential users on certain topics, which is
vital for personalization, ad targeting, viral marketing and
many other fields. We can track which users bring which
friends or followers back to the website by embedding an
(encrypted) id of the sharing user into the link and then
track the referrers. However, due to privacy issues, com-
panies with strong user privacy protection policy may not
allow to do so. Given the fact that we only can observe who
shared the same link and who clicked it, we wish to find the
links between the users given those data. This is a typical
network inferring problem. Other typical examples are dis-
ease propagation and shopping recommendations. We can
find out who get the same flu or who buy the same products,
but we do not know who infected or influenced whom.

We intend to develop an algorithm to infer the edges be-
tween active nodes in social networks for information diffu-
sion, which can also give us the influence between two users
according to the weight on the edges. Nowadays the most
popular social websites can have billions of users, and peo-
ple share huge amount of information online anytime and
anywhere, therefore it is vital that the solution is extremely
efficient and scalable.

In this work, we propose an algorithm, FastInf, which at-
temps to solve this problem starting with very simple ideas
and heuristics, and improve the accuracy and performance
by modeling the weights on edges. Simplicity and efficiency
are usually achieved by sacrificing accuracy, but we demon-
strate the accuracy of our algorithm can be at least close to
the state of the art, while its speed can be orders of mag-
nitude times faster. Moreover, it is easy to be implemented
in Map-Reduce framework, which makes it more feasible for
applications of big online social networks.

The main contribution of this paper is to find out how to
simplify this problem and improve the efficiency and scala-
bility. We show that a few assumptions on this problem can
make the model much simpler yet still keep reasonable per-
formance. We also deeply analyze why and when it works
well or not, which gives us useful insights on this problem
itself.

2. RELATED WORK
The problem of inferring networks has been studied ac-

tively in recent years. Our work is most closely related to
the NetInf algorithm proposed in Gomez-Rodrigez, et al.
[4]. NetInf adopts the information diffusion models intro-
duced by Kempe et al. (2003) [5]. Kempe at al. studied
the problem of finding a set of initial influential nodes that
can maximize the number of nodes that will be influenced
in the network, and has proposed Linear Threshold Model
and Independent Cascade Model models with discrete time
steps, and developed a greedy algorithm to approximate the
resulting NP-hard problem. Based on models of Kempe at
al., Gomez-Rodrigez, et al. first formalize the problem in
an optimization framework, which is proved to be NP-hard,
then they show this problem satisfies submodularity, so they
can find a near-optimal solution using a greedy strategy,
which is efficient but also can achieve high accuracy. How-
ever, it may cost about one hour to infer a network of 500
nodes and 4000 edges, which is still not fast enough for big
online social networks. In this work we focus on simplifying
the model and increase the efficiency without sacrificing the
accuracy too much.

Two noteworthy improvements following NetInf are pro-
posed in [6] and [3]. Myers, et al. [6] relaxes the assumption
of homogeneity of influence probabilities, and tries to infer
prior probability of influence of each edge, as it is not re-
alistic to assume homogenous user influence in real world
social networks. Like the model of [4], it is also based on
discrete time for influence propagation, assuming fixed rate
of transmission between nodes. Finally they use a maximum
likelihood approach based on convex programming with a l1
like penalty term to maintain sparsity, and approve it can
near-perfectly recovers the underlying networks. Gomez-
Rodrigez, et al. [3] took into account the temporal dynam-
ics of diffusion networks and also formalized the problem
into the convex optimization framework. They proposed a
model based on continuous time in order to infer the tem-
poral dynamics of underlying network by allowing different
transmission rate for edges as opposed to assuming fixed
propagation rate between all nodes. Their model is signifi-
cantly more complicated than those of [4] and [6], however, it
is claimed to produce better results. A different approach is
given by Wang et al. [7], who consider this is a classification
problem and use supervised learned to find the coefficients
of a linear model, which is used as the probability of an edge
existing between two nodes.

However, all the above approaches are not efficient and
scalable enough for the data from big networks like Twitter
or Facebook. Our work intend to solve this problem.

3. MODELING AND ALGORITHM
In this section we first formalize the problem using a gen-

erative probabilistic model, and then propose the FastInf
algorithm to solve this problem efficiently.

3.1 Problem Formulation
Without lose the generality, we consider this problem in

the context of URL link sharing in a Twitter like social me-
dia, whose network is a direct graph, where the weight of
edges can be interpreted as the influence from the source to
the target node. We let all the users who share or reshare
the same link be in the same cascade of this particular link,
indicating they are all infected by the same information.

Given a network G = (V,E) of n = |V | nodes and e =
|E| edges, an independent cascade propagation model [5], a
unique link l and the users who shared (or reshared) this

link, we observe a cascade c(l) = [t
(l)
1 , ..., t

(l)
n], i ∈ [1, n],

where t
(l)
i is the time when user i (denote as ui) shares link

l. If ui did not share l, then t
(l)
i = ∞. If t

(l)
i < t

(l)
j < ∞,

we assume that there is an edge existing from ui to uj with
influence probability pc(i, j). Since we can observe all the
(active) nodes V and only E is missing, we only focus on
inferring the edges E. Since any node has the probability
to be infected in any cascade, the cascade only depends on
the edges. Thus we define the probability that a cascade c
appearing in a particular network G as

P (c|G) = P (c|E) =
∏

(i,j)∈E

Pc(i, j) (1)

Now we can define the problem as finding the optimal
edge sets that maximum the probability of observing a set
of m cascades C, i.e.,

E∗ = arg max
|E|≤k

P (E|C) (2)

where k is a constraint on the number of edges to infer,
otherwise a complete network would be optimal, but in fact
most social networks are sparse.

We assume any network G(V,E) has a constant prior
probability λ, i.e., P (G) = P (E) = λ. Using the Bayes
rule, we have

P (E|C) =
P (E)P (C|E)

P (C)

∝ P (E)P (C|E)

= P (E)
∏
c∈C

P (c|E)

= λ
∏
c∈C

∏
(i,j)∈E

Pc(i, j)

∝
∑
c∈C

∑
(i,j)∈E

logPc(i, j)

=
∑

(i,j)∈E

∑
c∈C

logPc(i, j) (3)

Now Equation 2 becomes

E∗ = arg max
|E|≤k

∑
(i,j)∈E

∑
c∈C

wc(i, j) (4)

where each edge has a weight wc(i, j) = logPc(i, j), which
represents the probability that i influences j in cascade c.
We call it the transmission model since it also indicates how
fast or how much information is transferring from i to j.
Note c is associated with a particular link l, or some infor-
mation that user i propagated to j.

We denote Wi,j as the sum of weights on edge (i, j) in all
cascades,

Wi,j =
∑
c∈C

wc(i, j) (5)

and then Equation 4 becomes

Figure 1: Influence probability on edges using the
uniform transmission model. Nodes are sorted by
infection time. The red node is the information
source and should not be considered as part of the
network. Every node has a small probability ε or 1
to be influenced directly by the source.

E∗ = arg max
|E|≤k

∑
(i,j)∈E

Wi,j (6)

Now this optimization problem becomes a much simpler
problem: find a set of k edges that maximize the sum of
weights on those edges in all cascades. Therefore we only
need to compute the Wi,j for each potential edges, and out-
put the top k edges with the largest W value.

The above generative probabilistic modeling is similar to
the work of [4], but instead of considering the cascade struc-
ture as a DAG and use the strategy of maximum weighted
directed spanning tree, we consider cascade as a sparse edge
set in a graph, and thus work on inferring the edges instead
of the tree. This is a more general model, which can be
less accurate if the network structure is indeed like span-
ning trees, but as we can see later, in many cases it can
work as well as NetInf, and in some cases it is even better.

3.2 Transmission Models
The accuracy of this model largely depends on the trans-

mission model wc(i, j). Since our goal is to simplify the
model, we start with the simplest uniform model by assum-
ing anyone infected before j has equal probability to infect
j, thus the weight on edges is only decided by j’s position
(sorted by infection time). Figure 1 illustrates this model
by increasing the number of nodes in a cascade.

Note a user can be infected not only by others in the
network, but also directly by the information source (such as
a CNN news article), therefore we add a virtual source node
in each cascade, but we do not include it into the network
structure to infer. We assume every node, except the first
infected node, has a small probability ε to be infected by
the source node, while the first one has 100% probability.
In the real world this ε is usually not static and can be
modeled using the user interests and topics of the article
being propagated in the cascade.

Formally, the uniform transmission model is

wc(i, j) =
1− ε
|Ui|ti<tj

(7)

where |Ui|ti<tj denotes the number of nodes infected be-
fore j.

Actually, at the simplest model the value of ε does not
matter because it will be cancelled out when we compare
any two edges by the sum of all weights from all cascades.
For example, when we compare edge (a, b) and (j, k), we
first compute the weight using the transmission model on
all cascades, then compare the sum of the weights. We see

Wa,b

Wj,k
=

∑
c wc(a, b)∑
c wc(j, k)

=

∑
c (1− ε)w

′
c(a, b)∑

c (1− ε)w′
c(j, k)

=

∑
c w

′
c(a, b)∑

c w
′
c(j, k)

where

w
′
c(i, j) =

1

|Ui|ti<tj
(8)

So we set ε = 0 and use the model from Equation 7.
We can make the transmission more complex by incorpo-

rating more information among nodes and links. For exam-
ple, we can model the difference between infection time, and
assume the longer time difference, the less possibility to be
infected. Typically exponential and power-law distribution
are widely accepted in related works ([3, 4, 7]).

For Exponential transmission model,

wc(i, j) =
eα(tj−ti)∑

i′,ti′<tj

eα(tj−ti′)
(9)

and for Power-law transmission model,

wc(i, j) =
(tj − ti)−α∑

i′,ti′<tj

(tj − ti′)−α
(10)

We can also incorporate user interests and topics or latent
topics of the information being propagated to make a sophis-
ticated transmission model, but it will certainly increase the
complexity and the number of parameters for tuning. As we
emphasized before, our main objectives are efficiency and
scalability, therefore we mostly only focus on the simplest
uniform transmission model given by Equation 8.

3.3 Proposed Algorithm
Based on the analysis from the previous section, we pro-

pose a fast greedy algorithm FastInf listed in Algorithm 1.
Note the function w(ui, uj , c) in the algorithm can be any of
the transmission models discussed in Section 3.2. In most
of our experiments we just try the uniform model, which is
simply

w(ui, uj , c) =
1

j
(11)

and we prove that even the simplest model can work well
in most cases, but we do not limit it to any particular model.

3.3.1 Nearest Neighbors

The number of all possible edges to update in a cascade c
is |Ec| = nc(nc − 1)/2 = O(n2), where nc is the number of
nodes infected in c. When the size c increases, |Ec| increases
square times. Consider the sparsity of social networks and
time decay effect, we can limit the edge only existing on
users within distance d, where the distance d is defined as
number of users infected between the two users. If d = ∞,
then it does not have any limitation on edge selection.

The idea of limiting the edge lookup up to only the per-
vious d nodes is similar as the idea of K-Nearest Neigh-
bor model [1], which only utilizes the data from the nearest
neighbors.

Now the number of updates in a cascade c can be reduce
to |Ec| = dnc = O(dn), thus the smaller d, the faster it
can be. Later we can see actually d is also controlling the
accuracy. The overall average computational complexity of
FastInf is

O(d ¯|c||C|) (12)

where ¯|c| is the average number of nodes in a cascade.
We see its complexity is linear to the number and size of
cascades. In section 4 we also verify that FastInf is indeed
much faster than NetInf.

3.3.2 Map-Reduce Implementation
In the context of social media share-click application, the

data volume could be as high as billions record per day.
Therefore, Map-Reduce [2] is a natural choice to handle the
data of such scale. Nowadays Map-Reduce is extensively
used in industry and academy for data mining on massive
datasets thanks to this scalability and robustness. To be
able to leverage the power of Map-Reduce, the algorithm
need be split into function of mappers and reducers, and
the mappers should be able to run in parallel.

Algorithm 2 gives the Map-Reduce implementation of FastInf.
The input data contains url, user id (called node in the al-
gorithm) and infection time in each row, which is the raw
record that the system can easily collect. The first mapper
aggregates on each distinct url to generate cascade for each
shared link. The second mapper just outputs the weight
wc(i, j) of each edge in each cascade, which will then be ag-
gregated in the Reducer for computing the sum Wi,j . We
assume the final output can be ordered by the first emitted
value, and so we can easily only fetch the first k outputs as
the edges with largest total weight.

4. EXPERIMENTS
We test the FastInf algorithm on both synthetic data and

Twitter dataset. We show that the accuracy of our algo-
rithm is close to NetInf in most sythetic cases, especially
when the edges/cascades ratio is high, while its speed can
be orders of magnitude times faster.

4.1 Experiments on Synthetic data
We used the generate nets program provided by the Net-

Inf project (snap.stanford.edu/netinf/) to generate syn-
thetic datasets of 3 Kronecker networks (random, hierarchi-
cal community, and core-periphery), with exponential and
power-law transmission models. To test different perfor-
mance of each algorithm under different network properties,
we generate edges from 500 to 4000 and cascades from 125

Algorithm 1 The FastInf Algorithm

Require C, k , d
E = {}
for each cascade c in C:

s o r t nodes in c by i n f e c t i o n time
for i = 0 to s i z e (c) :

for j = 1 to min (i+1+d , s i z e (c)) :
u i = nodes [i]
u j = nodes [j]
i f (ui , uj) not in E:

E [(ui , uj)] = 0
E [(ui , uj)] += w(ui , uj , c)

return the top k edges in E

Algorithm 2 The Map-Reduce implementation of FastInf
Algorithm

Mapper1 (Records) :
for each (ur l , node , time) in Records :

EmitInterMediate ur l , (node , time)

Mapper2 (ur l , cascade) :
get nodes from cascade
s o r t nodes by t h e i r i n f e c t i o n time
n = s i z e (cascade)
for i = 0 to n :

for j = 1 to min (i+1+d , n) :
u i = nodes [i]
u j = nodes [j]
EmitInterMediate (ui , uj) ,w(ui , uj , c)

Reducer ((ui , uj) , we ights) :
Wij = sum(weights)
EmitFinal Wij , (ui , u j)

to 4000. In total we generate 144 synthetic datasets. In 75%
datasets the cascades can cover more than 90% of the edges
and 2/3 of them cover more than 99%.

We evaluate the algorithms by comparing the Break-even
points, which is precision or recall value when the number of
edges generated is the same as the ground truth network. In
our experiments we always infer e edges, which is the number
of edges in the ground truth network, so the precision and
recall are equal and we use any of them as the break-even
point.

We ran both NetInf and FastInf on the 144 datasets. For
NetInf we use exponential transmission model with α = 1,
which we found in many cases are already optimal. Although
we did not extensively tune NetInf in the synthetic data since
it is costly, we do tune it thoroughly in the real dataset. For
FastInf we only tuned the parameter d from 1 to 32, and use
the best one to present the result.

Figure 2 gives the comprehensive view of all the results on
synthetic data. From the first two columns we can see the
break-even points of 2 algorithms on all the 144 synthetic
data. The average break-even point of NetInf is 0.7358 while
FastInf is 0.7261, which is only 1.32% worse. We can also
see the difference from the third column and Figure 5, which
shows that in most cases the two algorithms perform very

Figure 2: Compare FastInf and NetInf for three 500 node Kronecker networks with exponential (Exp) and
power law (PL) transimission models. The first two columns illustrate the break-even value of each method
under different number of edges and cascades. The third column shows the gain of NetInf over FastInf (blue
means FastInf is better than NetInf). The last column displays the best d value for each setup.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Core−Periph. (PL) 4k edges, 125 cas.

Recall

P
re

c
is

io
n

FastInf

NetInf

(a) Best case

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Core−Periph. (EXP) 1k edges, 4k cas.

Recall

P
re

c
is

io
n

FastInf

NetInf

(b) Even case

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Hier. (PL) 1k edges, 125 cas.

Recall

P
re

c
is

io
n

FastInf

NetInf

(c) Worst case

Figure 3: Compare PR curves of FastInf and NetInf in 3 synthetic datasets of 500 nodes using Kronecker
graph

200 500 1000 2000 5000 10000

0
1
0

2
0

3
0

4
0

Compare Speed of NetInf and FastInf

#Edges * #Cascades (10
3
)

A
ve

ra
g
e
 R

u
n
 T

im
e
 (

M
in

u
te

s
)

FastInf

NetInf

Figure 4: Compare the run time of NetInf and
FastInf

closely, the maximum difference is less than 0.2.
From the last column we know the value of best d given

different number of edges and cascades. When there are
more edges or more cascades, the best d is larger, and it
increases as the ratio of |E|/|C| increases. It means that the
more sparse the data, the larger d is desired.

To observe closely the precision and recall changes, in Fig-
ure 3 we pick 3 cases to compare the precision-recall curve:
3(a) is the case when FastInf has largest gain over NetInf,
3(c) is the case when FastInf has largest loss, and in 3(b)
they are even. From these 3 selected cases we can see FastInf
can at least perform well at the beginning. We also show
the break-even point as a function of tuning parameter d in
all the 3 cases in Figure 6, which encourages us to tune d
since it is a very sensitive and important parameter of this
algorithm.

From the above results, we can conclude that, though
based on a very simple model, FastInf can work well in most
cases, and its accuracy is very close to NetInf, if not better.
Now we look at the efficiency of FastInf, which is the main
objective of this algorithm.

Figure 4 compare the average speed of the two algorithms
given different |E|∗|C|. We run all of them on a server of 2.0
GHz and 32 GB, and the FastInf is implemented by Python,
while NetInf is by C++. You can see FastInf is almost linear
comparing to NetInf. The longest run time of FastInf on the
synthetic data is 22 seconds, while it is 1.2 hours by NetInf.

4.1.1 Discussions
We want to understand when and why FastInf works bet-

ter or worse than NetInf.
The third column of Figure 2 tells us when FastInf works

better or worse, and how much gain or loss. FastInf usually
works better when there are more edges but less cascades,
while the Twitter data is just in this case, so as we can see
later, FastInf also work better on the real dataset.

We also check the gain of FastInf in terms of the network
properties, such as average cluster coefficient, average infec-
tions of each edge, average cascade size, ratio of strongest
connected component (SCC), average degree, and number
of edges, in Figure 11. We see the most promising factor is
average cascade size, which increases the gain of FastInf as
it grows. The larger number of edges, higher SCC ratio and
average degree also help to increase the accuracy of FastInf,
but the data is quite noise, so we need more data to support
it.

We consider the reason why this two algorithms work dif-
ferently as following. First NetInf utilize spanning trees,
which assumes the network structure is more like trees and
try to generate as less edges as possible. If the network does
not fit the assumption, it may not work well. Second, In
FastInf if A influences B and B influences C, then there is
always some influence value from A to C, while they may not
connected. As we see, the higher cluster coefficient or the
more edges, the gain of FastInf tends to increase, because in
that cases A and C are usually also connected.

4.2 Experiments on Twitter data
We also run both algorithms on real dataset. We exam-

ined a complete Twitter network data for one month, June
2009, to track web links that have been shared. All the users
who tweet the same URL link are considered in a cascade,
and we extract the true edges based on the retweet relation-
ship. If user A retweeted B on the same link and both tweets
can be found in the data, then we assume A follows B, and
there is an edge from B to A.

In the one month data, there are 1.8M user shared at least
one link, 18M tweets sharing 822K unique links, and 270K
edges are discovered.

Figure 7 shows more than 20% of the edges only tweet
once, and this number decreases as the number of cascades
per edge increases. Figure 8 shows the distribution of in-
fection rate given the infection time difference between two
nodes on an edge. It can be used to verify the transmission
model. It is a very interesting to find out that this curve
is neither exponential nor power-law, but first decreases in

Break−even value of FastInf − NetInf

F
re

q
u
e
n
c
y

−0.2 −0.1 0.0 0.1 0.2

0
5

1
0

1
5

2
0

Figure 5: Gain of NetInf over FastInf on 144 syn-
thetic datasets

0 5 10 15 20 25 30

0
.4

0
.6

0
.8

1
.0

Tuning d for FastInf

d in FastInf

B
re

a
k
−

e
ve

n
 v

a
lu

e

Core−Periph. (PL) 4k edges, 125 cas.

Hier. (PL) 1k edges, 125 cas.

Core−Periph. (EXP) 1k edges, 4k cas.

Figure 6: Performance of FastInf using different d

1 4 7 10 14 18 22 26 31 39 49 60

Cascades per edge

%
 o

f
e

d
g

e
s

0
.0

0
1

0
.0

1
0
.1

1
4

1
6

Figure 7: Distribution of cascades on edges of Twit-
ter data

1e+00 1e+02 1e+04 1e+06
Inf. time diff. of two nodes on existing edges (sec.)

%
 o

f
a

ll
in

fe
c
ti
o

n
s

5
e
−

0
4

0
.0

0
3

0
.0

1
0
.0

3
0
.0

8

Figure 8: Distribution of infection time difference of
Twitter data

the first a few seconds, then increases until 103 seconds, and
finally decreases as a power-law curve. Note both x and y
axes are logarithmic scale. We think the ones retweet in a
few seconds are perhaps bots which post spams or keep re-
freshing the screen. Some users are very active, who always
keep watching the tweets and usually retweet in 2 minutes.
Finally it is the majority of the users who retweet following
the power law or exponential decay. We also show the dis-
tribution of cascade size at Figure 9, which is no superising
power-law.

However, this Twitter data is still too sparse to infer the
its networks with high accuracy. To increase the data den-
sity, we only keep the edges that have retweeted at lest 2
times, and we get 30422 such edges. Then we only keep the
39112 nodes that appeared in the selected edges. At last,
we obtain 84147 cascades that contain at least 2 remained
nodes.

We ran both FastInf and NetInf on the Twitter data to
infer 30422 edges, and show the results at Figure 10. We ex-
tensively tuned both FastInf and NetInf to achieve the best
performance as we can. This time FastInf outperforms Net-
Inf, especially in the beginning, or when we infer less edges.
Both algorithms reach high precision when recall is between

Number of nodes in a cascade

%
 o

f
a

ll
 c

a
s
c
a

d
e

s

0
.0

0
.0

0
.0

0
.1

1
4

1
6

6
4

2 4 8 16 32 64 256 1000 5000 48681

Figure 9: Distribution of cascade size of Twitter
data

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Twitter 39112 nodes, 30422 edges, 84147 cas.

Recall

P
re

c
is

io
n

FastInf

NetInf

Figure 10: Compare PR curves of FastInf and NetInf
on Twitter data, June 2009

0.1 and 0.3, but drops down as more edges are inferred. Fi-
nally the break-even points are quite close: NetInf reaches
0.4578 using Power-law model with α = 2 and FastInf gets
0.4823 with d = 32. As we shown before, FastInf sometimes
works better in sparser dataset, since it does not require to
find the spanning tree as what NetInf does. Finally, we re-
port the modeling time of both algorithms: NetInf - 4.27
hours, FastInf - 19.14 seconds.

5. CONCLUSIONS AND FUTURE WORK
From the experiments on both synthetic and real data,

we can see FastInf is a promising algorithm with very high
efficiency and scalability thanks to its simplicity, while it
still keeps reasonable high accuracy. We also give a Map-
Reduce version algorithm so it easy to be implemented in
the real-world production environment.

In our work we only focus on the simplest uniform trans-
mission model, while this model can be the key to increase
the accuracy. It points the future research direction on how
to improve this transmission model incorporate more infor-
mation such as user interests and item topics. We are also
interested in developing a sequential algorithm, so that it
can infer the social network edges in the real time as the

Cluster.Coefficient

F
a

s
tI

n
f.
G

a
in

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.1 0.2 0.3 0.4 0.5

Avg.Infection

F
a

s
tI

n
f.
G

a
in

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

500 1000 1500 2000

Avg.Cas.Size

F
a

s
tI

n
f.
G

a
in

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

100 200 300 400 500

SCC

F
a

s
tI

n
f.
G

a
in

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.2 0.4 0.6 0.8 1.0

Avg.Degree

F
a

s
tI

n
f.
G

a
in

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

5 10 15 20 25 30

E

F
a

s
tI

n
f.
G

a
in

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

500 1000 1500 2000 2500 3000 3500 4000

Figure 11: Gain of FastInf over NetInf under differ-
ent network properties

data feeding in.

6. REFERENCES
[1] T. M. Cover and P. E. Hart. Nearest neighbor pattern

classification. In IEEE Transactions on Information
Theory, 1967.

[2] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM,
51:107–113, Jan. 2008.

[3] M. Gomez-Rodriguez, D. Balduzzi, and B. Scholkopf.
Uncovering the temporal dynamics of diffusion
networks. In ICDM, 2011.
http://www.stanford.edu/~manuelgr/netrate/.

[4] M. Gomez-Rodriguez, J. Leskovec, and A. Krause.
Inferring networks of diffusion and influence. In KDD,
2010. http://snap.stanford.edu/netinf/.

[5] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network. In
KDD, 2003.

[6] S. A. Myers and J. Leskovec. On the convexity of latent
social network inference. In NIPS, 2010.
http://snap.stanford.edu/connie/.

[7] D. Wang, Y. Wu, and Y. Zhang. Two models for
inferring network structure from cascades. In The
International Conference on Internet Computing
(ICOMP), 2011.

