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Abstract

Information cascades in large social networks are complex phenomena governed by such diverse forces
as the diffusion medium, user trends, and the information content itself. While these influences might
be difficult to understand and model directly, the structure and evolution of the cascade can be used as
a proxy for the sum effect. To this end, we study information cascades on Twitter and focus especially
on the utility of local graph structure analysis for categorizing, understanding, and predicting cascade
evolution. Specifically, after presenting basic network, retweet, and cascade statistics, we categorize
cascades based on size and growth. We then count graphlet frequencies for different cascade categories in
order to understand their structural differences. We also explore how these differences arise by counting
graphlet frequencies at different points during the evolution process. Finally, given our understanding of
the social network, retweet patterns, and cascade graphlets, we construct a machine learning framework
for predicting cascade size.

1 Introduction

An information cascade is a phenomenon by which people influence others to acquire information or behav-
iors. Clear understanding and effective modeling of such cascades could have significant impact in practical
domains ranging from viral marketing to crisis detection to epidemic outbreak prevention. Scientists have
therefore examined these processes for decades, but it is only now, with the emergence of online social net-
works, that data and resources allow for large-scale study.

Previous research [7], [6] has reported large-scale properties of cascades, as well basic results pertaining
to local structures. Recent studies [2] have also examined individual nodes in cascades and constructed
predictive models for who will spread what contagion. We continue this line of study by conducting a more
detailed analysis of local structures in order to predict eventual cascade size. We also go beyond the realm
of previous studies by examining how local structures emerge and evolve.

In this paper, we first describe in greater detail the related work (Section 2). We then briefly describe
the social graph and tweet data sources in Section 3. Next, in Section 4, we formally define our directed-
acyclic graph (DAG) model for information cascades and explain how it captures richer cascading behaviors
than a simple tree-based model. Then, using this model, we construct cascades from our data and present
summary statistics and distributions.

We then use graphlet counting software implemented in SNAP to analyze the local structures in these
cascades (Section 5). We plot graphlet frequencies for different categories of cascades based on size and
growth rate in order to investigate which graphlets appear in which kinds of cascades. We also study local
cascade structure evolution in Section 6 by computing graphlet frequencies with each node addition (each
time a new user retweets). All of these analyses provide different views of the data that we use later in our
predictive model.

Given the social network and retweet trend statistics from Section 4, as well as the graphlet counting findings
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from Sections 5 and 6, we then consider the problem of predicting, for a cascade of ten users, whether or
not it will grow to over twenty nodes. We construct logistic regression models that use just social network
features, just retweet trend features, just graphlet features, and all features at once. We find that the retweet
trend features are quite informative, but that the other features give little to no performance lift.

2 Related Work

Recent work on information diffusion has explored and characterized information cascades in a variety of
online network settings. In the work in [7], Leskovec et al investigate cascade patterns by looking at person-
to-person product recommendations from a large online retailer. The study reports heavy-tailed cascade
size distributions across all products, then takes a deeper look at the structure of the cascade subgraphs,
identifying the most frequent patterns, and showing the differences between the product networks. In a
study on another setting of cascades [6], Leskovec et al analyze the temporal patterns, shapes, and sizes
of cascades in large blog graphs. The study finds power law size distributions as well, and a tendency for
cascades to form “star” shapes.

In this work, will apply many of the same techniques of analyzing cascade size and subgraph distribu-
tions, but we will focus on the microblogging platform Twitter as our setting. As Twitter has grown in
traffic and siginificance in world events, it has received a significant amount of academic study. In early work
in [4], Java et al provide initial analysis on the topological and geographical properties of the twitter social
graph along with observations on what type of content people tweet. In the work in [3], Huberman et al
perform a more detailed investigation of the social network, trying to better understand the nature of social
interactions on Twitter. In another interesting line of work in [1], Cha et al develop a framework to measure
and model an individual’s influence on twitter, finding that a high follower count does not necessarily lead
to many retweets and mentions.

Twitter also provides a particularly rich and significant setting for the study of information diffusion, and
prior work has investigated cascades from different angles. In one general study in [5], Kwak et al perform
a general quantitative analysis on information diffusion, analyzing trending topis and retweet dynamics.
Another related study is described in [2], in which the authors analyze cascades of URLs on Twitter with
the goal of predicting which users will tweet which URLs. The authors make a variety of observations of
the structure of cascades, finding power law size distributions and a lognormal distribution of the diffusion
delay. For the prediction task, the paper describes a model to predict the probability that user i tweets URL
u based on the virality of the URL, the baseline probability of a user to tweet the URL, the influence of a
followee over a follower, and the diffusion time. In the work in [8], Sadikov et al conduct another study on
Twitter data in which they tackle the problem of analyzing, understanding, and correcting for missing data
in information cascades. Specifically, given an incomplete cascade, the paper estimates basic properties (size,
depth, etc.) of the complete cascade, by developing a cascade model which assumes that data is missing
uniformly at random from the model cascade and then corrects for it by estimating the model parameters.

3 Data

For our project, we use two Twitter datasets. First, we have the Twitter social graph from July 2009, made
publicly available by the authors of [5]. This data contains 41.7 million users and 1.47 billion social relations.
In this paper, we construct the social graph G = (VG, EG) where VG is the set of all users, and an edge
(u, v) ∈ EG if and only if u follows v. Second, we have complete tweet data from January 2011, which
includes author, text, timestamp, and many other attributes. In the next section we describe how we use
this data to construct our cascades.
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4 Cascade Construction and Statistics

After constructing the social network as described above, we then process two weeks of tweet data (1/5/2011
- 1/18/2011) and construct cascades for all retweets. Specifically, for each retweeted tweet in this period, we
construct a cascade C = (VC , EC), where VC is set of users who retweeted that tweet, and edge (u, v) ∈ EC if
and only if (v, u) ∈ EF and u retweeted t before v retweeted t. Thus, each cascade will be a DAG where edges
represent potential influence. Note that in contrast to a simple tree representation, this DAG cascade model
captures cases where one node retweets a tweet that was previously shared by multiple users he or she fol-
lows. Moreover, in the context of this study, this will allow us to study more complex local cascade structures.

This results in 4,926,822 cascades that follow the size distributions shown in Figure 1. Both distributions
appear to be heavy-tailed, which agrees with observations of cascades size distributions in earlier works.
Also, despite the fact that our DAG cascade model allows for many more edges than nodes (since each user
can be influenced by multiple other users), we see that there are in fact many fewer edges. This implies that
there are many disconnected nodes and likely suggests that the out-of-date social graph does not contain
many of edges over which information diffuses.

(a) Number of nodes. (b) Number of edges.

Figure 1: Cascade size distributions.

We also investigate the temporal patterns of retweeting in these cascades and illustrate our findings in Fig-
ure 2. We plot the distribution of retweet response time, which we define as the time difference between
a retweet and the latest previous retweet or tweet, in Figure 2a, as well as the retweet lag time, which we
define as the time difference between a retweet and the original tweet. As can be seen, the most common
time lags and response times are very small (less than ten seconds). How is it that so many retweets are
so immediate? In looking at these cases, we have found that such retweets are often posted by bots, most
commonly for stock trading and updates.

Finally, we explore the relationship between the social network and the retweet cascades in Figure 3. In all
these plots, average degree of a cascade means the average in-degree (number of followers) for all nodes in
the cascade, and origin degree means the in-degree of the user who posted the earliest tweet / retweet in
the cascade. The average degree distribution in Figure 3a shows that most cascades have relatively small
in-degree, but still significantly higher than the average degree of the data. The origin degree distribution in
Figure 3b has a much fatter tail than previous distributions, suggesting that original tweeters tend to have
high degree. In addition to these distributions, we plot both versus cascade size to see if larger cascades tend
to have small/larger average degrees and/or origin degrees. As can be from the plots, there seems to be no
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(a) Response time. (b) Lag time.

Figure 2: Distributions of response and lag times.

relationship in either case, which might be an interesting feature of cascades on Twitter, but is more likely
the result of our out-of-date social network.

5 Graphlet Counting

In the previous section, we examined large-scale properties of retweet cascades on Twitter. In this section we
now study local cascade structures by computing graphlet frequencies for all three and four node graphlets.
Since the subgraph isomorphism problem is NP-Hard, previous works have used various techniques, such
as the multi-level hashing method described in [9]. For our study, we utilized the subgraph counting code
implemented in SNAP to count all three and four node graphlets for all cascades. We then describe each

cascade C in terms of a graphlet frequency vector vC , where v
(i)
C is the number of times the ith graphlet

appeared in cascade C. Moreover, for a set S of cascades, we can compute the average graphlet frequency
vector v̂S , where the ith entry is given as follows:

v̂
(i)
S =

∑
C∈S

v
(i)
C

|S|

With this, we can now compare local structures for small and large cascades by choosing some size threshold
β, partitioning cascades based on whether the number of nodes is less than or greater than or equal to β,
and computing the average graphlet frequency vectors for both sets. We do this for β values of 10 and 40,
and show the results in Figures 4a and 4b, respectively. In the first plot, of β = 10, small and large cascades
follow the same general pattern of peaks, with the only notable difference being that graphlet 0 (a 3-node
chain) is far more prevalent in small cascades, and graphlet 4 (a 3-node star) has a much higher peak in the
large cascades. In the second plot, of β = 10, the structure is very different. Small cascades follow the same
general pattern as the cascades in the previous plot, with a large peak at 4, a smaller peak at 0, and small
peaks at each of the other common graphlets. Large cascades, however, look very different with a giant peak
at 4, a small peak at 0, and a totally flat line elsewhere. This seems to indicate that our largest cascades
are made up of many tiny stars.

We also compare local structures for slow-growing and fast-growing cascades by choosing some growth
rate threshold α, and doing similarly as above. We choose α = 3600 seconds (1 hour), and compare for
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(a) Cascade average in-degree distribution. (b) Cascade origin degree distribution.

(c) Average degree versus cascade size. (d) Origin degree versus cascade size.

Figure 3: Relationships between the social network and cascades.
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cascades of about the same size. Results for cascades between sizes 10 and 20 are shown in Figure 4c, and
results for cascades between sizes 20 and 30 are shown in Figures 4d. As can be seen from the first plot, of
cascades sized 10-20 nodes, fast cascades have many more instances of graphlet 8 while fast cascades have
many more instances of graphlets 4 and 31. In the second plot, of cascades sized 20-30 nodes, graphlet 0 is
very prevalent in fast cascades, while more complex structures, like graphlets 21, 25, 31, and 36 appear much
more in slow cascades. Across both of these plots, we can observe this same interesting effect that the more
complex graphlets appear more in slow cascades, whereas simple chains and stars characterize fast cascades.

6 Cascade Evolution

In the previous section, we constructed a cascade for each retweeted tweet, added all nodes and corresponding
edges that we observe during the two weeks of data, and then computed graphlet frequencies for these final
complete cascades. In this section, we compute the graphlet frequency vector with each node addition so
that we might be able to understand the process by which cascades grow.

The plots in Figure 5 show the relative frequencies of common graphlets in the early evolution of cascades.
The x-axis shows the number of nodes currently in the cascade, and the y-axis shows the proportion of all
graphlets. Each line is a different graphlet (the graphlet key is shown in Figure 4e). The plot on the left
shows the early evolution of cascades that reached a size between 10 and 20 nodes, and the plot on the right
shows the early evolution of cascades that reached a size over 20. Both plots show the same general trend
where graphlet 4 (a 3-node star) dominates throughout the early evolution, but its proportion decreases
quickly. The more complex 4-node graphlets – such as 10, 14, 21, and 36 – gain a larger and larger share as
time progresses. Comparing across the plots, we notice that graphlets 10, 14, 21, and 31 (4-node graphlets
with many edges) are more represented in Figure 5b, indicating that they appear more in the early stages
of large cascades than small cascades.

7 Cascade Size Prediction

In this section, we frame cascade size prediction as a supervised classification problem in which we observe
the cascade up to size 10 and then aim to predict whether or not its eventual size will exceed 20. In the
previous sections, we studied temporal retweet trends (Figure 2), the relationship between the social graph
and cascade size (Figure 3), and graphlet frequencies for different kinds of cascades (Figure 4). For the
current prediction problem, we therefore define three kinds of features:

• Temporal features: these features aim to capture the temporal dynamics of the first 10 retweets. Here
we include the average lag time and the average response time, as defined in Section 4.

• Follower features: these features aim to capture nodes’ connectivities in the social graph. To this end,
we include the origin degree and the average degree, as defined in Section 4

• Graphlet features: these features aim to capture the frequently appearing local graph structures that
appear in the cascade up to 10 nodes. For this, we include each entry in a cascade’s graphlet degree
vector as a feature. Note that we could include each entry in a cascade’s vector at each point in its
evolution if we aimed to incorporate the evolution analysis into the prediction. However, given the
apparent weak signal resulting from the out-of-date social graph, we choose to only include the entries
from the vector for the cascade of size 10.

With this, we define four datasets that include temporal features, follower features, graphlet features, and all
features, respectively. All of these datasets have imbalanced class distributions (5262 cascade do not grow to
20 nodes, while only 2175 reach 20 nodes), so we perform a 70-30 split (70% train, 30% test) and undersample
the training set to equality. After doing so, we are left with 5205 training examples (1561 negatives, 1561 pos-
itives), and 1618 testing examples with (1618 negatives, 614 positives) for each dataset. Note that since we
only undersample the training set, the testing set is still representative of the original distribution. Moreover,
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(a) Partitioning on size (β = 10). (b) Partitioning on size (β = 40).

(c) Partitioning on growth rate (α = 3600)
for cascades of size 10-20.

(d) Partitioning on growth rate (α = 3600)
for cascades of size 20-30.

(e) Visualizations of Common Graphlets.

Figure 4: Average graphlet frequency vectors after partitioning on cascade size (plots (a) and (b)) and
cascade growth rate (Plots (c) and (d)). Visualizations for frequent graphlets are shown in (e).
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(a) Evolution in cascades of size 10-20. (b) Evolution in cascades of size over 20.

Figure 5: Evolution of graphlet frequencies in cascades.

Figure 6: Prediction confusion matrices, accuracies (ACC), and areas under the receiver operating curve
(AUROC) for different experiments. (a) defines the entries of the confusion matrix.

each dataset has the same cascades in the training and testing sets, so we can evaluate performances directly.

For our experiments, we train four logistic regression classifiers on the four training sets, and then eval-
uate each of them on the corresponding testing set. The results are shown in Figures 6b-e. Note that
accuracy is a poor performance measure for these imbalanced classification problems since a simple classifier
that predicted the negative class for all examples could achieve 72% accuracy, so we also include area under
the receiver operating curve (AUROC). Looking the AUROC values, we see that graphlet features give only
a marginal lift over random, as do follower features. Logistic regression with just the time features achieves
a significantly higher AUROC of 0.866, and even outperforms the classifier with all features. This suggests
that the time features are by far the strongest and that other features provide such weak signals that they
essentially add noise to the problem.

8 Conclusion

In this paper we presented a detailed analysis of information cascades on Twitter and explained a supervised
classification framework for predicting cascade growth. In Section 4, we defined the structure of our cas-
cades, described temporal retweeting trends, and explored the relationship between the follower graph and
cascades. In particular, we showed that most retweets follow shortly behind the original tweet, and found
little relation between degrees of nodes in a cascade and the size of that cascade. Next, in Section 5, we
studied local structure by counting graphlets and noting those that occur most frequently in different kinds
of cascades (small and large, slow-growing and fast-growing). We then proceeded in Section 6 to examine
cascade evolution by conducting similar experiments at each point during a cascade’s growth. Finally, in
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Section 7, we used our previous analyses to extract features from cascades when they had ten nodes, and
used these to predict whether or not at least ten additional nodes would retweet the tweet. We found that
time features were by far the most salient, and that other features gave little to no signal.

For future work, we would also like to study the effect of the content itself on diffusion. For example,
do news items diffuse differently than entertainment items? We might also like to examine the effect of dif-
ferent kinds of sources. Previous work has shown that most retweets on Twitter originate with “celebrities”
so we might want to incorporate this into our prediction framework.

Finally, throughout this work, we found that studies involving the social graph resulted in inclusive or
noisy results. Since the social graph is from two years before the tweet data, we hypothesize that this is
because the social graph is out-of-date. We hope to obtain a more recent social graph in the future and
rerun the above experiments with clean data. This might allow for more novel insights and better prediction
results.
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