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Introduction 

“Tweet," "Retweet," and "Tweeting" were all nonsensical words before 2006 when Twitter was started and 
became the biggest micro-blogging website. Twitter started off as a social networking site where users 
would post little tidbits about what they were doing and interesting things that happened to them. 
Accordingly, the word "twitter" means a short burst of inconsequential information. The idea became so 
popular that in February of 2010, the site reported about 600 tweets were sent every second [1]. 
Companies caught on to this popular idea and Twitter expanded to include advertising and as a way to keep 
in touch with customers. Just as with all popular ideas, Twitter soon became the target of users who wished 
to misuse their services. Twitter defines this behavior as "spamming" and the tweets that constitute this as 
"spam". Despite Twitter's best efforts and the efforts of legitimate users to report spammers, spam 
continues to be a problem in the Twitter network. The advent of URL shorteners created an extra problem 
for Twitter. Sites like bit.ly, goo.gl, and tr.im allow users to post very short and concise links to websites. As 
URLs became longer and it became harder to post both a URL and a description of it, users turned to URL 
shorteners to make it easy to post a tweet describing the URL as well as the URL itself. Twitter must not 
only check the URL to see if it is from a blacklisted site, but it must also check shortened URLs to see if the 
eventual redirection results in a blacklisted site. 
 
Due to the popularity of the site, Twitter has been the focus of multiple research projects analyzing 
information flow and the relationships in the Twitter network. Our paper will attempt to take a unique 
approach to the Twitter network and study the propagation of spam in the network. Our ultimate goal is to 
determine if there is a pattern to how spam propagates through the network and if so, then to find a way of 
determining if accounts have either been compromised and overtaken by spammers or if certain accounts 
are purely spammer accounts. We will do this by examining the characteristics of the graph of spam tweets 
as well as running TrustRank on the data that we have. In the process, we may come across other 
interesting results, such as what characteristics a high-quality user may possess. 

Related Work 

Twitter Information Flows 

In a previous offering of this course, a group presented [6], a report entitled Information Flows on Twitter. 
The authors explored, among other phenomenon, the outbreak analysis of retweets on a network of 
Twitter users. They attempted to infer the parameters of a common outbreak model by examining their 
data and fitting with a least-square distance. However, this analysis treats all tweets equally and does not 
examine the behavior of spam propagation in isolation. 

Twitter URL Blacklists 

Grier et al in [2] comment on the effect of URL blacklists on spam detection. They note that blacklists of 
malicious URLs typically lag behind the appearance of links on Twitter. However, these blacklists 
eventually “catch up” and add newly detected domains. Because of this, to accurately capture the tweets 
containing spam URLs, we must use recent URL blacklists, but sufficiently old tweet data. The time required 



is relatively short: on average, the propagation delay is approximately ten days. Once URLs are tweeted, 
they appear on future blacklists with high probability. Since our dataset is a snapshot of the past, we can 
use blacklists effectively to identify untrustworthy URLs and quickly build graphs of spam propagation. 

PageRank and TrustRank 

Garcia-Molina, et al in [4] introduce an extension to the PageRank algorithm by attempting to incorporate 
the idea that trust can “flow” across the edges of a network. It essentially introduces a “personalized” 
version of PageRank where the “teleportation” aspect does not pick a node uniformly at random. Instead, 
there are a small number of human-curated “seed” pages that can make up an initial vector to create 
unequal weights for “teleportation” likelihood. The authors, however, focus on web spam rather than 
Twitter spammers, and they only attempt to identify the most trustworthy nodes, while we would like to 
identify untrustworthy ones as well. We do intend to follow the same general pattern of evaluation as the 
authors, however. We plan to use our programmed tools as well as human judgment in order to attempt to 
identify patterns in a subset of the ranking results. 
 
We also intend to make use of traditional PageRank to help to seed the TrustRank algorithm. PageRank, as 
described in [9], is a method of ranking nodes in a graph based on how many high-ranking nodes link to a 
given node. The approach is unique in that it assigns each node a single score that is intended to represent 
its quality. For both PageRank and TrustRank, an interesting challenge is that we are ranking users that 
“link” to other users based on the text of their tweets. There is an explicit level of indirection in this case 
when compared to the web page case. Thus, we will need to adapt our labeling and evaluation methods to 
compensate. 

Data Collection 

The data that we are going to use to perform our analysis is data offered by Professor Jure Leskovec and it 
spans June 2009. The data contains the following information about the each tweet: 
  - Time (YYYY-MM-DD HH:MM:SS) 
  - URL (http://twitter.com/author_name) 
  - Content of tweet (unstructured, but all URLs can be identified by 'http://URL') 
The information we are going to find critical is the name of the author and the content of the tweet with 
particular attention to the links that are provided. 
 
The first tool we used transformed the data into a more usable format. Each tweet with its corresponding 
information was structured into a row in a Comma Separated Values file. The file was a list of tweets 
looking like: 
  author_name, tweet 
The name of the author was transformed from its original format to one where the only the author_name 
was saved. 
 
Next, we created a tool that took the formatted data and striped out any of the tweets that did not contain 
URLs. After manually examining some of the original data, we determined that all the URLs in the tweets 
were written in the format “http://URL” or “https//URL”. We could not find any URLs in the format 
“www.URL”. We generated a file similar to one previously generated with the tweets containing URLs. 
 
The next tool we created took the tweets that had URLs and created a list of nodes. Every author was 
considered to be a potential node, but we did not allow authors to be added twice to the list of nodes. Then, 
we created a tool that took the tweets that had URLs and created a list of edges. A node can have an edge in 
two ways. First, we defined the concept of retweeting. A retweet is a tweet posted by a user that was posted 
by another user originally. Retweets are usually in the format “RT @orignal_author the tweet is copied 
here”.  If a user retweets another user, an edge is created from the user that is retweeted to the user that 
retweets. The second way a node can have an edge is if a user mentions another user in his tweet. Users in 



Twitter can mention other users in their tweets by adding “@username” to the content of their tweet. The 
mentioned user then gets notified of the tweet. The edge would go from the user who created the tweet to 
the user who is mentioned in the tweet. 
 
After the application of all the tools we created on the original data, we were able to create the first graph 
of our data. 

Graph1:  A graph G(V, E) in which the set of nodes V represents Twitter accounts 
involved in at least one tweet (as either the sender or receiver) containing a URL, and 
in which the set of edges E represents these URL-containing tweets, directed from the 
author to the tweet’s receiver(s). 

Our data comprises all tweets sent and received during the month of June 2009, totaling 18,572,084 tweets 
in all.  Graph1 has 1,048,010 nodes and 2,016,814 edges. Since Graph1 only contains tweets with URLs, this 
shows that only 10.85% of the original data contained URLS. 
 
We then developed a tool that determined if a tweet was spam or not. As noted in the literature [2], there 
are several methods to determine the presence of spam, and indeed there are multiple classes of spam 
including phishing, malware, and scams.  For our analysis, we define a tweet as spam if it 1) contains at 
least one URL and 2) one of these URLs either directly or indirectly (as through redirection) resolves to a 
domain contained in at least one of a set of spam blacklists.  We selected this set from a comparative list of 
blacklists as found in [3].  In addition, we identified tweets as spam if they contain at least one URL which 
eventually resolves to a landing page that contains no information (a blank page) or the URL that was 
redirected to was in a whitelist of URL shorteners. The second identification method was based on the 
process of URL shorterners to check for spam and then display a page to the viewer of the shortened URL 
that warned the viewer of possible spam. We initially attempted to run our tool on Amazon’s Elastic 
MapReduce service. However, that approach proved unfruitful as the Hadoop framework that is in place on 
Amazon’s service created multiple problems. We eventually generated the set of spam tweets by making 
use of our personal computing resources. 

Graph2:  A graph G(V, E) in which the set of nodes V represents Twitter accounts 
involved in at least one tweet (either the sender or receiver) marked as spam, and in 
which the set of edges E represents these spam tweets, directed from the author to the 
tweet’s receiver(s). 

Graph2 has only 124,571 edges and 124,820 nodes. This makes the set of spam tweets to be only 0.6% of 
the original data and 6.0% of tweets containing URLs. This was expected since Twitter has very efficient 
spam identification service in place. 

Graph Analysis 

We successfully generated both graphs after multiple attempts.  The links graph contained an average 
clustering coefficient of approximately 0.0167 while the spam graph contained an average clustering 
coefficient of approximately 0.0055, roughly 33% of the former.  Therefore, as a result of Twitter’s spam 
identification service, Twitter accounts send and receive spam links much less frequently with neighbors of 
neighbors, a positive sign in reducing spam propagation. 
 
Figures 1 and 2 show the degree distributions of the links graph and spam graph respectively.  Both degree 
distributions exhibit the straight-line signature of a power law distribution when plotted on a log-log 
plot.  A least-squares regression yielded an estimated y = (-1.0402*10-2)*x +1.7049*102 for the links graph 
degree distribution, while a least-squares regression yielded an estimated y = (-4.0232*10-2)*x 
+1.1571*102 for the spam graph degree distribution.  Though both plots exhibit power-law behavior, the 
spam graph clearly decays much faster than the links graph, a result of preventing spam link propagation 
on the network. 
 
Figures 3 and 4 show the sizes of the ten largest strongly connected components of both the links graph 



and spam graph respectively; figures 5 and 6 similarly show the sizes of the ten largest weakly connected 
components of both graphs.  Interestingly, while the links graph contains a giant strongly connected 
component of nodes, the spam graph does not (compare largest strongly connected component size of 
130,253 in the links graph vs. 643 in the spam graph, or equivalently 12.43% of the total nodes in the 
former vs. 0.52% in the latter).  Both graphs contain a giant weakly connected component: the largest 
weakly connected component in the links graph contains 857,512 nodes (81.82% of total), with the largest 
weakly connected component in the spam graph containing 59,352 nodes (47.55% of total). 
 
These results are plausible considering that normal (i.e. non-spam) Twitter communication regularly 
involves two consenting parties sending and receiving tweets between each other, resulting in directed 
edges in both directions.  Spam tweets, on the other hand, do not represent such a relationship; in this case, 
one party (the spammer) produces a directed edge in one direction while the other party (the receiver) 
usually does not.  An analysis taken over hundreds of thousands of these relationships would produce a 
giant strongly connected component as seen in figure 3 (that is, for mutually consenting tweets), while not 
producing a giant strongly connected component for spammer-receiver relationships (figure 4). 
 

 
Figure 1. Links graph degree distribution

 
Figure 2. Spam graph degree distribution 

 
Figure 3. Links graph ten largest strongly 

connected component sizes 

 
Figure 4. Spam graph ten largest strongly 

connected component sizes 



 
Figure 5. Links graph ten largest weakly 

connected component sizes 

 
Figure 6. Spam graph ten largest weakly 

connected component sizes 
 

TrustRank 

TrustRank is described in [4] as a variant of Personalized PageRank where a site linking to another 
indicates that the linking site is putting trust in the linked site. Our model is somewhat different in that the 
nodes are users who can post URLs that may or may not be trustworthy. The important observation in the 
paper is that trust should “flow” via the edges in the network. Because of this observation, the graph 
required as input to the algorithm must be constructed slightly differently from the previous experiments, 
however the tools that we have already implemented to construct the other graphs can easily be modified 
to accommodate the construction of this graph. 
 
The TrustRank input graph G(V, E) is formulated as  s. V, as before, is the set of all the users present in the 
tweet dataset. A directed edge from u to v exists in E if u retweets v. Notice that this formulation is the 
opposite of what was used earlier. This is because we want to measure flow of trust, not influence. 
Intuitively, if someone retweets a tweet, he is expressing trust towards the original poster. In addition, 
unlike before, this graph contains tweets regardless of whether or not the they contain links; retweets 
convey trust regardless of the content of the tweet. Finally, this graph makes no attempt to incorporate 
regular mentions because a mention could be used for a number of reasons; it may convey trust if the 
tweeter believes the mentioned user will act on the tweet in some fashion, but spammers may mention a 
large number of users simply to try to propagate information. Given the potential for noise in result data 
due to regular mentions, we ignore them entirely as retweets will more reliably convey trust propagation. 
 
Given this graph definition, the network we will evaluate has 548,119 nodes, 986,086 edges, and average in 
and out degree of 1.7990. 

Methodology 

The algorithm for TrustRank is described in detail by [4]. Essentially, the authors manually select a small 
number of trustworthy seed nodes as input to a personalized version of PageRank [5]. The key equation is 
below: 

                
                

 
Here, T is the transition matrix of the graph, where each column is normalized by out-degree. t is initially d, 
a normalized version of a vector of seed trust values; for the first run, an element is 1 if it is one of L seed 
nodes and is known to be trustworthy. M is the number of iterations of the algorithm; the authors of [4] 



chose M to be 20 to get sufficiently close to convergence. Finally, alpha is the same decay factor as in 
PageRank. 
 
Unlike the authors, who focused only on trust propagation, we also want to find nodes which are 
untrustworthy. Thus, we also want to gauge “distrust” propagation. We can do this by running TrustRank 
twice: once with trustworthy seed nodes, and then again with untrustworthy seed nodes. Both will yield 
different trust orderings and values for each node. Because raw TrustRank scores will not be normalized 
with respect to one another, for each node, we do the following: assign score 1.0 to the node with smallest 
raw score and assign the ratio of raw score to lowest score for all other nodes. Thus, we now have a 
meaningful scoring system where the score signifies how much “better” or “worse” a node is relative to 
another node. Ideally, we want all of the users with negative scores to be ones from which a strong 
conclusion about negativity can be derived. From Twitter’s perspective, the best case result from this 
ranking is to be able to automatically ban users with a negative score. A slightly weaker usage could be to 
label of a user’s tweets as potentially spam on the user interface. The weakest, but still useful usage is to 
exclude these users’ posts from any “top” tweet listings. 
 
For our purposes, we can add the trust vector from the first run to a constant multiplied by the opposite of 
the distrust vector from the second run. Then we have an ordering called Hybrid TrustRank that combines 
influence from trustworthy and untrustworthy nodes: 
 

                                                                            
 

Given the aforementioned trust propagation graph, we must define a reliable method for determining a 
small set of initial nodes that will serve as the “seeds” from which trust and distrust propagate through the 
network. This number should be relatively small because each one requires oracle evaluation as to whether 
or not a node is trustworthy. For a much larger network, the authors of [4] selected fewer than 400 seed 
nodes. Thus, we can select between 100 and 500 nodes to seed both the positive and negative algorithm. 
 
To select these seeds, we will run PageRank and inverse PageRank to approximate high-quality and low-
quality nodes. We have already implemented tools for classifying links as spam, as well as within Alexa’s 
top ranked sites, so we will pick as “good” seed nodes as nodes from the PageRank top 500 which contain 
reputable links and pass a manual check of a tweet sample. Similarly, “bad” seed nodes will be nodes from 
the inverse PageRank top 500 with at least 50% of tweets containing spam links and fail a manual check of 
a tweet sample. Inverse PageRank is equivalent to standard PageRank except that the transition matrix U 
measures out-links rather than in-links and the “teleportation” vector assumes equal probabilities. Note 
that the damping factor alpha need not be the same as that used in TrustRank, but for both we will start 
with 0.85. Note that for the purposes of implementation, this is equivalent to running PageRank on the 
graph with the edges reversed. 

                

              
 

 
   

Evaluation 

We want to evaluate the following: (1) the effectiveness of PageRank and positive TrustRank in selecting 
high-quality Twitter users and (2) the effectiveness of hybrid TrustRank in selecting low-quality Twitter 
users. The utility of the former is that these nodes can be featured prominently on Twitter with minimal 
need for human curation. The Twitter application for iOS [6], for example, both identifies “top” tweets in a 
search and users who have recently posted a tweet of interest. Being able to know which users are likely to 
post high-quality content a priori could improve Twitter’s ability to maintain “top” content in real time. The 
utility of the latter is clear: if a user is shown algorithmically to be untrustworthy, he is a prime candidate 
for account termination. Even if the resulting level of certainty is not high enough to make such a decision, 
Twitter can still label potentially untrustworthy tweets as such with user interface elements, and can 
prevent any such tweets from appearing prominently anywhere, especially not in “top” lists. 
  



 

Identifying High-Quality Users 

For the first stage, the method of evaluation is roughly equivalent to that in [4]. Specifically, we select a 
sample of size roughly 500, but not uniformly at random because of the sparseness of the graph. Instead, 
we define 20 buckets where each bucket contains nodes which sum to 5 percent of the total PageRank 
score; for example, the first bucket contains the first set of elements that sum to the first 5% of the total. 
These buckets will progressively increase in size since PageRank follows a power law distribution. From 
each bucket, select 25 nodes at random. Since 500 is a moderately small number of users (especially when 
compared to the whole graph), we can individually examine these nodes manually to classify them as good 
or spam for our oracle. For positive TrustRank, we define buckets in the same way, except with the positive 
TrustRank data. 
 
To mitigate human bias in manual oracle generation, we define a scoring system that assigns a score from 1 
to 4 for each Twitter user in the evaluation sample. A score of 1 indicates that the user posts malicious 
links, mentions irrelevant users, and posts the same outwardly linking tweet repeatedly. A score of 2 
indicates a user who uses Twitter as a marketing link aggregator. A score of 3 indicates a user who uses 
Twitter as a link aggregator with minimal community interaction. A score of 4 indicates a user who engages 
in relevant personal interaction with the Twitter community. Figure 7 compares PageRank to positive 
TrustRank by a mean square bucket score sf defined in terms of the base score sb and bucket size nb as 
follows: 

   
   

   
   

  
 

 

 
Figure 7. Comparison of PageRank and TrustRank average quality scores per bucket 

 

Evaluation Method Pearson Correlation Coefficient 

PageRank -0.56956689 

TrustRank -0.899156483 

Hybrid TrustRank 0.831440643 

Table 1. Correlation between scores for ranking algorithms and bucket number 
 
Table 1 shows the Pearson correlation coefficient for bucket numbers with respect to PageRank, 
TrustRank, and Hybrid TrustRank as defined previously. A value close to 1 indicates strong positive 
correlation, a value close to -1 indicates strong negative correlation, and 0 indicates no correlation. Note 
that Figure 7 omits buckets 16 through 20 because they almost completely contain nodes with zero out 
degree. These nodes are not influential enough for any reasonable conclusion to be made with respect to 
their quality. Generally speaking, the graph demonstrates that for both PageRank and positive TrustRank, 
the overall quality of the higher-ranked buckets is higher in general. Because the scoring is the mean 
square of the base score, the maximum possible value is 16, and TrustRank on the first bucket approaches 
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this value. 
 
The TrustRank data clearly shows a much clearer decrease in scoring as the bucket number increases; the 
PageRank data also roughly shows this trend, but it is not as well-defined. More formally, the Pearson 
correlation coefficient for TrustRank is nearly -0.9, whereas it is approximately -0.5 for PageRank. Thus, 
based on the evaluation sample, a high positive TrustRank appears to be a strong indicator of Twitter user 
quality, especially in the case of this evaluation sample. 
 
In order to demonstrate that the strong correlation between quality score and TrustRank data, consider the 
nodes sampled to evaluate PageRank. Define a “poor” node as one who receives a baseline score of 1 or 2. 
Then, we can measure the average demotion of a “poor” node in TrustRank relative to PageRank for each 
PageRank bucket. That is, if a node starts in PageRank bucket b, but is in TrustRank bucket b + k, then the 
demotion value of that node is k. Figure 8 shows the average demotion of “poor” nodes from each 
PageRank bucket. 
 

 
Figure 8. Average bucket demotion for users with base quality score of 1 or 2 

 
Figure 8 demonstrates that “poor” nodes that were previously placed in a high-quality PageRank are more 
likely to be placed in a much lower TrustRank bucket. Note that there is a discontinuity for bucket 3 
because that PageRank bucket did not contain any “poor” nodes. Though every node in the sample 
experiences some level of demotion, it is promising that the nodes in the buckets representing the highest 
ranks experience the greatest demotion. This is especially important because, ideally, the top-ranked 
buckets should only contain nodes of the highest quality, and so any approach that can aid in pruning low-
quality nodes from these buckets is valuable. Because of the high level of demotion of low-quality nodes, 
the remaining nodes are likely to exhibit positive characteristics, and can potentially be used anywhere 
Twitter would like to highlight “top” users. 

Identifying Low-Quality Users 

For the second evaluation stage, we examine the Hybrid TrustRank approach as previously defined. First, 
we chose γ as 0.6 as this produces a large enough number of nodes whose overall score is negative. Also 
note that we reverse the resulting ranking number so that the largest magnitude negative ranks appear 
first. For the limited network from 2009 we are evaluating this is roughly 6000 nodes, which is 1 percent of 
the entire network. Given that this data is only from a single month of twitter usage in 2009, and the 
Twitter network now gains roughly 400,000 new users each day [8], even isolating one percent of users 
who exhibit suspicious characteristics. Thus, if we can make strong conclusions about this sample, there is 
potential for significant impact on the Twitter network. Evaluation buckets are defined as before, except 
that there are only ten buckets, each representing ten percent of the total score distributed over negative 
scoring nodes. Positive scoring nodes are ignored entirely in this analysis as these are deemed to be more 
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trustworthy than untrustworthy, and thus should not be subject to any repercussions. Figure 9 shows the 
average mean square quality score of the evaluation sample as a function of the bucket. 
 

 
Figure 9. Average quality score for each hybrid TrustRank bucket 

 
Notice that the mean square quality score can range from 1 to 16, and the highest scoring bucket only 

receives approximately 4. Thus, the great majority of these nodes are “poor” nodes with base score of 1 or 
2, indicating that highly-ranked Hybrid TrustRank users are likely to abuse their Twitter user privileges. 

Visually, it is also clear that the highest ranking buckets contain the lowest-scoring nodes. Table 1 also 
shows that the Pearson correlation coefficient relating bucket to quality score is 0.83, indicating that the 

Hybrid TrustRank metric is effective at selecting the most untrustworthy nodes from the retweet network. 
 

 
Figure 10. Percent of users with base score 3 or 4 in sampled hybrid TrustRank buckets 

 
An important consideration to make when attempting to label nodes as undesirable is the likelihood of 
false positives. Figure 10 plots the proportion of false positives in each Hybrid TrustRank bucket. For the 
first six buckets, there were no false positives in the evaluation sample. For the remaining buckets, the false 
positive rate increases with the bucket number, but is at most 20 percent. Essentially, what this data 
suggests is that nodes that behave suspiciously enough to receive the poorest Hybrid TrustRank scores 
deserve termination with high probability. Because TrustRank follows a power law distribution, there are 
many more nodes in the final four buckets as compared to the first six buckets. These can still be labeled by 
Twitter as potential sources of spam and the tweets in search results and elsewhere can be labeled as 
untrustworthy. 
 
Overall, this approach is a high-speed method of identifying the most untrustworthy nodes with reasonably 
high certainty in the large Twitter retweet network. Combined with existing approaches, such as machine 
learning on actual tweet text, this can serve as a powerful tool for neutralizing spam on Twitter. 
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Communities within the Graphs 

We used the Louvain method in order to detect communities in our graphs in order to determine if we can 
combine what we know trustworthy nodes and communities to identify spam communities. The Louvain 
method is a greedy optimization method that attempts to optimize the modularity of a partition in a graph 
[7]. Modularity is defined as how well divided a network is into particular partitions. Networks that have 
less edges between partitions and a high density of edges within partitions have higher modularity than 
networks that have a high density of edges crossing partition boundaries. 

def louvain_method(graph) {  
while(modularity != optimal) {   

small_communities = optimize modularity locally 
for each community in small_communities: 
all_communities += community represented as node 
graph = all_communities 

} 
return graph 

} 
The method starts off by optimizing modularity locally resulting in the formation of small communities. 
The small communities are aggregated together and represented as nodes in a new graph in the next step. 
The method repeats these two steps until the modularity is maximized and the graph is created with 
communities and sub-communities. Exact modularity optimization is a NP-hard problem and this method, 
in contrast, is efficient and easy to implement. It cannot guarantee perfect community detection, but it is a 
very good approximation.   

 
The use of this method on our spam graph proved very interesting. We noted that there were 26081 
communities within the spam graph. There are a high number of communities of size 2 or less which would 
suggest that all the spammers in the Twitter network are individuals working outside of communities.  
Even though there are many more communities of two nodes than communities of larger sets of nodes, 
only 16% of nodes are in these smaller communities. The remaining 84% of nodes are part of communities 
that are larger. 
 

 
Figure 11. The number of communities of a given size in the spam network 

 
The largest community we detected in the spam network was 3820 nodes and only 12 communities have 
more than 1000 nodes in them. The trend of communities in the spam network comes as no surprise when 
the trend of the communities in the network of tweets containing URLs is examined. Both the spam 
network and the URL network have the same trend of a large number of small communities and fewer large 
communities. 
 



 
Figure 12. The number of communities of a given size in the network of tweets containing URLS 

 
We also noted that while spammers act within communities, most spammers do not exclusively create 
spam tweets. We sorted users into three different buckets. The first bucket we called “pure spammers” and 
these users were spammers who only created spam content. The second bucket was called “more than half 
spammers” and these were spammers who created spam content more than half of the time. However, this 
bucket of users did not include users who were “pure spammers”. The final bucket we called “less than 
half” and these spammers only tweeted spam tweets one in every two tweets or less. These definitions 
helped us analyze our spam graph to note which bucket the majority of our spam users identified with.   
 
Only 42852 users or 34.33% were “pure spammers”. In contrast, 77341 users or 61.96% of spammers fell 
into the bucket of “less than half”. Interestingly, the bucket of “more than half” barely contained 3.71% of 
users.  There are a couple of possible reasons for this unusual division among the buckets. We hypothesize 
that spammers on the Twitter believe that if they tweet spam tweets more than half of the time, it is just as 
likely to get identified as a spammer if they are tweeting spam tweets all of the time. This is because 
Twitter is very good at detecting spammers who only create spam tweets and users who tweet spam more 
often than not. Our dataset might also be influenced by the fact that Twitter has methodologies in place for 
detecting and removing spam users. This could influence the number of users who tweet spam more than 
half of the time. However, we would expect to see that this affects the percentage of users who are “pure 
spammers”. Since we don’t see this, we are unsure on how the Twitter’s spam policy has influenced our 
dataset. The fact there are significantly more spammers who tweet legitimate URLs along with spam URLs 
does suggest that the latter reason could be a great motivation for spammers to appear legitimate at least 
half of the time if they wish to continue to create spam tweets. 
 

 
Figure 13. Number of users who have a given percent of tweets defined as spam 



 
We attempted to identify which communities these “pure spammers” belonged to in order to detect any 
possible pattern. If the “pure spammers” congregated together in the larger communities, this simplified 
Twitter’s identification of spam problem. Twitter would then have to only identify key spam users and the 
communities they belong to. Twitter could take the appropriate action to fully determine if those 
communities are spam communities and warn legitimate users of spam from those communities. 16495 
communities contained “pure spammers”. This is about 63.24% of all the spam communities. Figure 14 
shows that the pure spammers aren’t confined to communities of particular sizes. In fact, they seem to be 
evenly distributed with no bias towards larger or smaller communities. Unfortunately, this does imply that 
Twitter cannot take advantage of the size of the community when attempting to eradicate pure spammers.  
 

 
Figure 14. The sizes of communities containing “pure spammers” compared with the sizes of all 

communities in the spam network 

Further Work 

The TrustRank analysis yielded some surprisingly favorable results and effectively separated high-quality 
users from low-quality users. However, false positives certainly existed and before Twitter is able to 
incorporate methods such as ours, we must reduce the false positive probability as much as possible. We 
propose a multi-phase approach of first identifying high- and low-quality users using positive and hybrid 
TrustRank approaches, followed by some machine learning and natural language processing methods to 
analyze the actual text of the users’ tweets. One possible approach is to train a classifier on the massive 
existing database of spam email and apply the classifier to individual tweets. A user identified by hybrid 
TrustRank that scores poorly on this classification phase is a spammer with high probability. 
 
Similar approaches could also be applied to our analysis of connected components. We can identify 
strongly and weakly connected components, run a form of analysis on large groups of nodes that form the 
latter, but not the former. Thus, we reduce the evaluation size for even the most computationally-intensive 
classifier. Any of the methods we have presented have the potential to aid in improving the performance of 
more fine-grained methods by identifying key parts of the network on which to focus. 

Conclusions 

In our attempt to analyze the spam propagation in the Twitter network, we were able to come up with a 
reasonably efficient method of identifying the most untrustworthy nodes with reasonably high certainty in 
the large Twitter retweet network. We also showed how while spammers tend to work in communities, 
those communities lack an easily definable characteristics that we can take advantage of. We also noted 
that the spam network within the larger Twitter network lacked some of the characteristics of the larger 



network. The spam network did not contain a giant strongly connected component while the Twitter 
network did. We considered this a reasonable deduction considering that non-spam Twitter 
communication involves two consenting parties that would show up as closely linked on our graph. Spam 
communication tended to follow a spammer-receiver relationship. 
 
The method of scoring high-quality nodes based on positive TrustRank and low-quality nodes based on 
hybrid TrustRank yielded surprisingly favorable results. Both methods are able to categorize Twitter users 
in such a way that their ordering is highly correlated with the quality of their tweets. We were able to 
accomplish this by manually labeling only a few hundred seed nodes, and adjusted the weights of the 
algorithm as necessary. We were able to consequently identify a fraction of the Twitter user base that could 
be regarded as untrustworthy. Combined with textual analysis of tweets, Twitter can potentially use this 
approach to quickly eliminate many of its malicious users. 
 
With respect to our ultimate goal, we have come to the conclusion that while we are able identify 
untrustworthy users, it would take extensive further work to determine if accounts have been either 
compromised or created as pure spammer accounts on a purely automated basis.  We believe that we have 
set up the groundwork for others to pursue this as further line of research.  
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