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Using Twitter to Estimate and Predict the Trends and Opinions

1 Introduction

The most common and conventional way to collect peo-
ple’s opinions has always been random sampling and
asking several survey questions by phone. For instance,
if a news media is interested in how popular Obama is
among Americans, it would probably call up a thousand
people and ask how they would rate Obama. The data
collected in this manner is considered a gold standard;
there has been only few attempts to find a different way
to collect such data. However, this approach bears a few
shortcoming such as costs, limited targeted people, etc.

In this paper, we attempt to predict people’s opinions
and trends by analyzing the Web data such as Tweets
on Twitter. There are several interesting questions we
could ask, given millions of Tweets: how people feel
about economy; how people feel about Obama - job ap-
proval rate; what people think about the top five con-
testants left in the TV show American Idol. Collecting
polls by asking people in person or by phone is costly
and time-consuming, but if we could get the same results
from the freely available Twitter data, it could supple-
ment or supplant the conventional way of collecting the
data [1].

2 Problem Description

As briefly introduced in previous section, we would like
to solve the following problem:

Problem: Can we analyze the Twitter data in order to
estimate and predict the future trends and opinions of
people?

To formalize, let us define a time series variable p(t) that
we would like to predict; for instance, Obama Job Ap-
proval rate that ranges in 0% and 100% could be such
a time series variable. Then our problem simplifies to
predicting p(t) using the Twitter data.

Since the Tweets are also time series data, we can denote
another time series variable q(t) that can be obtained

by some text analysis over the Twitter data (this could
be, for instance, a certain word’s frequency at time t).
Hence, we could try to correlate these two time series
p(t) and q(t) via learning models such as linear regres-
sion model. Simply put, we would like to first estimate
p(t) as some function of q(t):

fβ(q(t)) ∼ p(t+ β) (1)

Where the time parameter β specifies how much of time
we want to predict. For instance, β = 7 days would
mean that we want to predict p(t+7) using the data up
to time t (hence, this is 7-day forecast). Our problem,
then, is to find (or learn) the functions fβ for given β,
where we can obtain the time series q(t) from Twitter
and can observe p(t) via external polling data such as
Gallup.

3 Related Work

Google recently developed an online tool called Google
Flu Trends [2], which attempts to predict the number
of influenza patients based on the search queries people
enter on Google.com. The actual number of patients in
the United States is reported by the Center for Disease
Control (CDC), but the report comes out with a 2-week
lag in that it is released two weeks after the time when
actual physician visits happened. In this work, the au-
thors attempted to train models and learn the predicting
function gβ via a simple linear regression model over log-
odds of the following two events: p(t) that is the frac-
tion of influenza-related physician visits among all visits
and q(t) that is the fraction of search queries that are
influenza-related. This simple model provided a good
estimate of the number of flu patients, which matched
the actual CDC report that comes out 2 weeks later. In
their model, β was set to zero, meaning that the authors
only attempted to predict the number of patients of the
given day, using the search query fraction data of the
same day - and thsi prediction was verified via the CDC
rerpots that come out two weeks later.
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Another closely related work is done by a group of au-
thors at Carnegie Mellon University in a recent paper
called From Tweets to Polls[1]. In this work, the au-
thors attempted to solve a very similar problem using
the Twitter data. The authors trained a linear model
after applying the sentiment analysis over each Tweet
by checking whether a Tweet contains a positive word
and/or a negative word; a Tweet could be marked either
positive or negative or both, according to the sentiment
analysis lexicon they used. For predicting Obama’s Job
Approval rate, they limited the input space to the set
of the Tweets that contain a word ’Obama,’ on which
the sentiment analysis was performed. A simple linear
regression model was successful in estimating the future
approval rate, but not by much from the baseline predic-
tion. For predicting other tredns such as the consumer
confidence index, the authors report that their model
did not work well.

Figure 1: Time vs Tweet Volume

Figure 2: Time vs Qualified Tweet Fraction

4 Data

4.1 Data Collection

We used the publicly available Tweets from Jul’10 to
Nov’11, which were crawled via public Twitter APIs and
other tools. For the trend data, we collected the follow-
ing data, but only had time to work with the Obama
Job Approval rate data.

(1) Obama Job Approval: Gallup data

(2) American Idol: Top 12 Elimination Polls

(3) Economy: Consumer confidence index

Table 1: Top words with respective train/test errors with µ = 3

Rank Word Train Err (Single) Test Err (Single) Train Err (Agg) Test Err (Agg)
1 cong 1.88353 3.44086 1.88353 3.44086
2 nov 1.89899 4.3944 1.7073 3.83679
8 #2011 1.9683 3.92031 1.30232 3.85882
9 #thatawkwardmoment 1.973 5.88304 1.2216 4.41469
11 #nv 1.9891 4.69948 1.16341 5.07407
14 images 1.99633 3.17813 1.1433 3.9654
15 #vote2010 1.9996 5.07752 1.12839 3.5898
17 #whyivote 2.00431 4.94258 1.1247 3.61808
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4.2 Data Statistics

In this work, we used all public Tweets from 7/15/2010
to 11/30/2011, inclusive, and the Gallup’s Obama Jab
Approval polls data from 7/15/2010 to 11/30/1011, in-
clusive. During this period, we have the following statis-
tics (here, ’Qualified Tweets’ refer to the Tweets that
contains ’Obama’ (case-insensitive) as a substring):

# of days 504
# of Tweets (Total) 11,470,198,016
# of Tweets (Daily) 22,758,329

# of Qualified Tweets (Total) 1,737,394
# of Qualified Tweets (Daily) 34,471

To give a better sense of the Twitter data, Figure 1
shows the time vs. volume of Tweets plot while Figure
2 shows the fraction of Qualified tweets. The green line
in Figure 1 (the number of Qualified Tweets) is scaled up
by multiplying by 100. The left-most vertical line rep-
resents the date on which Osama Bin Laden was killed;
we see that the number of qualified Tweets bursts out
on that data while the total number of Tweets did not
change that much. On the other hand, during the week
of 10/11/2011, the ’Occupy Wall Street’ movement/riot
was prevailing around the globe, and the total number
of Tweets spiked during this week as shown with the
right-most vertical line in Figure 1, while the fraction
of qualified tweets did decrease by a bit (because not
all bursting tweets mentioned Obama). These two plots
together indicate that people do share their opinions
via Twitter and we can easily see from the statistics
that such trends could be captured if enough people are
tweeting about the event or person.

5 Method

To solve the problem of predicting the trends and opin-
ions, we first consider the following assumptions and
pre-processing step.

5.1 Assumptions and Pre-Processing

First of all, given a prediction problem (or a topic), we
must admit that not all Tweets are about the given
topic; in fact, the majority of Tweets would be ’noise’
for most topics. Hence, it is important to limit our input

space (or the data) to a proper set of Tweets that are
talking about the given topic. This introduces a differ-
ent but relevant problem called ’topic analysis’; given a
Tweet, can we identify what topic(s) this Tweet belongs
to? Since this problem itself is an interesting, difficult
problem, we do not attempt to solve this problem in
this work, but we would simply filter the Tweets as a
pre-processing step. That is, given a topic, we will only
consider the Tweets that contain a certain word (or cer-
tain words) related to the topic. For instance, for the
Obama job approval prediction, we could simply con-
sider the Tweets that contain ’Obama’.

Second of all, as the authors in [1] pointed out, Twit-
ter has its own language in the sense that people post
Tweets using hash tags, URLS, Internet slangs, etc., in
order to express their opinions within 140 characters.
Considering that each Tweet consists only of 11 words
on average, this is barely a short sentence. Hence, a sim-
ple sentiment analysis may be work well for analyzing
the twitter data. In this work, we propose that the term
frequency count (single terms, bi-grams = two adjacent
words, etc.) and aggregated term frequency count (top
k single terms, top k bi-grams, etc.) could be used in
learning the time series prediction model.

5.2 Learning Models

We used linear regression model (on the top of log-odds
of the two time-series data) where the features are word
frequencies and target variables are Obama’s Job Ap-
proval rate.

To be more formal, let us define the following: n is
the total number of days, in our case it is 504. In
our Vocabulary (English words and hash-tags), we have
m = |V | = 346, 880 words. For each word wi, the cor-

responding feature vector x(i) ∈ Rn is defined as: x
(i)
j

is the word frequency of wi on day j = 1, 2, . . . , 504.
Henceforth, the superscript (i) denotes the i-th training
example. In particular,

∑m
i=1 x

(i)
j = 1 for all j (i.e. the

sum of word frequency equals to one on any given day).
Finally, ~y ∈ Rn is defined as the Gallup’s poll data on
each day.
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5.2.1 Linear Regression - Single Word

We can easily think of a linear regression model to learn
the parameters θ(i) ∈ R2 using just a single word wi by
solving the famous normal equation:

θ(i) = [(x(i))Tx(i)]−1(x(i))T~y (2)

For convenience, we define θ
(i)
0 to be the intercept term,

and we would modify the x(i) vector above to be a n×2
matrix such that its first column is all 1’s, and the sec-
ond column is x(i). Solving this normal equation will
yield the best-fitting parameters θ(i) for word wi.

5.2.2 Linear Regression - Aggregate Words

Now, suppose we have learned θ(i) for all m words.
We can sort them by the training error to get the
best k words that work best on the training set, and
use these top k words altogether to learn a new lin-
ear regression model. In this case, the parameters Θ(k)

we want to learn would be in dimension k + 1 as op-
posed to dimension 2 in the single word case. That is,
Θ

(k)
0 +

∑k
i=1 Θ

(k)
i x

(i)
j would be our prediction on day j,

using the top k words. Learning Θ is identical to learn-
ing θ in that we just have to solve the normal equation:

Θ(k) = [(X(k))TX(k)]−1(X(k))T~y (3)

where X is the design matrix containing the top k fea-
ture vectors as rows.

This ’aggregated linear regression’ approach mimics
what Ginsberg, et al. did in their work [2].

5.2.3 Time Parameters

Notice that the above linear regression models try to use
the Tweets to predict the polls data on the same day.
However, it would be more useful and practical if we
could predict the polls result t days ahead of time. For
instance, the Tweets posted today may be a good indi-
cator of the true polls data in 3 days or a week. Hence,
we introduce the time parameter β that indicates how
far in the future we would like to predict. In our work,
we would consider the values β = 0, 1, . . . , 30 (β = 0

means predicting the same-day trends, and β = 7 means
predicting the trends 7 days ahead).

Then, the above models would be modified accordingly
when we introduce the parameter β as follows.

For single-word version, we use the data x(i) on day j to
predict yj+β:

||yj+β − (θ
(i)
0 + θ

(i)
1 x

(i)
j )||2 (4)

The term in parenthesis is our prediction, and the above
expression is the squared error of the prediction for day
j + β.

For top-k word aggregate model, we get similar formula:

||yj+β − (Θ
(k)
0 +

k∑
i=1

Θ
(k)
i x

(i)
j )||2 (5)

6 Experiments and Findings

6.1 Experiment Setup

Single-word Model

For each experiment, we have to fix a set of parameters.
The time parameter β is set to an integer value between
0 and 30. Since we have 504 days of data, we train
our model on days [ts . . . te) and test our model on days
[te . . . 504) (our days are 0-indexed). With these three
parameters fixed, we learn single-word linear regression
models for each word in our vocabulary V (recall that
|V | = 346, 880), and we sort the words by how well they
fit the target variables (Obama Job Approval rates).

Aggregate Model

Based on this measure, we pick the best k words (where
k = 1 . . . 100) and train an aggregate-word linear regres-
sion model as explained earlier. Our findings focus on
using these aggregate-word models, and our single-word
models play a role as a feature selector or filter to learn
ggregate-models.
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6.2 Results

Table 1 summarizes the train/test errors when β = 3,
showing some of the top 20 words due to the limited
space. Notice that we see some politically relevant words
such as ’cong’ (congress), ’#vote2010’, ’#whyivote’, etc.
Also notice that in aggregated model, the train error
continues to decrease because we are introducing more
features to fit the data (however, since it will eventually
overfit, the train error of this model would decrease and
then increase).

Figure 3: Training Set Size vs Error

Figure 4: Aggregate Model Size vs Error

However, we delve into our data sets and results in depth
in order to understand exactly what happens with our
models. As we vary a particular parameter while set
others fixed, we can understand the effects of the vary-
ing parameter. The following sections will discuss what
each of the parameters tells us about the data.

6.2.1 Effects of Training Set Size

For any fixed β and x where x is the number of words
used in aggregate model, as we vary te − ts (which
is the size of training set), we would expect that the
larger training set will help our model learn the tar-
get trends. For instance, training on 5 days of data
would make our model too simple, while training on
200 days of data would yield a more reasonable model.
Figure 3 shows how train/test errors change when we
vary te from 100 to 300 (x-axis) while we fix parameters
β = 0, ts = 0, x = 20. In this plot T represents the split-
point of train set and test set, which is essentially te. As
we see, the test error (in bold green) has a decreasing
trend in that our models benefit from more data, while
train error (in red) increases and decreases but does not
fluctuate much.

6.2.2 Effects of Size of Aggregate Model

For any fixed β, ts, and te, an aggregate model is built
on top of the best x words measured by single-word
models. By varying this x, the size of aggregate model,
we can see the effects of having fewer or more words in
aggregate model. Naturally, we would expect that our
models will fit the training data better as we have more
words because that means we are having more features
- hence, we can over fit the training data set. However,
for the train-error, it will initially decrease as our model
can capture the trend better, but eventually it will blow
up due to the overfitness.

In Figure 4, we can clearly see this effect. As we add
more words to the aggregate model, we see that the
train error continues to decrease (in blue), while the
test error (in purple, bold) is minimized at around 105
words, and then starts to blow up; after having 270
words, the aggregate model’s test error was too huge
to fit the plot. The red line represents the train error of
each word in single word model, and this is monotone-
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increasing because we sorted the words by their train
errors. The green line represents the test error of a sin-
gle word, which appears to be a bit random as single
word is clearly not a good predictor.

Figure 5: Prediction Using 10 Words

Figure 6: Prediction Using 50 Words

For comparison, Figure 5 and Figure 6 show how our
aggregate models predict the trends when we keep all
parameters the same except for the number of words
used in aggregate model. In these two plots, the red
curve is the target trend (Gallup data), and the green
curve is our model’s prediction. For these plots, we fixed
β = 0, ts = 0, te = 300, but the numbers of words used

are 10 and 50, respectively.

Notice that Figure 5 does capture the trains but not
quite even in training set, while Figure 6 captures the
trends in training set almost perfectly, while it still man-
ages to capture ups-and-downs-of-trends in training set
– even though towards the right, it is slightly off, it does
capture the moment when a hump comes in at around
day 400, and a drop at around day 410.

Figure 7: Our Model vs Random Model #1

Figure 8: Our Model vs Random Model #2
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6.2.3 Comparison with Random Models

From previous results, we confirmed that aggregate
models do work better as we use more words, which
begs the following question: what happens if we just
randomly pick words from our V and train aggregate
models? Would these model fit the trend curve just as
perfectly as our models? If the answer is yes, then our
models are not any better than randomly picking a set
of words and learn linear regression models. Here, we
fix all the parameters β, ts, te, and x while we train our
aggregate models with a different set of words: the best
x words (our model) and the random x words (random
model).

Figure 7 clearly shows that our model fits the test data
very well while the random model cannot even fit the
training set very well. The difference is more obvious in
the test set (on the right side of the vertical line). Here,
the parameters used are β = 0, ts = 0, te = 400, x = 50.
This confirms our assumption that filtering the features
(words) by how well they fit the target trend individ-
ually, via single-word modes, is a good feature selec-
tion process (because we used the same aggregate linear
models just with different set of features). Similarly, for
parameters β = 3, ts = 0, te = 400, x = 40, Figure 8
shows similar results.

6.2.4 Weights of Words

Along with the previous section, there is a different way
to check whether our selection of words in aggregate
model makes sense. That is to look at the actual weights
(or θ values in our equations) in aggregate model and
see how these weights vary. Intuitively, if our word set
is bad or random, these weights should fluctuate a lot as
we vary the size of aggregate model while keeping other
parameters fixed, because in such a set, the words are
not meaningful features to predict the trends. On the
other hand, if our word set is a good predictor, then we
should see a rather stablized weights across the words,
such that some words are positively correlated to the
trend while others negatively.

Figure 9 and Figure 10 show how the weights of the top
10 words change while we change the aggregate model
size from 1 to 50. Hence, the x-axis represents the num-
ber of words used in aggregate model, and there are 10

curves shown in each plot. For instance, in Figure 9,
the top red curve is for the top word ’bump’, whose
weight is pretty much stablized after about 12 words,
while the navy curve at bottom for the 8-th word ’#wa’
starts at x = 8 (because it is not included in smaller
aggregate models) and its weight does not fluctuate
much either. Figure 9 was generated with parameters
β = 0, ts = 0, te = 300. We see similar results in Figure
10 where the parameters were β = 3, ts = 0, te = 400.

Figure 9: Aggregate Model Size vs Weights #1

Figure 10: Aggregate Model Size vs Weights #2
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7 Summary and Conclusion

In the previous sections, we learned that our aggregate
models benefit from a larger data set (larger training set)
and a larger set of features (more words in model). This
is expected and reasonable because our models should
collect enough data in order to learn the target trends,
and larger set of features helps fitting the target trends
as well.

Furthermore, Section 6.2.3 and Section 6.2.4 confirmed
an important fact that our feature selection process via
single-word model is a promising process as our aggre-
gate model makes a significantly better prediction that
any aggregate model with randomly picked words. We
were able to evaluate our model againt the random ag-
gregate models, and confirmed that our model outper-
forms.

Although we only showed a handful number of plots
for a small set of parameters in this paper, the re-
sults were consistent across all values of parameters
β ∈ [0 . . . 30], ts ∈ [0 . . . 300], te ∈ [ts + 50 . . . 504], x ∈
[1 . . . 100]. However, for large values of β, our aggre-
gate models started predicting less accurately, and this
indicates that predicting the far-future is more difficult
than the near-future using Twitter data, which confirms
that Twitter data is volatile (which counts for day-to-
day trends, in some sense) as the authors in [1] claims
in their work, too.

There were of course issues with our models as well. As
discussed briefly earlier, our best-performing words in
single-word models include junk words that are irrele-
vant to the topic. Our on-going work indicates that this
could be fixed if we use bi-grams instead of uni-grams
(and this is going to be discussed in Section 8).

Due to the limited time and resources, many of our ini-
tial ideas were not implemented or some of the experi-
ments are still running, and these shall be addressed in
the next section.

8 Future Work

There are a number of ideas that could improve the per-
formance of our model.

8.1 Natural Language Procesing

In Natural Language Processing, it is often helpful to use
bi-grams (two adjacent words) instead of uni-grams (a
single word), and our models could easily adopt the bi-
gram features because our models do not rely on the uni-
gram-ness. We are currently running the experiments
with bi-grams, and the pre-processing step (counting
the frequency of bi-grams) is partially completed. We se-
lected bi-grams such that each word must come from our
vocabulary V for the uni-gram model (this ensures that
any bi-gram consists of two important uni-gram words),
and the most frequent bi-grams are all relevant to our
topic, which is different from our uni-gram case. Some
of such bi-grams are ’president obama’, ’barack obama’,
’white house’, etc. Recall that in uni-gram model, the
most frequent words are ’rt’, ’i’, ’the’, ’to’, ’you’, etc. in
order. Hence, bi-gram model seems to filter our mean-
ingless words automatically, and thus can possibly im-
prove our models significantly. Stemming of words could
also help, but we did not seek into this direction.

8.2 Different Trends

A different direction is to predict different trends, such
as the popularity vote of American Idol contestants.
This is a different problem because it is now a binary
classification (i.e. eliminated or stayed). Hence, for the
final version, we attempt to implement better learning
models and to apply them on at least two different time
series data (Obama job approval rate and American Idol
contestant popularity).
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