CS224W Project Writeup: On Navigability in
Small-World Networks

Danny Goodman

12/11/2011

1 Introduction

Graphs are called navigable one can find short paths through them using only
local knowledge [2]. This requires a very precise link distribution, and yet
many important real-world networks are navigable [1]. How does such a link
distribution arise?

Oskar Sandberg proposed a model of network formation in an attempt to ex-
plain how navigability arises [2]. The model takes a geographic nearest-neighbor
network and adds links based on a model of intrinsic similarity between nodes.
The model produces the right link distribution in special theoretical cases and
simulations, but it’s full theoretical consequences are unknown. Sandberg con-
jectures that the model in general behaves as it does in his special case. The
main difficulty in the proof is that links are not created independently, so it is
not easy to prove statements about an entire greedy path.

In this project, I attempted to solve this difficulty for a special case. I did
not succeed, but present theoretical and computational evidence in favor of this
conjecture.

2 The Interest Model and Double Cluster Graphs

This section defines the precise theoretical setting of the project, which is a
special case of Sandberg’s model [2].

Definition A Double Cluster Graph is a set of vertices {z;} = V along with
two independent distance functions, d; and ds, which we think of as ‘geographic’
and ‘intrinsic’ distance. An edge (;, x;) is in the graph if, for all 23, € By, (4, .4;)
dQ(l’i7 l’k) 2 dQ(l’i7 l’j).

Intuitively, a node is connected to every node that is the most intrinsically
similar node within it’s geographic neighborhood. This means that close ge-
ography and intrinsic similarity both increase the likelihood of links. Intrinsic
distance can represent similar interests in a social network, similar content in



the web graph, or any other trait that leads geographically far nodes to form
links.

We are interested in families graphs where the interest metric dy is ran-
domly chosen, called Random Double Clustering Graphs. It will be helpful to
control the randomness through a random permutation 7, so that do(x,y) =
d(m(z),n(y)), where d is the same interest metric over every instantiation of the
random graph in a given family.

Sandberg’s conjecture is as follows:

Conjecture 1. (Sandberg) Greedy paths in randomized double cluster graphs
with bounded doubling dimension have expected size of O(logn).

This conjecture is important because navigability is an extremely important,
and yet non-robust, feature of all the major real-world networks mentioned in
class. It is not well understood why diverse networks exhibit this property. The
best way to understand a phenomenon is to construct the simplest, most general
possible model which corresponds to reality and also exhibits the phenomenon.
This conjecture takes a large step in that direction. Sandberg [2] proves this
conjecture for a simplified model of a family of Directed Double Cluster Graphs,
and provides some computational evidence for the main conjecture.

2.1 Sandberg’s Special Case

Sandberg is only able to show navigability for a special family of graphs, called
Directed Double Cycle Graphs, defined by the following metrics:

di(u,v) = v—u modn

do(u,v) = 7(v)—m(u) modn

where 7 is a uniformly chosen permutation on n elements. The above distance
functions are not symmetric, so the resulting double cluster graph is a directed
graph — and a cycle graph as well due to the modulus. While this configuration is
highly artificial, Sandberg simulates a few more realistic double cluster graphs
without this restriction and finds the same scaling of path lengths, up to a
constant factor. He then conjectures that the same scaling holds for all double
cluster graphs.

If true, this conjecture would provide the only simple analytical static (non-
evolving) model to explain why the precise inverse rank relation holds in real
networks. The importance of this has already been discussed. Sandberg’s for-
mulation imposes very little restriction on the heterogeneity of the double graph
— only a property called ‘bounded doubling’ which relates the volume of a node-
set to it’s diameter. It is therefore not obvious that this conjecture holds in its
full generality. It does seem clear from Sandberg’s simulations, however, that
the conjecture holds true over a far greater space of double cluster graphs than
Sandberg is able to demonstrate in his paper.



2.2  Undirected Double Cycle DiGraphs

The main difficulty in proving Sandberg’s conjecture in the general case is that
the link-formation process is not independent. One must therefore find path-
independent bounds on greedy step size (which our simulations support), or find
ways to argue about entire paths. We study the simplest special case that faces
the independence problem: the Undirected Double Cycle DiGraph on n nodes,
defined by the following metrics:

dy(u,v) = min(u—n—v,u—v,u+n—v)
da(u,v) = di(m(u),7(v))

For shorthand, we write dy (u,v) = |u — v|. These distance metrics are clearly
symmetric, so each cycle is undirected, but the graph is a digraph because the
interest-based link-forming process does not necessarily produce reciprocal edge
pairs.

Unlike the Directed Double Cycle, greedy paths in the Undirected Double
Cycle do not need to monotonically approach their target in either metric. They
may overshoot the target and backtrack with respect to d;, and are not even
required to approach the target in ds.

3 Cracking the Conjecture

The general proof is expected to proceed along these lines:
How then to sharpen this bound? I am attempting a 2-pronged approach:

1. Study the independence problem more deeply. My intuition says an O(1)
halving bound should be possible. Try to be clever.

2. Failing that, study simulations of the undirected cycle search problem. Is
O(1) really the right bound? Which theoretical bounds from the directed
case hold in the simulated undirected case? Can we prove those?

The independent cycle problem is a logical first step towards the whole
conjecture. It must introduce new ideas which may be useful in the general case,
and it is likely an easier problem. The same joint theoretical and computational
approach can then be applied to the full conjecture.

4 Theoretical Evidence for the Conjecture on
Undirected Double Cycle Digraphs

We imagine a full proof of Sandberg’s conjecture would proceed along these
lines:

1. Show that a greedy step of the search process on expectation reduces the
physical distance to target by a fixed fraction. This is usually easy given
the logn degree and link distance profile.



2. Prove that the above result is independent of any previous steps in the
search path. This is the difficult step in the general case, and necessary
to place a global bound of O(logn) steps.

We prove the first step in this section, but the second step is elusive.

Lemma 1. Consider a node = in a large undirected double cycle graph G on
n nodes. Let x; be a node such that |x; — x| = i. Denote by A; the event that
there is an edge x — x;. Then A; and A; are independent for i # j.

Consider a node z; € (x, z) such that |x —z;| = j. Note that there are 2j —2
nodes strictly closer to « than x;, so the chance of an edge from x to z; is Tlfl
This is because any of these nodes is equally likely to be the most intrinsically
similar.

Assume that i < j. Fix a permutation mo : Xo — [1,2i — 1] of the elements
Xo={z;}+{y | 0 < |y—=| < i} such that mo(z;) = 2i — 1. Each occurrence of
A; defines a permutation my. Now let 71 be a permutation on X; = {y | 0<|y—
x| < j} that preserves the order of mo(Xo) (ie mo(u) < mo(v) = m(u) < 71 (v)
etc). A; also defines a single 7.

Since | X1| = 2j—2, there are 2j-1 unique ways to insert x; into the permuta-

tion, all of which are equally likely. Therefore, P(A4;|4;) = 2]%1 =P(4;). O

Theorem 1. Consider a very large undirected double cycle graph G on n nodes.
Consider the greedy path from node x to node z, x,T1,To2,...,Tm,2 and let
d(x,z) > 2. The first step in this path reduces expected distance to z at least %.

Despite that the constant is not optimal, the significance of this bound is
that it leads to logarithmic greedy paths if it holds in general. We explain this
after the proof.

Assume w.lo.g that 0 < z < z < n/2. In fact, we further assume that
z < 7%, so that we only have to consider greedy paths to one side of x. Note
that the expected first step lengthens if we consider paths to both sides of x,
but the analysis is more difficult.

Denote by B; the event that there is no edge to j distance or closer of z, for

j<k—2
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Note that when j = k —1 there is such an edge with probability 1 by z’s nearest
neighbor. We will need a bound on this quantity:
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What is that chance that there is an edge from x to exactly distance j from
z? The edge could fall on either side of z:

1 1 1 4k -3
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Let x; be the first node on the greedy path from z to z. Then for j € (1,k—1)
we have

Pr(B;1)(4k - 3)
(2k—25—1)(2k+25—1)

Pr(ley - z| = j)

These facts allow us to compute the desired lower bound. In the following
calculations our aim is only to achieve a linear estimate, so we make estimates
that sacrifice the constant coefficient:
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The rather ugly left-hand expression is necessary, instead of the more intuitive
|z — 21|, because x1 may be on either side of z from the perspective of z, so
long as it is closer to z.
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We also assume k > 2 because 1 = z with probability 1 if £ = 1. Finally,
then, we obtain:

k

E[\bxfz\ — |z 72\} > 20

O

If this relation could be shown to hold for all steps in a greedy path, it would
give the following bound on path size s:

log |z — 2]

E 1+ —
(s(@,2)) <1+ log 20 — log 19

However, the above proof makes use of specific on-average facts which do not
necessarily hold in the context of previous steps in a greedy path.

5 Numerical Evidence for the Conjecture on Undi-
rected Double Cycle Digraphs

This section describes computational studies suggesting that the above O(k)
bound on the greedy hop holds for successive hops, independent of preceding
hops. The code submitted as supplementary materials creates random Undi-
rected Double Cycle Digraphs with 1,000 nodes each, randomly samples start
and end nodes, and saves the greedy path between each node pair.

With 10,000 paths as samples, the following least squares fit confirms the
overall log-size paths:

s(z,2) ~ 0.962 + 1.186 * |z — z|

See figure 1 for a plot. The fit intercept is close to the expected value of 1.

The purpose of the simulation is to test the independence problem: whether
subsequent hops on a greedy path are somehow systematically shorter, which
could jeopardize the desired routing time. We performed least squares regres-
sions of step size step on remaining distance to target (rem), and on rem and
number of previous steps (num):

step ~ —2.2274 0.642 xrem
—3.361 + 0.649 * rem + 0.256 * num

Q

step

These results show that number of previous steps has little effect on step size.
The similarity of the rem coefficient in both regressions also supports this.
Interestingly, the negative intercept in both regressions suggests that the early
greedy steps are comparatively a bit longer than the later steps.

While this strongly suggests the independence of step expectation and pre-
vious path, it unfortunately does not suggest a theoretical plan of attack.



6 Conclusion

We have presented theoretical and numerical evidence that O(logn) greedy
routing holds in Sandbergs model despite the independence problem. A full
proof was elusive due to lack of imagination, but the conclusion appears highly
likely. With some more efforts, this beautifully simple model may be shown to
explain how navigability arises across so many classes of real networks.
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Figure 1: Path size as a function of path length.



