
Network-based recommendation:
Using graph structure in user-product rating networks

to generate product recommendations

David Cummings <davidjc>
Ningxuan (Jason) Wang <nwang6>

1 Introduction

1.1 Abstract

Given a set of users and their reviews of items, recommendation systems generate ranked lists of items
to recommend to individual users. In this paper, we demonstrate two such systems: one that uses
projections of the bipartite user-item network to generate recommendations, and, as a basis for
comparison, a straightforward probabilistic model that does not take advantage of graph structure.
Testing by holding out certain reviews from the data, we find that the graph-based method outperforms
the model-based method in predicting the held-out reviews.

1.2 Previous work

Over the years, recommendation systems have become a highly-developed field, with various
algorithms to generate product recommendations based on customers' similarities to one another. Some
previous work uses explicit trust networks to augment existing recommendation systems[2][3];
however, for this project, we focus on generating an implicit trust network as a projection of a bipartite
graph of users’ ratings of items. This process is most closely paralleled by work presented in Bipartite
network projection and personal recommendation (Tao Zhou et al.)[1]. This paper creates a directed,
weighted graph among users based on products they have purchased in common, then uses the graph to
create lists of products to recommend to them. Previous work has found that recommendations from
this graph-based approach can outperform both a global ranking of most-popular products and a model-
based algorithm.

The Zhou et al. Bipartite paper is our major inspiration for this project; however, its experiments are
significantly limited. For example, the user base is comprised of only 943 people. We aim to explore
the use of similar algorithms on a much larger data set, in order to provide more conclusive proof of
whether this graph-based approach can improve upon existing recommendation systems. Also, Zhou et
al. treated connections between users and products in a binary fashion, not allowing for users to express
some range of like or dislike for a product. Since we can take into account a range of ratings from 1 to
5, we can approach this problem with greater granularity. Finally, we can also characterize the nature of
the network that is generated through this process.

2 Data

In some ways, our approach is most strongly constrained by the data that is available to us. Two of the
papers we reviewed focused on the use of explicit trust networks, as seen in Epinions, where users can
explicitly form networks among themselves that represent how much they trust each others' opinions.
[2][3] However, since such data sets are generally small, and larger real-world data sets of social
networks are generally not available, we focus on generating an implicit network instead.

Our data set is the Amazon product co-purchasing metadata as hosted on the SNAP website.
<http://snap.stanford.edu/data/amazon-meta.html>

This data contains almost 400,000 products with at least one review, and contains nearly 8 million
reviews on these products. For each product entry, we get a list of reviews, which contains unique user
IDs as well as the ratings that users gave to the product. It is exactly from this kind of bipartite graph,
with users on one side and products on the other, that we can generate a graph to show the implicit
connections between users who rate the same item similarly to one another.

Analysis of the data shows that both the degree distribution over users and degree distribution over
items follow power-law distributions. Using the methods described in [4], the empirical estimate for the
scaling parameter is approximately 1.64 for users, and 2.46 for items. The average degree for users
(that is, reviews per user) is 15.79, and average degree for items (that is, reviews per item) is 4.089.
Average degree for users is biased high due to the existence of a few users with artificially high degree:
this is further explored in section 4.

3. Model-Based Recommendation

3.1 Algorithm

As a simple type of collaborative filtering, the model-based recommendation system treats each user as
a sparse vector, with separate features representing their reviews/purchases of each item. In this
representation of the problem, one approach is to generate the odds that the input user will buy or
positively review each item. Given a user u, for each item I, we can think of two classes or sets of
users, UI+ and UI-. UI+ represents the set of users who liked I (that is, they bought or reviewed it highly),
and UI- represents the rest of users. Since we cannot generate probabilities directly, we can instead
calculate the odds of a user U being among the sets UI+ and UI-:

P(u∈U I+∣ u)

P(u∈U I−
∣ u)

, which by Bayes' Rule is equivalent to
P(u ∣ u∈UI+

)P (u∈UI+
)

P(u ∣ u∈UI−
)P (u∈UI−

)

1 10 100 1000 10000
1

10

100

1000

10000

100000

Item-Review degree distribution

degree (reviews per item)

n
u

m
b

e
r

o
f i

te
m

s

1 100 10000 1000000
1

10

100

1000

10000

100000

1000000

User-Review degree distribution

degree (reviews per user)

n
u

m
b

e
r

o
f u

se
rs

http://snap.stanford.edu/data/amazon-meta.html

If we use log-odds instead of simply odds, and let u be a vector in Rn representing purchases or reviews
of all n items, where each review can be considered independently, then we generate the following
probabilistic interpretation:

 log-odds = log (P(u∈U I+))−log (P(u∈U I−))+∑
j=1

n

log (P (u j ∣ u∈UI+))−log (P(u j ∣ u∈UI−))

The prior probabilities P (u∈UI+) and P (u∈UI−) are given simply by ∣UI+
∣/∣U∣ and ∣UI−

∣/∣U∣ ,
respectively. The probabilities for each index of the vector u are given by:

P (u j ∣ u∈U I+
)=

∑
v∈U I+

v j

∣U I+∣
, or, using Laplace smoothing, P (u j ∣ u∈U I+

)=

1+ ∑
v∈UI+

v j

2+∣UI+∣

Since usually ∣U
I+
∣ is orders of magnitude smaller than ∣U

I−
∣ , we can pre-calculate

sumv(j)=∑
v

v j

and let
∑

v∈U I−

v j = sumv (j)− ∑
v∈UI+

v j , for a significant speed-up of performance.

The result is a standard Bayesian model, which, given a user, generates odds scores as a consistent
metric to compare between all items. To generate a list of recommended items for a user, we simply
order all items by their odds scores. In practice, items that the user has already purchased or reviewed
always appear at the top of this list, but since we do not want to re-recommend redundant items, we
will remove such items from the list.

3.2 Incorporating ratings

To bring ratings into this model, we introduce a set of weights to double- or triple-count reviews with
different numbers of stars. For instance, one mapping was {1 → 0, 2 → 0, 3 → 1, 4 → 2, 5 → 3}. This
allows the uj values to range from -2 to 2, instead of 0 or 1. We tested various different mappings, but
none significantly improved upon the binary 0/1 case, for reasons further explored in section 6.2.

4 Projections from the Bipartite Graph

4.1 Graph projection

In a bipartite network of two sets of nodes where only nodes from different sets are allowed to be
connected, a network projection may be constructed for one set of nodes through their connections with
nodes from the other set. To prevent loss of information, the projection contains weighted edges that
reflect the degree of connections between two nodes. In the data, we have two sets of nodes: one for
items and one for users. Each review from a user to an item is represented as a weighted edge between
them. For the case of creating an unweighted projection, we can simply generate edges between any
two users that have a reviewed item in common, and edges between any two items that have a reviewer
user in common. However, this projection does not carry much information. We would prefer that
edges between nodes tell us how similar the nodes are-- for instance, if two users both reviewed the
same five items, we would want a higher-weight edge between them than the case that two users
reviewed five items each but only one item in common.

To achieve this, we use the following algorithm. Consider two nodes, u and w, both among the same set
in the bipartite graph-- either users or items. Let the set of nodes v1...vn be all the neighbors of u in the
original graph-- the vi’s are from the opposite set from u and w. The weight of the directed edge uw is
given by the following formula:

weight(uw) =
1

degree(u)
∑
i=1

n 1{edges uv i and w v i exist}

degree(v i)

If the resulting sum is zero-- that is, the intersection of the sets of neighbors of u and w is empty-- then
we do not create an edge. If we think of u and w as users, and vi’s as items, we can describe many
useful features of this sum. As users u and w have more items in common, the sum increases; this is
very nearly what we want, but it requires normalization. We first normalize by dividing by the degree
of u. If u has reviewed many items, of which the intersecting vi’s are only a small subset, then we want
to have a lower-weight edge; conversely if u has only reviewed exactly those vi’s which are in common
with w, then we want to have a higher-weight edge. Then, we normalize by the degrees of the vi items
themselves. Items which have reviews from many users (ex. national bestseller books) are not as strong
a signal for predicting similarity as less-popular ones (ex. books from niche genres).

Below is the degree distribution for our projected user-user graph and projected item-item graph. These
projected graphs generally follow the expected power-law distribution; however, there are some
significant irregularities. Upon investigation, these are mainly caused by a small subset of users who
appear to have reviewed incredible numbers of items-- the most, upwards of 140,000. These users
appear to be Amazon’s own product ratings. Although we considered removing these users, we decided
to leave them in the data set. This way, using the graph-based recommendation methods described
below, we could be assured of discovering more items within a few hops of the network.

5 Graph-Based Recommendation

5.1 Projections in practice

In practice, we found that projections from the bipartite graph are much too large to hold in memory.
Our best efforts still resulted in an estimated 16GB memory footprint for the user-user projected graph,
and an estimated 500GB memory footprint for the item-item projected graph, neither of which could be
handled by our machines.

1 100 10000 1000000
1

10

100

1000

10000

100000

Projected User-User Degree Distribution

degree

n
u

m
b

e
r

o
f u

se
rs

1 100 10000 1000000
1

10

100

1000

Projected Item-Item Degree Distribution

degree

n
u

m
b

e
r

o
f I

te
m

s

To circumvent this, rather than ever generating a full projection on either subgraph, we rely on
generating only the local projected network structure when needed. For instance, given a particular
user, we can find their neighbors in the bipartite projected graph by a simple two-step process, iterating
through the items the user has reviewed, then the other users who also reviewed the same items. Since
we must also iterate through the items that the user’s neighbors have reviewed, the entire process can
be thought of as a three-step iteration through the graph, originating at the input user.

5.2 Algorithm

Given a user as input, we generate the local projected user-user graph as described above, by iterating
over all items a user has already reviewed, and then finding all ‘neighbor’ users that also reviewed the
same items. Then, for each of the items reviewed by these neighbor users, we have chosen to generate a
score based on the sum of their edges, normalized by the degree of each neighbor node. In other words,
given an input user u, for each item vi reviewed by each neighbor user w, we compute a ranking score:

score(u , v i)= ∑
w∈neighbors (vi)

weight (uw)⋅
1

degree(w)

This choice makes the graph-based recommendation algorithm essentially equivalent to a three-step
random walk through the graph, originating at the input user. As an example, consider the following, in
which we have users A, B, and C, and items L, M, N, O. P, and Q:

In the initial state, we consider user B to be
the input on which we want to predict.

In step 1, we expand out to the items that
user B has reviewed.

In step 2, we generate the weights for each
edge in the projected user-user graph,
based on the items in common. (B has a
self-edge of weight 0.5 here.)

In step 3, we generate scores for each item
according to the formula above. The score
for N, for example, is (0.25 / 3 + 0.25 / 4),
representing the contributions from A and
C, respectively.

A B C

L M N O P Q

Initial:

A B C

L M N O P Q

Step 1: users

items

A B C

L M N O P Q

Step 2: users

items

0.25 0.25

0.5

A B C

L M N O P Q

Step 3: users

items

0.25 0.25

0.083

0.5

B

0.333 0.146 0.313 0.063 0.063

users

items

score(B, M): 0.333
score(B, O): 0.313
score(B, N): 0.146
score(B, L): 0.083
score(B, P): 0.063
score(B, Q): 0.063

Having generated scores for each of the discoverable items; that is, those
within three hops of the input user, we can then rank them in descending
order. (The resulting list for the example on the previous page is shown at
left.) The items already reviewed by the input user always appear at the
top of this list, so to avoid re-recommending items the user has already
reviewed, we remove them from the recommendations.

5.3 Incorporating ratings

We also tried to use a user’s rating of an item to adjust the ranking of the item among all the
recommended candidates. We hypothesized that ratings might provide extra information regarding the
quality of an item, as the fact that a user simply reviews item doesn’t necessarily mean that the user
likes it or will recommend it to other users. To add in specific rating scores, while the rest of the
method remains the same, the variation we’ve conducted to the existing graph-based algorithm is to
multiply the ranking score in the above calculation by rating scores in the range of 1 to 5, i.e.,

score(u , v i)= ∑
w∈neighbors (vi)

weight (uw)⋅
1

degree(w)
⋅rating(uw)

5.4 Explainability

This graph-based algorithm has an advantage over the model-based algorithm in that the reasons for its
results are more intuitively understood and explained. Given a particular user-item recommendation,
one can trace exactly which neighbor users and other items contributed to the ranking score. In
contrast, since the model-based algorithm necessarily uses all items and all users, it is more difficult to
determine which of the users or items most influenced the ranking score. Since the ability to understand
and debug recommendation systems is an important priority in real-world applications, this gives some
advantage to the graph-based algorithm independent of its results.

6 Testing and Results

6.1 Testing Procedure

To test the performance of both methods, we randomly picked 100 users who have rated no less than 2
and no more than 10 items. For every user, we randomly took an item off the list of items rated by the
user as held-out data. Then, we entered the user into each recommendation algorithm. In the resulting
list of candidate items, we looked for where the held-out item appeared on the list of recommended
items. The higher the item appeared on the recommendation list (that is, the higher its score and the
lower its rank on the list), the better the method performs on this particular user-item pair.

6.2 Comparison of Results

This figure shows the difference in rank over all held-out user-item pairs we tested. Area above the zero
line represents cases where graph-based outperformed model-based recommendation; area below
represents cases where model-based outperformed graph-based, and the majority of cases (the middle
59%) show that both found the held-out item in the top position.

Our results showed that our method of graph-based recommendation consistently outperforms our
method of model-based recommendation. 75% of the time, the graph-based method got the held-out
item in the top position of the generated candidate list for a user, while the model-based method only
achieved this in 59% of cases. In every case that the model-based method correctly predicted the held-
out item in the top position, the graph-based method did as well.

In 15% of cases, the model-based method gave better results than the graph-based method; that is, the
held-out item appeared higher in the recommendation list for model-based than for graph-based. These
cases were almost entirely due to the graph-based method not reaching the held-out item in its local,
three-step exploration from the test user, thus failing to place the held-out item on the recommendation
list at all.

In 26% of cases, the graph-based method gave better results than the model-based method. The length
of the recommended-items list for the graph-based method was consistently shorter than the total
number of items, so when the graph-based method did find the held-out item in its local exploration of
the graph, it tended to be in a better position.

We tried a few different approaches for incorporating ratings information: in the graph-based approach,
reweighting edges based on number-of-stars; in the model-based approach, double-counting or triple-
counting reviews with high ranking. However, none of these modifications resulted in significant
improvement to the resulting recommendations.

-400000

-300000

-200000

-100000

0

100000

200000

300000

400000

Difference in Rank: Model-based vs. Graph-based Recommendation

all held-out user-item edges

M
o

d
e

l-
b

a
se

d
 r

a
n

k
m

in
u

s
g

ra
p

h
-b

a
se

d
 r

a
n

k

6.3 Insights

We were surprised that either method succeeded in having such a high rate of perfect success, placing
the held-out item in the top position on the recommended-items list. Upon examination of the data, this
appears due to two factors. First, many items appear in grouped sets, for example the three Lord of the
Rings Extended Edition DVD’s. Most users who have bought any two of these DVD’s are highly likely
to have bought the third, so our held-out-item approach will very often predict the ‘missing’ DVD.

Second, and more commonly, Amazon often duplicates user ratings among equivalent products. For
instance, if a book is available in both hardcover and paperback editions, and a user rates the paperback
edition at 5 stars, then Amazon also creates a 5-star rating for the hardcover edition as well. In effect, it
appears that the user has bought both the paperback and hardcover editions, and rated them separately
as 5 stars. We considered cleaning the data to remove this effect, but it appears that Amazon’s rating
duplications are not consistent: not every rating is always duplicated among equivalent products. (This
might be caused, for instance by only duplicating once the paperback edition of a book is released, but
leaving the original hardcover reviews as they were.) Thus, we left the data unmodified, with the
expectation that in practice, a real recommendation system would be able to remove such duplicates
from recommendation lists based on items a user had already bought.

Further inspecting the few cases in which the model-based method performed better than the graph-
based method, we noticed the comparative biases of the two recommendation systems. For an example,
one user had bought two documentaries about dancing, and one CD of classical music, and we held out
one of the dancing documentaries. The graph-based algorithm, in its three-step exploration of the local
graph, found many more users and many more items in the genre of classical music, and recommended
other classical music CDs higher than dancing documentaries. The model-based algorithm, noting that
the dancing documentary was a rarer and thus stronger signal upon which to classify the user, placed
the held-out dancing documentary higher in its recommendation list. Thus, in cases where a user has
both niche and popular interests, the graph-based method tends to place more generally popular items
higher on the list, while the model-based method tends to place more niche items higher on the list.

For graph-based recommendation, we noted that both the
number of reachable items and the quality of the ranking
scores were largely a function of degree of the input user;
that is, the number of items they had already reviewed.
Thus, as a user buys and reviews more items, the
algorithm both finds a greater number of items overall,
and also has more information with which to generate
accurate recommendations.

Though we had hoped that the incorporation of weights
for different numbers of stars would improve our
recommendations, in retrospect it is logical that a binary
reviewed/not reviewed approach is sufficient. If we are
trying to predict whether a user will buy or review some
item in the future, the strongest signal is simply whether
they have bought or reviewed similar items in the past.
Star-ratings provide insight into users’ opinions of items within their sphere of interest, but to discern
the sphere of interest itself, what is most useful is simply their purchase history.

1 2 3 4 5 6 7 8 9 10 11
1

10

100

1000

10000

100000

1000000

Items Discovered, by User Degree

User Degree (number of reviews)

Ite
m

s
D

is
co

ve
r e

d
 (

g
ra

p
h

-b
a

s e
d

)

7 Conclusion

Although there do exist more sophisticated model-based collaborative filtering techniques, we were
encouraged that a graph-based approach could outperform at least one reasonable method of model-
based recommendation. Further work could definitely be used in comparing other recommendation
systems to our graph-based method; for instance using some measure of vector similarity rather than
the Bayesian probabilistic interpretation, or using other machine learning techniques to find clusters of
users rather than restricting our view only to neighbors in the graph.

One particular limitation of our graph-based method bears further discussion. In some cases, the graph-
based method failed to find the held-out item in its local graph exploration. As shown in the graph on
the previous page, most cases found acceptably large numbers of items, but some were restricted to less
than 100. One possible fix for this would be to simply append all the items not already on the
recommendation list, perhaps in descending order of general popularity, in order to at least list all items
using the graph-based algorithm. Another promising, though computationally expensive, approach
would be to allow the graph-based method more than three steps of exploration. With a sufficient
number of steps, the algorithm would incorporate nearly all items in its list. That said, either of these
approaches is largely an academic exercise, since real recommendation systems will likely only use the
top few results in the recommended-items list.

8 References

[1] Tao Zhou, Jie Ren, Matus Medo, and Yi-Cheng Zhang. Bipartite network projection and
personal recommendation. The American Physical Society, 2007.

[2] Cai-Nicolas Ziegler, Jennifer Golbeck. Investigating interactions of trust and interest similarity.
Decision Support Systems, 2006.

[3] Hao Ma, Dengyong Zhou, Chao Liu, Michal R. Lyu, Irwin King. Recommender systems with
social regularization. Web Search and Data Mining (WSDM), 2011.

[4] Aaron Clauset, Cosma Rohilla Shalizi, M. E. J. Newman. Power-law distributions in empirical data.
SIAM, Rev. 51.

