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Abstract—Many modern network applications (epidemic con-
tainment, advertising, political campaigning) revolve around cas-
cade behavior. To this end, many network models exist to mimic
the complex interactions of nodes and edges within cascades.
However, many of these models require a significant amount
of data to set up, are conceptually difficult to understand, and
provide more functionality than the analysis requires.

In this paper, we investigate two simple methods of using the
past behavior of nodes and edges to predict future cascade behav-
ior. Our goal is to explore several cascade analysis techniques that
require almost no data about the network’s underlying structure,
can be easily represented in typical network data structures,
and provide high-level statistics about the network’s cascading
behavior.

I. INTRODUCTION

Cascades within a network represent the spread of ideas,
products, or otherwise contagious materials, to one or more
connected nodes in the network. Cascade analysis has recently
begun to serve practical importance for any application in
which the size and extent of network effects are of interest:
advertising, epidemiology, political campaigning, etc.

Analyses of these cascades have a variety of objectives:

o Cascade Size: determining the number of nodes that
participated in or were affected by the cascade.

o Cascade Diameter: determining the spreadout of the
cascade - that is, the longest path between the originator
and affected nodes.

o Influential Nodes: identifying the nodes that have the
greatest influence on the size of the cascade.

o Community Identification: segmenting the larger net-
work into smaller communities that are typically part of
the same cascades.

Some of these objectives, particularly the cascade diameter
and the maximally influential nodes, require knowledge of the
full underlying network. To calculate these parameters, we
must either acquire the entire network structure, or otherwise
infer the structure from time-based data as discussed by
Gomez-Rodriguez et al [3].

However, analyzing the cascade sizes and the communities
present over all the cascades do not by definition require the
entire underlying graph. Suppose we only know what nodes
belonged to given cascades, but not the relationships between
the nodes. It is easy to see that this is the case in many
situations - for example, financial transactions between indi-
viduals, biological epidemics among populations, and political
campaigns among unknown constituents. In these situations,
analyzing cascades and predicting future cascade behavior is
crucial to taking advantage of network effects, despite the lack
of insight into the underlying network.

Thus we suggest analysis methods that obviate the most
intensive data need: the requirement of knowing the full
underlying network. If we know high-level parameters of the
network (the number of users, the approximate number of
edges, the power-law factor « for the degree distribution) and
have modest historical cascade data (which nodes participated
in which cascades), we can generate models which behave at
a high level like the actual network, despite not being based
on the original network’s structure.

In this paper, we first investigate two models of predicting
cascade sizes, and evaluate each model’s ability to predict the
reach and spread of future cascades. In the first model, we use
the participation histories of individual nodes to generate new
graphs at any scale that exhibit cascade behavior similar to the
original, unknown network of interest. In the second model, we
infer the distribution of edges through the similarities of node
tweeting; specifically, a given edge’s weight is proportional
to the number of cascades shared by the two endpoint nodes.
These models both exhibit scale invariance, meaning that even
with an original dataset representing only a subset of the larger
graph, the models can predict cascade sizes at the larger scale
of the entire network.

We then turn our attention to community detection and
analysis. This operation is typically performed by locating
the connected components or strongly connected components
of the network, and then classifying them based on the
content of the tweets. Such an approach is clearly impossible
without knowing the network structure, but we demonstrate
that community-finding can be performed efficiently using
only the cascade sets.

Finally, we end with an explanation of the limitations of
these techniques. No analysis without the underlying network
will perform as well as an analysis with the network, but we
argue that the less intense data requirements make up for the
decrease in accuracy and insight.

II. PRIOR WORK

As cascade prediction is relevant for many purposes, many
models already exist for simulating cascade behavior. Al-
though all of these models utilize the network’s structure in
some way, many provide insight into modelling approaches
and analysis techniques that can be helpful when our under-
standing of the underlying network is limited.

The earliest deterministic models are based on single-valued
functions, such as Granovetter’s famous thresholding model
[4]. In this model, a threshold value ¢; indicates the minimum
number of node ¢’s neighbors that must be activated in order
for node i to participate in the cascade.
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Many analyses aim to identify the nodes that maximally
influence the size of the cascade, as in the case of finding the
optimal advertising targets or the most biologically contagious
member of a population group. Such analyses (known as max-
cover problems) have been shown to be NP-hard [5], and
can only be estimated in polynomial-time using greedy hill-
climbing techniques [1].

Other methods use multiple cascade sequences to infer the
underlying network, in some cases achieving a very accurate
inferred graph [6]. This method requires a time-dependent
function, which may not always be available, in order to
calculate probabilities and maximize them with a greedy
algorithm.

Previous probabilistic models, more in line with the methods
used in this paper, attempt to learn infection probabilities [8] to
simulate cascades. These models, however, rely on information
like underlying network structure and infection times, which
large data may not always have.

It is important to note that, in cases where the network
is either not available (as in hidden processes) or difficult to
attain in its entirety (as in Twitter networks, where the data
rate is limited to 350 queries per hour), few models exist to
model the cascading behavior. The purpose of this work is to
leverage ideas from existing models to create a method which
guesses the general networks structure well enough to behave
similarly in cascade situations.

III. DATASET

The data for this project came from a single day of Twitter
retweet cascades. Using the TwitterStream API, we collected
58,564 tweets over a 24 hour period starting at 8pm PST, 15th
November 2011 and stored them into a CouchDB database
(figure 1). We monitored specifically for tweets that contained
words and phrases related to the ‘Occupy Wall Street’” move-
ment, such as the following:

o Hashtags: e.g. #occupy,

#ows

o Keywords: occupy, wall street

o Hot topics: e.g. #nypd, zuccoti park

The time period was especially notable for the fact that at
8:30pm PST, police in New York City started using coercive
force against protestors who were ‘Occupying’ Zuccoti Park.
The twitterverse exploded with activity, and we monitored the
stream, reading related tweets into a CouchDB database (figure
1).

The end result was over 4.3GB of data, which we then
filtered selectively to find retweets related to the #occupy
network. The end dataset contained a total of 58,564 retweets
generated by 17,377 users.

As a first check, we rearranged these retweets into groups
based on the original tweet being retweeted, and counted the
number of users who were a part of each cascade. The result
was a total of 12,213 cascades, with the largest cascades
containing up to 800 tweets. As shown in figure 2, the sizes of
the cascades follow the expected power-law distribution [2],
with a = 2.46.

We then post-processed the dataset to acquire two data
structures:

#occupywallstreet,
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Fig. 2: The distribution of retweet cascade sizes for the
#occupywallstreet Twitter datastream captured Novem-
ber 15-16, 2011. The distribution exhibits the expected power-
law behavior [2]. The goal of the node-based and edge-based
models is to exhibit the same distribution when evaluated over
many simulated cascades.

1. Users: a map from each unique user to the list of tweets
sent by that user.

2. Cascades: a map from the text of the retweet to the users
who sent that message.

Note that none of this information contains the underlying
follower network. Thus we have a dataset that includes only
transactions, and not the relationships between actors in the
network.

IV. FIRST MODEL: NODE-PARTICIPATION

We begin our discussion of limited-network analytical tech-
niques by introducing a model focused on node activity. In this
model, each node has a certain probability of ‘participating’
in a given cascade, and thus we refer to this model as the
Node-Participation Model.

A. Model

Suppose our original graph graph G has n nodes
v1,V2,...,Un, and we have a set C' of cascades. For each
node i, we calculate the number of times a; that the node
retweeted a followee’s tweet - that is, the number of times the
node participated in a cascade:

a; = Z ti(c)

ceC

where ¢;(c) is an indicator function equalling 1 if v; € ¢, 0
otherwise. Thus a is the array of participation counts for all
nodes.

We would now like to use a to generate a set of probabilities
q1,492,---,qn that each respective node will participate in
a future cascade. One way to normalize the number to a
probability distribution would be to divide by the total number
of unique tweets coming from the user’s followees, but our
fundamental goal with this model is to obviate the need for the
follower graph, so this approach will not work for us. Instead,
we will simply divide by the participation count of the most
active user, which both guarantees probabilities between 0 and
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Fig. 1: CouchDB provided an easy method of catching ‘Occupy Wall Street’ tweets from the TwitterStream API and storing

them for later analysis.

1 and puts all nodes on a scale irrespective of the original
number of cascades in the dataset.

Thus we have the node-participation ratio

Q;
4= max; a; '

Now, our fundamental proposition is that we do not know
the full structure of G, but we must still generate a test
graph G'. Our goal is to set up G’ in such a way that
it will serve as a model for cascades, with the resulting
distribution of cascade sizes over multiple trials approximately
matching the distribution of cascade sizes for the original
dataset. Since Twitter, as an online social network, exhibits a
power-law distribution on the degrees of the component nodes,
we will approximate the original network G with a preferential
attachment graph G containing n’ nodes.

It is important to note that we do not necessarily have
n = n/, since part of the usefulness of G’ is its cascade be-
havior at sizes much larger than n. An advertising agency, for
example, might attain cascade data for a Twitter subnetwork
G, and then wish to estimate the cascade behavior in the larger
Twitter network G . In such a case, we must have the degree
distribution of G’ approximately equal to that of G, but it has
already been shown that the a coefficient for such a graph is
approximately 2 [6], so we can create G’ even without much
data for the original graph G.

Now, we will treat ¢ as a distribution from which to
select node probabilities in the test graph G'. Since power-
law distributions are scale-invariant, we can simply choose a
probability at random from ¢ for each node in G'. Thus we
attain a model G’ whose nodes behave similarly to the original
nodes in GG, but whose structure is completely unrelated.

B. Simulation

To perform simulations, we first implemented the Node-
Participation model in Python on top of NetworkX. Each node
v € G possesses an attribute g that indicates whether the
given node will participate in a given cascade - that is, ¢; =
Prv; € ¢].

For a given cascade ¢, we pick a starting node at random
from G'. We then perform a breadth-first search starting at
the given node, in which we travel first to all the neighbors

of the starting node, then to those neighbors’ neighbors, etc.
However, at each node v;, we are not guaranteed that the
search will continue: there is a probability 1 — ¢; that the node
will elect not to participate in the cascade. In such a case, we
ignore the node, and continue with the search.

At the end of the simulation, we have a cascade size |c||
based on the number of nodes participating in the cascade.
We run this simulation % times to determine a set C' =
{llexlls llezlls - - - llex ||} of cascade sizes. Our primary interest
is verifying that the power-law distribution of c’ displays
some similarity to the power-law distribution of the original
dataset’s cascade sizes, which we will denote as C.

C. Results

The first experiment was to perform the analysis on a graph
G’ with the a similar number of nodes as the original graph
G, and determine whether the cascade size distribution was
approximately the same. As shown in figure 3, we attain a
power-law distribution with o = 2.257, as compared with
the original cascade distribution’s o of 2.46. The similarity
is quite good, especially given the simplicity of the model
and the inexact number of edges.

Thus we have arrived at a model that gives fairly appropriate
cascade behavior, and can be scaled to arbitrary proportions.

V. SECOND MODEL: EDGE-CONDUCTION

The second model is an edge-based model where each edge
has a certain probability of ‘conducting’ the given cascade
from the source node to the destination node, and is thus called
the Edge-Conduction Model.

A. Model

Suppose we begin with the nodes of the original graph G.
We don’t know the set of edges F in GG, but we do know the
nodes V. We will start by assuming G is a fully connected
graph (every pair of nodes is connected). Now, for each edge
(u,v) € E, we will estimate the probability of an edge (u, v)
conducting a cascade as:

# of times © and v were in the same cascade

Rnfection u,v) = s N
(u,) # of times w was in a cascade
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Fig. 3: The distribution of simulated cascade sizes using a

Node-Participation model. The « coefficient of the distribution
is 2.257, compared with 2.46 for the original distribution.

By calculating Pipfection for all edges in G, we arrive at a set
of edge conductivities, as shown in figure 4. We will call this
distribution r; note that it is a probability distribution because
N0 Pipfection Value can ever be greater than 1.
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Fig. 4: Distribution of estimated edge infection probabilities

We now generate a model graph G’ for simulation. As with
the Node-Participation model, we use a preferential attachment
graph with the same number of users/nodes as our data, and
a degree distribution of approximately 2. We then assign
probabilities for each edge g4p by choosing at random from
r. This gives us a directed graph model like the one shown in
figure 5.

B. Simulation

As with the Node-Participation model, our simulation uses
a Python model built on top of NetworkX. Each edge e; € G
possesses an attribute r that indicates whether the given node
will participate in a given cascade - that is, r; = Pre; € ¢].

For a given cascade ¢, we pick a starting node at random
from G'. We then perform a breadth-first search starting at
the given node, in which we travel first to all the neighbors
of the starting node, then to those neighbors’ neighbors, etc.
However, for each edge e;, we are not guaranteed that the
search will continue: there is a probability 1 —r; that the edge
will elect not conduct the cascade to the destination node. In
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Fig. 5: In the experimental model, each directed edge pos-
SESSes a gn,n, attribute.

such a case, we ignore the destination node, and continue with
the search.

At the end of multiple simulations, we again have a set
C" = {llesll, lleall, - - -, llex ]|} of cascade sizes. Our primary
interest is verifying that the power-law distribution of c’
displays some similarity to the power-law distribution of the
original dataset’s cascade sizes, which we will denote as C.

C. Results

The distribution of cascade sizes that resulted followed a
power-law distribution, with an MLE estimate of o = 2.2
(compared to the actual data’s o = 2.46), as seen in figure 6.
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Fig. 6: Distribution of cascade sizes as a result of the Edge-
Conduction model

Thus although the Node-Participation model gave better
absolute performance in terms of « correlation, the Edge-
Conduction model also provides fair accuracy. We suggest that
this model would outperform the Node-Participation model in
cases where relationships between users are highly bivariate -
for example, in the case of bipartite political discourse.

V1. THIRD MODEL: COMMUNITY-SET

The third model seeks to detect communities using only
the knowledge of which nodes are in a cascade, without full
knowledge of the cascade’s path, and incomplete network data.
We found this model useful due to Twitters retweet format
(which does not preserve cascade paths), and also due to their
API Rate Limiting, that makes complete network data difficult
(and possibly expensive) to purchase.
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A. Model

The model approaches the problem from a ‘naive’ perspec-
tive. Given that a retweet can be seen as an ‘endorsement’ of
a tweet’s message, a given user retweeting another indicates a
certain agreement of values. We extrapolate this to indicate that
they belong to the same ‘community’. Furthermore, the model
assumes that a user’s values are constant across their retweets.
The corollary of these two assumptions is that a nodes in two
different cascades are all part of the same community, if there
is a common node in both cascades.

The model puts each cascade’s participants in a set, and
then joins any two sets that have a intersection > 0. It does so
till every set is disjoint. Each resultant set is a ‘community’.

B. Results

The resultant communities featured one large ‘community’,
and many small ‘communities’, as shown in figure 7. This
is unsurprising given the ‘naive’ nature of the algorithm, and
given the cascade distributions.

Fig. 7: A bubble representation of the sizes of the communities
detected by the Community-Set model. The largest community
by far is the Occupy Wall Street supporters, representing well
over 90% of the total users.

To ascertain the reason for the single huge community,
we sampled from each community’s actual tweet texts. The
content of the tweets is highly indicative of the communities’
attitudes toward the Occupy Wall Street movement.

Sample of 5 tweets from large ‘community’:

o RT zunguzungu: I love it when occupy people hum the
imperial theme from Star Wars at riot cops. They were
doing it at Cal on Wednesday, ...

e RT zuccottipark: American homes destroyed by Al
Qaeda last year = 0. Destroyed by banks = 1,200,000.
Who are the real terrorists? #ows ...

e RT zoeschlanger: RT RDevro: The NYPD now tearing,
literally ripping and tearing, the safer spaces tent. The
tent intended to make wome ...

o RT zorganizrcurtis: sitting in #blackrootsl1 neworga-
nizing on poc media organizing while liberty square is
being raided #ows #reallife ...

¢ RT zedshaw: Your nightly dose of irony: The Occu-
pyOakland protests will cost the city of Oakland $2.4mil
of 99%-er taxes.

Sample of 6 tweets from small ‘communities’:

e RT LoniLove: I'm gonna occupy a restaurant on wall
street..#yeswecaneat

o RT ClaudeKelly: Occupy Bed

« RT Votekick: OWS Go Home! (live at http://t.co/
vlYOhQ4w)

o RT kmflett: Given the alarming attack on democratic
rights in New York I’m expecting Cameron to announce
a UN resolution & air strikes ...

o RT LibyaLiberty: A tweet I wish I’d written: tomgara:
Every time you seriously compare Occupy protests to the
Arab uprisings, God kill ...

o Thezog: Police are raiding Occupy Wall St right now!!
News is being blocked from reporting. Make your voice
heard. http://t.co/dG2gVxsm

This brief, random sampling from the communities suggests

that the large community can be characterized as the ‘pro-
occupy’ community, while the smaller communities can be
characterized as either ‘anti-occupy’, ‘jokes’ or ‘pro-occupy’
communities that are isolated from the larger community, with
the former two being more common. This is interesting be-
cause it indicates the ‘anti-occupy’ movement, while possibly
sizeable in number (approximately % of all users) is very
fragmented. The largest small community consists of 28 nodes,
and the majority of communities have less than 5 nodes.

C. Further Research

The ‘naive’ community detection model discussed above is
deterministic based only on whether two cascades have at least
one user in common. In reality, users from different commu-
nities may retweet the same tweet, even if they have differing
viewpoints on the content being cascaded. A probabilistic
representation would more accurately capture the relative con-
nections between separate users, such that communities would
have a core of high-probability connections in the core, and
lower-probability relationships on the periphery. Future work
may expand on this concept of non-deterministic connections
between users for the purpose of community analysis.

A second improvement involves better datasets regarding
the content of the communities. In the example above, we
sampled liberally from various communities to understand user
commonalities. A more rigorous experiment would involve
creating a training set by tagging users with demographic fea-
tures, and then ‘learning’ how these users typically associate
themselves with various communities.

VII. CONCLUSIONS

Analysis using the full underlying network certainly remains
the most accurate method of characterizing cascade behavior,
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but for cascade analyses on datasets that do not include the
actual network, the above models approximate the behavior of
cascades to sufficient accuracy. It also allows the characteri-
zation of network communities using a simple approximation
of behavior. We have demonstrated the ability to answer
several specific high-level questions about current and future
performance of the network in cascade scenarios. We foresee
this work being extended and applied to studies in which the
underlying network is unavailable or very difficult to ascertain,
such as word-of-mouth advertising, epidemic containment, and
political campaigning.

REFERENCES

[1] W. Chen, Y. Wang, S. Yang. Efficient Influence Maximization in Social
Networks. In Proc. KDD, 2009.

[2] W. Galuba, D. Chakraborty, Z. Despotovic. Outtweeting the Twitterers
- Predicting Information Cascades in Microblogs. In Proceedings of the
3rd conference on Online Social Networks, WOSN 10, 2010.

[3] M. Gomez-Rodriguez, J. Leskovec, A. Krause. Inferring Networks of
Diffusion and Influence. In Proc. KDD 2010.

[4] M. Granovetter. Threshold models of collective behavior. American
Journal of Sociology 83(6):1420-1443, 1978.

[5] D. Kempe, J. Kleinberg, E. Tardos. Maximizing the Spread of Influence
through a Social Network. In Proc. KDD 2003.

[6] J.Leskovec, M. McGlohon, C. Faloutsos, N. Glance, M. Hurst. Cascading
Behavior in Large Blog Graphs. In Proc. SIAM International Conference
on Data Mining, 2007.

[7]1 S. Morris. Contagion. Review of Economic Studies 67, 57-78, 2000.

[8] A. Goyal, F. Bonchi, L.V.S. Lakshmanan. Learning influence probabilities
in social networks. In Proc. WSDM, 2010.



