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1 Introduction

Wikipedia, founded in 2001, is a massive,
collaboratively-edited online encyclopedia. As
of November 2011, the site has more than 20 million
articles available in 282 different languages. The site
is maintained by a vibrant community of editors,
who supervise the editing process to ensure quality
and consistency.

The body of a Wikipedia article consists primarily
of text, images, and hyperlinks to other articles. In
addition to article content, each page is also placed
into various relevant categories of articles. The ed-
itors of Wikipedia maintain this category hierarchy,
manually labeling articles with the most appropri-
ate categories. These categories are often used as
the gold standard for semantic NLP problems, such
as finding document topics [9]. Categories can also
be useful in navigation of Wikipedia, whether simply
finding related articles or attempting to find longer
paths through the network.

However, as Wikipedia continues to grow, manu-
ally labeling categories becomes more and more dif-
ficult. With over 80,000 categories, the monumen-
tal task requires its own Uncategorized Task Force
of Wikipedia editors, whose goal is to categorize un-
categorized articles. Even so, many articles remain
uncategorized or undercategorized [13].

Fortunately, many articles in Wikipedia have a
wealth of information, from the content of the text
to the hyperlink network. These features suggest
that an automatic classifier of Wikipedia may be a
tractable problem. A classifier with reasonable accu-
racy could greatly lighten the load of the task force,
improve the coverage of articles, and possibly identify
and correct miscategorized articles. In this paper, we
focus on network features to achieve this goal.

2 Prior Work

Previous work in categorizing Wikipedia articles has
focused on NLP to automatically classify categories

[4]. In the paper “Automatic content-based catego-
rization of Wikipedia articles,” Zeno Gatner and Lars
Schmidt-Thieme were able to achieve a F-measure
on predicting categories between 0.55 and 0.8 using
NLP features. Assigning categories, however, does
not have to be only based on NLP, but instead can
incorporate features derived from the structure and
properties of the underlying network. Qing Lu and
Lise Getoor, in their paper “Link-based Classifica-
tion,” saw a statistically significant increase in perfor-
mance on Cora, CiteSeer, and WebKB datasets when
network features such as the degree distribution were
used rather than just content features [7].

Network based features have also been successfully
applied to the Wikipedia network [3, 8]. In “Pre-
dicting Crosslingual Link Prediction,” Phillip Sorg
and Phillipp Cimian, were able to predict crosslin-
gual links by using mainly network derived features
(links that connect concepts across different language
versions of Wikipedia) with recall of around 70% and
precision of around 94% [8]. Therefore, we believe
that predicting category links based on only network
derived features may result in an increase perfor-
mance over previous NLP attempts, or at the very
least increase in performance when used in combina-
tion with NLP.

Other work has been done with the Wikipedia cat-
egory graph. In “Analyzing and Visualizing the Se-
mantic Coverage of Wikipedia and Its Authors,” Hol-
loway et al. analyzed the category graph and noted
that it contains cycles, is disconnected, and based
on the edit history is kept up to date [5]. Holloway
et al. created super categories to deal with the un-
wieldy nature of the Wikipedia category. Given that
many categories may be small, using supercategories
for prediction may be more accurate.

3 Data

We are using data from the November 7th, 2011
dump of Wikipedia. Our data includes the mapping



from pages to the links on the page (this includes
both article links and other types of links like cat-
egories) and a mapping from category name to cat-
egory id. After downloading the initial dumps, we
converted the SQL of the dumps into a simple CSV
format and imported this into a MongoDB database
hosted on Amazon EC2. In order to achieve reason-
able database performance to run experiments, we
had to use eight EBS drives in RAID 0 formatted
with the XFS file system. MongoDB allows us to
store an arbitrary number of calculated features for
each Wikipedia page, which enabled us to easily build
the network.

4 Model

Our goal is to use network-based properties as fea-
tures for a machine learning classifier. We choose to
treat Wikipedia as a network, with pages as nodes
and hyperlinks as edges. Other research [15] has
found that the clustering coefficients of the Wikipedia
networks are considerably higher than the expected
clustering coefficient of a random graph of the same
degree distribution. This suggests that the Wikipedia
network exhibits community structure. We exploit
this property by hypothesising that these communi-
ties correspond to categories. We thus use features
dependent on the pages close by in the graph, pre-
sumably in the same category community, to classify
Wikipedia pages.

4.1 In-links and Out-links
4.1.1 Basic Algorithm

In order to directly take the community structure of
the Wikipedia network into account, we consider the
count and portion of neighboring pages in a given cat-
egory. We consider both the number of pages that the
page in question contains hyperlinks to (out-links)
and the number of pages with hyperlinks to the page
in question (in-links). When classifying a page as a
member of a particular category, then, we have four
features:

e the count of out-links from the page to pages of
the category

e the portion of such pages out of all out-links

e the count of in-links to the page from pages of
the category

e the portion of such pages out of all in-links

We further look at these attributes for different lev-
els out from the page in question. A page is in level
n of a page if it can be reached by following exactly n
links from that page. For a particular page and level
n we have four additional features:

e the count of the paths of length n from the page
that lead to pages in the category

e the portion of such paths out of all possible paths
of length n coming from the page

e the count of the paths of length n to the page
that come from pages in the category

e the portion of such paths out of all possible paths
of length n leading to the page

This allows us to consider pages further from the
page in question that may also be in the category
community. In addition, pages that are more con-
nected to the page are given more weight. These
features are extracted simply by following out-links
and in-links of the graph and maintaining counts of
all pages reached and counts of pages reached in a
particular category.

4.1.2 Heuristic

Considering levels further and further away from a
page becomes more and more computationally expen-
sive. In fact, the increase is exponential, and with on
average hundreds of links from each page, this is not
a trivial exercise. Thus, in order to compute features
for far out levels, we use a heuristic that gives a more
equal weighting to all pages of a particular level, re-
ducing the preference for more connected pages. To
do this, we initially find and store all pages of dis-
tance 1 away from any page in a particular category
(all pages with a hyperlink to a page in the category
or linked to from a page in the category). We then
use this set of pages to find the counts of linked pages
from one level away. That is, we estimate the num-
ber of paths to pages in the category at level n by
getting the count of all pages linked to by pages in
level n — 2 that are in the set of pages of distance
1 from the category. This does not count duplicate
paths from pages in level n — 2 to pages in level n,
and also does not disambiguate between in-links and
out-links at the last link, but nevertheless provides
a useful heuristic for find features involving a wider
span of pages.



4.2 HITS
4.2.1 Basic Algorithm

The HITS algorithm was originally developed to
model the fact that in a search for information on
the Internet, there are two distinct types of valuable
pages: authorities, which contain the desired infor-
mation, and hubs, which are lists of authorities. The
quality of hubs and authorities are defined in a mu-
tually recursive manner: a good hub points to a lot
of good authorities and a good authority is pointed
to by a lot of hubs. In fact, the notion of author-
ities lines up quite well with what we are trying to
detect: good examples of pages in a particular cate-
gory. Thus, the feature we select from this algorithm
is the authority score for a node.

The simplest version of HITS initializes a hub score
h; = 1 and an authority score a; = 1 for each node 1.
Additionally, the algorithm computes the adjacency
matrix M, where M;; = 1 if there is a directed link
from node ¢ to node j. The algorithm proceeds as
follows:

Repeat until convergence:

1. Update h = Ma
2. Update a = MTh
3. Normalize to Y, a; =1, >, h; =1

HITS is a good model for Wikipedia because of fre-
quent hub pages (for example, any List of... article).
Additionally, HITS captures weighting of edges in a
way that simple counting does not. For example, a
page for a movie might be a good hub for the Actors
category, so a link from this movie to a page has a lot
of weight, even though the movie is not even in the
category being examined.

4.2.2 Modification

As presented above, HITS has a few drawbacks. The
principal problem is that if the initial graph is cho-
sen to be all of Wikipedia, the algorithm will out-
put the hubs and authorities for all of Wikipedia,
not for a topic specific subset. Additionally, because
Markov models converge to a single fixed point re-
gardless of their origin, there is no way to initialize
the matrix M to avoid this. However, in his dis-
cussion of HITS for websearch, Kleinberg proposes
a modification to produce a topic-sensitive subgraph
[16]. First, he finds the set of documents that match
a query. Presumably, the vast majority of good au-
thorities are located within this set. Consequently, it
is highly likely that any good hub points to something
in this set. Thus, to obtain a topic-specific subgraph,

he takes the graph formed by the queried documents
and all the documents that have a direct link to or
from this set.

Analogously, we create a topic-sensitive subgraph
of Wikipedia. To do this, we take all the members of
a category (minus the members we will be testing on)
and include every page that links to or from one of
these pages. This increases the likelihood that pages
important to that topic will have many links within
the graph, while pages peripheral to the topic will
not.

This suggests a naive approach to calculating the
HITS scores for a node.

Repeat for all nodes i:

1. Add ¢ and all of its links to the current graph
2. Calculate the HITS scores for the graph

3. Report h;, a;

4. Remove node ¢

However, this produces a second, purely technical,
problem. The subgraph of actors plus their direct
connections is around 500,000 nodes, taking about
15 minutes per HITS computation. This makes it
infeasible to compute these features on more than
a few nodes. With datasets up to 1600 entries in
size, we could not afford to run such an expensive
computation for each node.

To avoid this, we make the following assumption:
if HITS has iterated to convergence on a graph, the
addition of a single node will not significantly change
the already computed HITS scores. Thus, to approx-
imate the HITS authority scores, we calculate HITS
once and cache the hub scores. We then calculate an
approximate authority score for each node by taking
a simple sum over the hub scores of the nodes that
link to it.

4.3 Classification

We ran several different learning algorithms on our
feature sets: Naive Bayes, logistic regression, and
SVMs. We also ran parameter selection algorithms
to optimize performance of each learning algorithm,
as well as feature selection algorithms in order to find
the most significant features.

5 Results

The goal of our initial classifier was to classify ar-
ticles as either part of the “American Actors” cate-
gory or not. We chose this particular category be-
cause it is one of the largest on Wikipedia (almost



Figure 1: Results of feature selection
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25,000 pages), which ensures that there will be many
positive examples. We also ran the classifier on the
“American Musical Theater Actors” category, which
is a subcategory of the “American Actors” category ,
on the “Desserts” category, and on the “Graph The-
ory” category, each of which contains a few thousand
pages.

5.1 Features

For the American Actors category, the out-link and
in-link features turned out to be best subset of fea-
tures. In order to perform features selection, we
used the meta classifier WrapperSubsetEval to op-
timize for the f-score of logistic regression classifier
over five folds. To select which subsets of features
that would be tested, we used bi-directional best first
search with backtracking up to fifteen steps. We
wanted to test whether the selected features general-
ized across different categories. Thus, we performed
this feature selection for all four categories (Figure
[1]). InlinkProp2, which is the the proportion of in
links at level 2, was in every optimal subset. In second
place showing up in three of the four category opti-
mal subsets was the proportion of out links at level
1. Half of the level three features never occurred in
any of the optimal subsets. Based on this analysis, it
appears that most of the useful information is gained

in the earlier levels, which reduces the computational
complexity of calculating these features.

HITS was not selected as part of the optimal sub-
set for any of our tests. When we ran HITS as the
only feature on our largest dataset, logistic regression
achieved quite close to the optimal precision with a
value of .917, but had a much lower recall rate of
.412. The low recall rate can be explained by an op-
timization we applied to HITS. Instead of removing
one document and creating the HITS score, we re-
moved all documents in the train and test set. This
produced many zero HITS scores that would not nec-
essarily be zero if we had performed the more time
intensive leave one out cross validation. Additionally,
HITS did not make it into the optimal subset since
it is in some ways providing redundant information
that is already implicit in the link counts.

We ran the classifier on each pair of the out-link
and in-link features individually for each of levels 1
through 3, as well as in combination, for a dataset
of 100 pages for each category (see Figure [2]). The
level 2 pages were the most effective predictors for all
of the categories. This suggests an alternating link
structure where intermediate pages between pages
of a particular category are complementary pages
that perhaps have attributes that are of the category.
Consider the case of actors: actor pages are likely to
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Figure 2: Performance of classifier at different levels
of in and out links on various categories
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link to non-actor pages, such as movies or awards,
that are likely to link to other actor pages. The ef-
fect is possibly due to the fact that the level 2 pages
include more data points than the level 1 pages but
are still close enough to the page in question to be rel-
evant. Interestingly, in every case, out-link features
performed better than or as good as in-link features
for level 1, but worse for level 2.

Using all of the levels as features typically resulted
in f-scores between the single level f-scores. Combin-
ing the out-link and in-link features at that point in
some cases even further decreased the f-score. This
shows the troubles involved with dumping many fea-
tures together and speaks for the benefits of the fea-
ture selection we performed.

The experiments discussed above were all per-
formed using regular feature extraction for the link
features. We also ran the link feature extraction
with the heuristic discussed earlier in order to get
a fourth level of features. Combining all 4 of these
features performed identically to combining the true
3-level features, suggesting that looking at levels be-
yond level 2 do not contribute much. Interestingly,
looking at only level 2 features found using the heuris-
tic actually gave better f-scores (0.95!) than the stan-
dard level 2 features. This suggests that considering
all connected pages equally, rather than preferring
more connected pages, is more telling of the category
of a page.

All categories were able to be predicted well, es-
pecially looking at level 2 features, but some telling
differences did appear. The American Musical The-
ater Actors category, although a very small subset
of the American Actors category, still reached an f-
score of 0.92. Its performance on level 1 was sig-
nificantly lower than for the American Actors cate-
gory, which makes sense since looking at only level 1
will contain far fewer pages in the category, provid-
ing insufficient data. The Desserts category classifica-
tion achieved an f-score of 0.98, and the Graph The-
ory category classification achieved an f-score of 0.97.



These categories are likely much more self-contained
than the actors categories, resulting in these better
results when looking at community features. Finally,
the Graph Theory categorization performed almost
equally well for all levels, suggesting that unlike the
other categories, its pages and links are homogeneous
and all in the same category. Thus, the community
features we extracted were effective in classifying each
of the categories we considered.

5.2 Algorithms

We focused on three learning algorithms for perform-
ing the classification based on the features discussed
above. Logistic regression performed the best in al-
most all cases. We also explored Naive Bayes, which
was typically a few tenths below logistic regression in
f-score. With one exception, SVM algorithms (SMO
and LibSVM) had lower f-scores, but had good pre-
cision for the American Actors category. Since it
is arguably more important to avoid miscategorizing
pages than to categorize all the pages, we explored
whether we could improve the SVM algorithm accu-
racy through parameter optimization. By plotting
contours of the accuracy values with respect to dif-
ferent ¢ and « values (see Figure [3]), we found that
the optimal accuracy for an SVM algorithm would
still be significantly lower than for logistic regression.
We thus used logistic regression for the remainder of
our experiments.

5.3 Dataset size

In order to check whether or not the classifier was
over-fitting the rather small dataset of one hundred
pages (50 American Actor pages and 50 random non-
actor pages), we created a dataset of 1560 pages that
consisted of 780 American Actor pages and 780 ran-
dom non-actor pages. Logistic regression with 10-fold
stratified cross validation was able to obtain results of
0.948 precision and 0.868 recall. Performing this ex-
periment again with feature selection, as described
above, resulted in the same 0.947 precision and a
slightly higher recall of 0.876. We then generated
random subsets of increasing size from this dataset
to obtain the learning curve for all of the features
and the selected features (Figure [4]). Note that the
dip seen at size 400 occurred due to the fact that each
size set was a randomly created subset of the larger
dataset. These learning curves confirm that the clas-
sification is generalizing and not just over-fitting to
the small dataset.

6 Discussion

When trying to optimize for various measures of suc-
cess, the precision of positive categorization is the
most important. Intuitively, not categorizing some-
thing as an actor that actually is an actor is better
than incorrectly categorizing something that is not
an actor as one. High precision here will preserve
the quality of the labels, which are important to a
significant amount of other research. Our classifier
successfully meets this goal, with a best precision of
0.948 when running logistic regression on our largest
dataset of American Actors using all of our network
features. In addition, the recall on this set was 0.868,
which means that we are not sacrificing much recall to
achieve these scores. Our best American Actors cat-
egorization accuracy of 95% was achieved by running
logistic regression on a smaller dataset considering
only level 2 features with a normalization heuristic
applied. Since our data was equally split, this ac-
curacy is a good measure of our overall success. The
network features approach significantly surpassed the
NLP approach presented in [4] in every measure of
performance. Even our most simplistic classifiers
were on par with the greatest success of the NLP-
based classifier .

Some interesting observations also emerge from
our results. Initially, we hypothesized that the im-
plicit community structure of Wikipedia roughly cor-
responds to the official community structure imposed
by the category hierarchy. This hypothesis is sup-
ported by the fact that, using only the implicit com-
munity structure, we were able to successfully predict
the official one.

We also noticed that the most predictive link level
is level 2, perhaps indicating that pages tend to link to
pages of different categories, but that those pages in
turn link back to many pages of the original category
in a roughly alternating structure.

7 Future Work

Our classifier has proven to be very effective at cate-
gorizing Wikipedia pages. Even when we tested nar-
rower categories (such as American Musical Actors),
the algorithm performed very well. Because the per-
formance is so good, testing other features would not
likely produce a significant improvement.

However, there are a number of further directions
to take this research. The first is to adapt this to
fit Wikipedia’s categoization system a bit more pre-
cisely. Typically, in Wikipedia, categories are not
listed as part of the supercategory. They are only
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officially categorized many levels down in the hierar-
chy and only implicitly part of the supercategory. As
such, extending the classifier to take this into account
would produce results more in line with Wikipedias
current categorization policies.

The next obvious step would be to write a bot to
automatically classify articles. This would be a sig-
nificant undertaking, because the way our classifier
is structured it would have to learn a model for each
one of the tens of thousands of categories. For each
page, it would have to determine which, if any, of the
categories apply. Additionally, human editors could
provide feedback on the bots classifications, allowing
us to apply reinforcement learning to improve the ac-
curacy of the classification. Such a project would use
our excellent results to enable people to better navi-
gate and understand the wealth of information that
is Wikipedia.
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